INSTITUT FÜR THEORETISCHE TEILCHENPHYSIK

Einführung in die Flavourphysik WiSe 2017/18

PROF. U. NIERSTE, DR. M. BLANKE DR. I. NISANDZIC

## Problem 9: Two-Higgs doublet model

In two-Higgs doublet model one extends the Higgs sector of the standard model with one additional Higgs doublet. Consider two Higgs doublets:

$$\Phi_1 = \begin{pmatrix} \phi_1^+ \\ \phi_1^0 \end{pmatrix} \quad , \quad \Phi_2 = \begin{pmatrix} \phi_2^+ \\ \phi_2^0 \end{pmatrix}$$

with hypercharge +1.

a) The vacuum expectation values of  $\Phi_1$  and  $\Phi_2$  break the  $SU(2) \times U(1)$  symmetry to  $U(1)_{\rm em}$ . Through suitable global phase transformations of  $\Phi_1$  and  $\Phi_2$  one can bring them to the form

$$\langle \Phi_1 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v_1 \end{pmatrix} \quad , \quad \langle \Phi_2 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v_2 \end{pmatrix}$$

where  $v_1$  and  $v_2$  are real and positive. Express the W- and Z-boson masses through  $v_1$ ,  $v_2$  and the gauge couplings of the standard model.

Hint: Consider the so called *Higgs basis*, that is defined through  $\Phi = \Phi_1 \cos \beta + \Phi_2 \sin \beta$ and  $\Phi' = -\Phi_1 \sin \beta + \Phi_2 \cos \beta$  with the definition  $\tan \beta = v_2/v_1$ .

b) The quark Yukawa sector of the two-Higgs doublet model has the general form

$$\mathcal{L}_{Y} = -Y_{ij}^{1u} \bar{Q}_{Li} \tilde{\Phi}_{1} u_{Rj} - Y_{ij}^{1d} \bar{Q}_{Li} \Phi_{1} d_{Rj} - Y_{ij}^{2u} \bar{Q}_{Li} \tilde{\Phi}_{2} u_{Rj} - Y_{ij}^{2d} \bar{Q}_{Li} \Phi_{2} d_{Rj} + \text{h.c.}$$

with  $\tilde{\Phi}_{1,2} \equiv \varepsilon \Phi_{1,2}^* \equiv i \sigma_2 \Phi_{1,2}^*$ . The *i* and *j* are generation indices and  $Y^{1u}$ ,  $Y^{1d}$ ,  $Y^{2u}$  and  $Y^{2d}$  are Yukawa matrices. The mass eigenstates for the Higgs bosons are  $H^{\pm}$ ,  $G^{\pm}$ ,  $G^0$ ,  $A^0$ ,  $H^0$  and  $h^0$ . For the *CP*-conserving Higgs sector these fields are defined through:

$$\Phi_1 = \begin{pmatrix} c_{\beta}G^+ - s_{\beta}H^+ \\ \frac{1}{\sqrt{2}}(v_1 + c_{\alpha}H^0 - s_{\alpha}h^0 + ic_{\beta}G^0 - is_{\beta}A^0) \end{pmatrix} ,$$
  
$$\Phi_2 = \begin{pmatrix} s_{\beta}G^+ + c_{\beta}H^+ \\ \frac{1}{\sqrt{2}}(v_2 + s_{\alpha}H^0 + c_{\alpha}h^0 + is_{\beta}G^0 + ic_{\beta}A^0) \end{pmatrix}$$



Exercise Sheet 6

with  $s_{\beta} = \sin \beta$ ,  $c_{\beta} = \cos \beta$ ,  $s_{\alpha} = \sin \alpha$  and  $c_{\alpha} = \cos \alpha$ . The angle  $\alpha$  is determined by the couplings in the Higgs potential.

Diagonalize the quark mass matrices through unitary mixings of the quark fields

$$u_{Li} \to V_{ij}^{u_L} u_{Lj} \quad , \quad u_{Ri} \to V_{ij}^{u_R} u_{Rj} \quad , \quad d_{Li} \to V_{ij}^{d_L} d_{Lj} \quad , \quad d_{Ri} \to V_{ij}^{d_R} d_{Rj}$$

and determine the couplings of the Higgs fields  $A^0$ ,  $H^0$  and  $h^0$  to the quark mass eigenstates. Which terms in  $\mathcal{L}_Y$  lead to flavor changing neutral currents (FCNCs)?

c) To forbid the FCNCs one should add an additional symmetry. The simplest choice is a  $\mathbb{Z}_2$ -symmetry Z in the form

$$(\Phi_1, \Phi_2, u_{Ri}, d_{Ri}) \xrightarrow{Z} (\pm \Phi_1, \pm \Phi_2, \pm u_{Ri}, \pm d_{Ri})$$

For which combinations of the signs does the Z forbid the FCNCs?

## Problem 10: Dirac basis and Fierz identities

One can construct the basis for the space of complex  $4 \times 4$  matrices from the Dirac matrices  $\gamma^{\mu}$ . The basis matrices are:

$$\mathcal{B} = \{ P_L , P_R , \gamma^{\mu} P_L , \gamma^{\mu} P_R , \sigma^{\mu\nu} \mid \mu, \nu = 0, \dots, 3 \}$$

with

$$\sigma^{\mu\nu} = \frac{i}{2} [\gamma^{\mu}, \gamma^{\nu}] \quad , \quad P_L = \frac{1}{2} (\mathbb{1} - \gamma_5) \quad , \quad P_R = \frac{1}{2} (\mathbb{1} + \gamma_5)$$

- a) Calculate the traces  $\operatorname{Tr}(\Gamma_1\Gamma_2)$  with  $\Gamma_1, \Gamma_2 \in \mathcal{B}$ .
- b) Let the  $\Gamma$  be arbitrary complex  $4\times 4$  matrix. In the Dirac basis one can expand  $\Gamma$  as

$$\Gamma = s^L P_L + s^R P_R + v^L_\mu \gamma^\mu P_L + v^R_\mu \gamma^\mu P_R + c_{\mu\nu} \sigma^{\mu\nu}$$

Express the coefficients  $s^{L,R}$ ,  $v^{L,R}_{\mu}$  and  $c_{\mu\nu}$  through the traces  $\operatorname{Tr}(\Gamma'\Gamma)$  with  $\Gamma' \in \mathcal{B}$ .

- c) Expand the matrices  $\sigma^{\mu\nu}P_L$  and  $\sigma^{\mu\nu}P_R$  in the Dirac basis  $\mathcal{B}$ . Calculate the outer product  $(\sigma_{\mu\nu}P_L)_{ab}(\sigma^{\mu\nu}P_R)_{cd}$ .
- d) One can expand the tensors  $T_{abcd}$  with four Dirac indices in the basis of outer products of Dirac matrices:

$$T_{abcd} = \sum_{\Gamma, \Gamma' \in \mathcal{B}} C_{\Gamma, \Gamma'} \Gamma_{ab} \Gamma'_{cd} \quad .$$

Calculate the coefficients  $C_{\Gamma,\Gamma'}$  of these expansions for

- i)  $T_{abcd} = (P_L)_{ad}(P_L)_{cb}$  and  $T_{abcd} = (P_R)_{ad}(P_R)_{cb}$ ,
- ii)  $T_{abcd} = (\gamma^{\mu} P_L)_{ad} (\gamma_{\mu} P_L)_{cb}$  and  $T_{abcd} = (\gamma^{\mu} P_R)_{ad} (\gamma_{\mu} P_R)_{cb}$ ,
- iii)  $T_{abcd} = (\gamma^{\mu} P_L)_{ad} (\gamma_{\mu} P_R)_{cb}$  and  $T_{abcd} = (\gamma^{\mu} P_R)_{ad} (\gamma_{\mu} P_L)_{cb}$ .

These identities are called *Fierz identities*.