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Classical Theoretical Physics II

Lecture: Prof. Dr. K. Melnikov – Exercises: Dr. H. Frellesvig, Dr. R. Rietkerk

Exercise Sheet 6
Issue: 25.05.18 – Submission: 01.06.18 at 09:30 – Discussion: 05.06.18

Note: On this exercise sheet we will use ~L as the angular momentum vector, and
l = |~L| as the size of the angular momentum. M will denote the mass of the sun.

Exercise 1: Precession of the perihelion 10 points

Einsteins’ general theory of relativity predicts that the orbits of the planets are not
stable ellipses as predicted by Newton, but rather ellipses for which the perihelion
(i.e. the point on the orbit closest to the sun) slowly rotates around the sun. The
correct prediction of the size of this effect for the orbit of the planet Mercury was
the first triumph of general relativity, and helped establishing that theory as the
successor to Newtonian gravitation1.
The effect of the relativistic corrections, can be modeled as an additional term in
the gravitational potential which decreases as r−2, such that the full potential is

U(r) = −k
r

+
C

r2
, (1)

where k is the same as in Newtonian gravity, and C is the relativistic correction.

(a) Write down the Lagrangian for an object with mass m moving in this
potential.

(b) What are the conserved quantities? Explain why this implies that the motion
takes place on a plane that is naturally described by polar coordinates r
and θ.

(c) For an object moving in a central force field, θ as a function of r can be
written as

θ =

∫
dr

r2
√

2mE
l2
− 2mU(r)

l2
− 1

r2

, (2)

where l is the angular momentum of the object (around the origin), and E
is its energy. Show that this implies that the shape of the orbit is

r =
ρ(1− ε2)

1 + ε cos(αθ)
, (3)

where ρ, ε, and α are functions of E, l, m, k, and C.
Hint 1: Follow the same steps as the derivation of the Kepler orbit presented
in the lectures.

1https://en.wikipedia.org/wiki/Tests_of_general_relativity
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Hint 2: Use the integral∫
dz√

az2 + bz + c
=

1√
−a

arccos

(
− b+ 2az√

b2 − 4ac

)
, (4)

and the variable change z = 1/r.

(d) The expression for α is

α =

√
1 +

2mC

l2
. (5)

What are the expressions for ρ and ε?

(e) Make a sketch of the orbit for values of α close to one. Show on the sketch
α, ρ, and ε. What is the essential difference between the cases of α = 1 and
α 6= 1.

(f) Assume in the following that C is much smaller than other scales in the
problem.
Derive that the “rate of the precession of the perihelion”, i.e. the change in
the angular position of the perihelion for each orbit of the planet, is

∆θ =
−2πmC

l2
. (6)

(g) Einsteins’ theory predicts that

C =
−3G2M2m

c2
, (7)

where G is Newtons’ gravitational constant, M is the mass of the sun, and
c the speed of light.
Substituting the observables ε and ρ for the not directly measurable quantities
E and l, show that the rate of the precession of the perihelion may be
expressed as

∆θ =
6πMG

c2(1− ε2)ρ
. (8)

Hint: You may use the Newtonian expressions for k, ρ, and ε:

k = GMm , ρ = −GMm

2E
, ε =

√
1 +

2El2

mk2
. (9)

(h) The observed value of the precession of the perihelion of the planet Mercury
is 5600 arcseconds per century (an arcsecond or “second of arc” is 1/3600 of
a degree), but most of this effect is due gravitational effects from the other
planets, well described by Newtonian physics. How big is the relativistic
contribution to the precession of the perihelion of Mercury?

Hint: The planet Mercury has ε = 0.206, ρ = 57.9×109m, orbital period τ =
88.0 (Earth) days, and m = 3.30× 1023kg. Additionally M = 1.99× 1030kg,
G = 6.67× 10−11 m3

kg·s2 , and c = 3.00× 108m
s
.

https://www.ttp.kit.edu/courses/ss2018/theob/start page 2 of 4



Exercise 2: The Runge-Lenz vector 10 points

In a previous problem set, we saw that the Runge-Lenz vector ~A is conserved in
the case of the Kepler problem.

~A = ~p× ~L−mkr̂ , (1)

where ~p is the momentum vector, ~L is the angular momentum vector, k = GMm,
and r̂ = ~r/|r| is the unit vector in the radial direction.

(a) Make a sketch of an elliptic orbit, and indicate on it the direction of the
Runge-Lenz vector at various locations in the orbit.

(b) Let us denote the angle between ~A and ~r as θ, such that ~A ·~r = |A||r| cos(θ)

By comparing this with an explicit calculation of ~A ·~r, derive the expression

r =
l2

mk + A cos θ
, (2)

where l = |~L|.
(c) By comparing this with the expression for the shape of an elliptic orbit,

r =
(1− ε2)ρ
1 + ε cos θ

, (3)

express A in terms of the eccentricity ε.

(d) For deviations from the 1/r potential, the Runge-Lenz vector is no longer
conserved.
Show that the time-derivative of the Runge-Lenz vector for a general radial
potential U(r) = −k/r + δU(r), is

d ~A

dt
= f(r)r̂ × ~L , (4)

where f(r) = −d δU(r)
dr

.

Hint: Use the vector identity ~a× (~b× ~c) = ~b(~a · ~c)− ~c(~a ·~b).
(e) Use angular momentum conservation to re-express the time-derivative as an

angular derivative, and obtain the expression

d ~A

dθ
= −f(r)mr2L̂× r̂ , (5)

where L̂ = ~L/l is a unit vector in the ~L direction.

(f) Let us now re-examine the 1/r2 perturbation from the previous exercise,
such that f(r) = 2C

r3
. Use this to approximate the change of the Runge-Lenz

vector over one orbit, as

∆ ~A =
−2πCm

l2
L̂× ~A . (6)

Hint 1: Parametrize the space such that r̂ = cos θx̂+ sin θŷ and L̂ = ẑ.
Hint 2:

∫ 2π

0
cos θ sin θ = 0 and

∫ 2π

0
cos2 θ = π.

https://www.ttp.kit.edu/courses/ss2018/theob/start page 3 of 4



(g) Compare this to the expression for the “rate of the precession of the perihelion”
from the previous exercise:

∆θ =
−2πmC

l2
. (7)

What is the interpretation of this? How does it fit with the sketch made in
the first question?
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