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Exercise 1: Plate 8 points

We borrow from the TTP-kitchen a thin circular plate of radius R, and with a
homogeneous (areal) mass density such that the mass of the plate is m. We will
position the plate in the x, y-plane, with its center in the origin.

(a) What is the (scalar) moment of inertia of the plate around the z-axis?

(b) What is the (scalar) moment of inertia of the plate around the x-axis? And
around the y axis?

(c) Consider an axis parallel with the z-axis but touching the edge of the plate.
Calculate the (scalar) moment of inertia of the plate around that axis using
the parallel axis theorem.

(d) Repeat the previous question by performing the integral directly, and get
agreement.

(e) Consider now drilling a hole (with radius q) with its center at (r, 0, 0), such
that q < r and q + r < R. What are now the (scalar) moments of inertia of
the plate around the x, y, and z axes?

(f) Consider now the plate (without the hole) rotating around the x-axis, with
angular velocity ω. What is the kinetic energy of the plate?

(g) Consider now the plate (without the hole) rolling along a floor, with velocity
v. What is the kinetic energy of the plate?

Exercise 2: Polygon 4 points

Consider a homogeneous thin regular polygon with mass m, area A and N sides.

(a) Calculate the (scalar) moment of inertia IN of the polygon with respect to
the axis perpendicular to the polygon passing through its center.

(b) Show that the general result for the previous question reproduces the mo-
ments of inertia for the square and the circle:

Isquare =
mA

6
, Icircle =

mA

2π
. (1)

Hint: use the fact that limN→∞N tan(π/N) = π.
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Exercise 3: Rocking Chair 8 points
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Figure 1: Rocking chair.

After having worked all day with plates and
polygons we take some rest in a rocking chair. It
has a mass m and moment of inertia Icm around
its center of mass. The legs of the chair are
wooden arcs with radius of curvature R. When
the chair stands up straight, the center of mass
is at a height h < R straight above the point of
contact with the floor. The aim of this problem
is to determine the ‘rocking frequency’ of the
chair.

(a) Find the position of the center of mass
(xcm(θ), ycm(θ)) as a function of the angle
θ between the rocking chair and the vertical. Define the angle in such
a way, that θ = 0 when the chair stands up straight and that θ > 0
when the chair leans backward, see fig. 2. Choose the origin such that
(xcm(0), ycm(0)) = (0, h).

(b) Determine the potential energy of the rocking chair (due to gravity) as a
function of θ. Perform a Taylor expansion of the potential energy around the
equilibrium point. Why are small oscillations of the rocking chair around
the equilibrium point stable?

(c) Determine the kinetic energy of the rocking chair as a function of θ. Taylor
expand it around the equilibrium point.

(d) Show that the frequency of small oscillations of the rocking chair is given by

f =
1

2π

√
mg(R− h)

Icm +mh2
. (1)

"!

Figure 2: The backwards leaning rocking chair makes an angle θ with the
vertical axis.
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Solution of exercise 1: Plate

(a) 1 point I around the z axis
Let us start by finding the areal mass density

m =

∫
ρdA =

∫ R

0

∫ 2π

0

ρrdθdr = 2πρ

∫ R

0

rdr = πρR2 ⇔

ρ =
m

πR2
. (2)

We may then find the moment of inertia around the z axis:

Iz =

∫
ρr2dA =

m

πR2
2π

∫ R

0

r3dr =
2m

R2

1

4
R4 =

1

2
mR2 . (3)

(b) 1 point I around the x and y axis
Around the x axis:

Ix =

∫
ρy2dA =

m

πR2

∫ R

−R
dx 2

∫ √R2−z2

0

dy y2 =
2m

πR2

∫ R

−R
dx1

3
(
√
R2 − x2)3

=
2mR2

3π

∫ 1

−1
(
√

1− ξ2)3dξ =
mR2

4
. (4)

The problem is symmetric is x and y, so around the y axis the result is
clearly the same, Iy = mR2

4

(c) 1 point I around new vertical axis
The parallel axis theorem says

Iv = md2 + Icm = mR2 +
1

2
mR2 =

3

2
mR2 (5)

(d) 1 point I around new vertical axis by direct calculation
We can parametrise the circle by k and φ where k is the distance to the
axis. “Thales’ theorem” tells us that the upper limit of the k integration is
2R sinφ. Therefore

Iv =

∫
ρk2dA =

m

πR2

∫ π/2

−π/2
dφ

∫ 2R sinφ

0

dk k3 =
4mR2

π

∫ π/2

−π/2
dφ sin4 φ

=
3mR2

2
(6)

(e) 2 points Drilled hole
The trick here is to consider the hole as another plate with negative mass
density glued onto the original plate. That hole-plate has the mass

−ρπq2 = −m q2

R2
(7)

https://www.ttp.kit.edu/courses/ss2018/theob/start page 3 of 6



Around its own center of mass it has

Ihz = −m q4

2R2
Ihx = Ihy = −m q4

4R2
(8)

and taking into account the displacement from the center of the original
plate, it has around that point

Ihz = −mq2r2

R2
−m q4

2R2
, Ihx = −m q4

4R2
, Ihy −m

q2r2

R2
−m q4

4R2

(9)

This means that the combined plate has moments of inertia that are the
sum of the two:

Iz =
mR2

2

(
1− q4

R4
− 2q2r2

R4

)
Ix =

mR2

4

(
1− q4

R4

)
(10)

Iy =
mR2

4

(
1− q4

R2
− 4q2r2

R4

)
If the hole is considered small on may discard the q4 terms.

(f) 1 point Rotating around x

E = 1
2
Ixω

2 =
mR2ω2

8
(11)

(g) 1 point Rolling
When something rolls, the point that touches the floor is stationary, so
v = −ωR. The kinetic energy is given by

T = Trot + Ttrans =
1

2
mv2 +

1

2
Izω

2 =
1

2
mv2 +

1

4
mR2(− v

R
)2 =

3

4
mv2 (12)

Solution of exercise 2: Polygon

(a) 2 points Moment of inertia polygon
Use the symmetry of the problem and split up the polygon into N triangles,
each triangle having two corners at the endpoints of a given side of the
polygon and the third endpoint at the center of the polygon. By symmetry,
the moment of inertia of the polygon is equal to N times the moments of
inertia of each of these triangles: IN = NItri.
A given triangle has area A/N and opening angle (at the center) 2π/N . Its
moment of inertia is

Itri =

∫
dm r2 = µ

∫ b

0

dy

∫ y tan(π/N)

−y tan(π/N)

dx (x2 + y2) (13)

= 2µ

∫ b

0

dy

∫ y tan(π/N)

0

dx (x2 + y2) , (14)
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where µ is the constant mass density µ = m/A and b is the shortest di-
stance between the center and the edge of the polygon, which satisfies
b2 = (A/N)(1/ tan(π/N)). Performing the integral is easy and gives

Itri = 2(m/A)

∫ b

0

dy

(
1

3
y3 tan3(π/N) + y3 tan(π/N)

)
= 2(m/A) tan(π/N)

(
1

3
tan2(π/N) + 1

)
1

4
b4

=
mA

2N2

[
tan(π/N)

3
+

1

tan(π/N)

]
.

(15)

Multiplying by N , we finally get

IN =
mA

2

[
tan(π/N)

3N
+

1

N tan(π/N)

]
. (16)

(b) 2 points Reproduce square and circle

Setting N = 4 and using tan(π/4) = 1, we find

Isquare = I4 =
mA

2

[
1

12
+

1

4

]
=
mA

6
, (17)

which is the moment of inertia of the square around the axes perpendicular
to the square, passing through its center.
In the limit N →∞ the polygon becomes a perfect circle. In this limit, the
term tan(π/N)

3N
tends to zero, while 1

N tan(π/N)
tends to 1/π. Therefore

Icircle = lim
N→∞

IN =
mA

2

[
0 +

1

π

]
=
mA

2π
. (18)

Solution of exercise 3: RockingChair

(a) 2 points Position center of mass

xcm(θ) = Rθ − (R− h) sin θ ,

ycm(θ) = R− (R− h) cos θ ,
(19)

(b) 2 points Potential energy

U = mgycm = mg[R− (R− h) cos θ] ≈ mgh+
1

2
(R− h)θ2 (20)

Since we assumed that h < R, the potential energy is a parabola with a
minimum at the equilibrium point θ = 0. Since the potential has a minimum
there, the motion of small oscillations around this equilibrium point is stable.
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(c) 2 points Kinetic energy
Note that the kinetic energy has two contributions: from translational and
rotational motion!

T =
1

2
m(ẋ2cm + ẏ2cm)2 +

1

2
Iθ̇2

=
1

2
mθ̇2

[(xcm
dθ

)2
+
(ycm
dθ

)2]
+

1

2
Iθ̇2

=
1

2
mθ̇2

[
R2 + (R− h)2 − 2R(R− h) cos θ

]
+

1

2
Iθ̇2

≈ 1

2
mh2θ̇2 +

1

2
Iθ̇2

(21)

Note that we drop the term θ2 in the expansion of the cosine, because the
prefactor θ̇2 is already small in the small angle approximation.

(d) 2 points Determine frequency

Having the Lagrangian L = T − U , we compute (of course!) the Euler-
Lagrange equation

(I +mh2)θ̈ +mg(R− h)θ = 0 . (22)

This equation may be written in the form θ̈ + ω2θ = 0, which describes a
harmonic oscillator with frequency

f =
1

2π
ω =

1

2π

√
mg(R− h)

I +mh2
. (23)
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