

Classical Theoretical Physics II

Lecture: Prof. Dr. K. Melnikov – Exercises: Dr. H. Frellesvig, Dr. R. Rietkerk

Exercise Sheet 12

Issue: 06.07.18 - Submission: 13.07.18 before 09:30 - Discussion: 17.07.18

Exercise 1: Anharmonic oscillator

In this exercise we will consider an anharmonic oscillator, which is constructed from the harmonic case by giving T and U a small extra position-dependent contribution, such that the Hamiltonian becomes

$$H = \frac{p^2}{2m}(1 + \epsilon\beta x) + \frac{1}{2}mx^2\omega^2(1 + \epsilon\alpha x) , \qquad (1)$$

where ϵ is a small, dimensionless constant. We will now make a canonical transformation to a new pair of canonical variables X and P. We will do this with the generating function

$$F = \Phi(x, P) - XP , \qquad (2)$$

that is defined such that the variation of the action remains invariant, or correspondingly

$$p\dot{x} - H(x,p) = P\dot{X} - K(X,P) + \frac{dF}{dt} , \qquad (3)$$

where K is the Hamiltonian for the new coordinates.

(a) Derive the transformation equations

$$p = \frac{\partial \Phi}{\partial x}, \qquad X = \frac{\partial \Phi}{\partial P}.$$
 (4)

- (b) What transformation is generated by $\Phi = xP$?
- (c) We will now consider a generating function with

$$\Phi = xP + \epsilon a x^2 P + \epsilon b P^3 . \tag{5}$$

Find values of a and b such that K(X, P) is the Hamiltonian of a harmonic oscillator up to terms of order ϵ^2 .

(d) Express x(t) in terms of the known sinusoidal solutions of the harmonic oscillator.

8 points

Exercise 2: Areas in phase space

12 points

Let us consider, again, the harmonic oscillator given by the Hamiltonian

$$H = \frac{p^2}{2m} + \frac{1}{2}mx^2\omega^2.$$
 (1)

(a) Verify that

$$x = \sqrt{\frac{2E}{m\omega^2}}\sin(\omega t + \theta_0), \qquad p = \sqrt{2Em}\cos(\omega t + \theta_0), \qquad (2)$$

are solutions to the Hamiltonian equations of motion.

- (b) Draw the path of an oscillation in (x, p) phase space, and indicate on the drawing the dependence on E and t.
- (c) If m and ω are known exactly, but the energy is only known to be between E_0 and $E_0 + \Delta E$ and the time to be between t_0 and $t_0 + \Delta t$, what is the area of (x, p) phase space in which the particle may be found? (ΔE and Δt are small.)

Hint: Consider how infinitesimal area elements transform under variable changes.

(d) We will now do a canonical transformation to new variables X and P, defined by the generating function

$$F = \frac{m\omega}{2} x^2 \cot(X) , \qquad (3)$$

(Here, cot is the co-tangent $\cot(z) = \cos(z)/\sin(z)$.) Find expression for x and p in terms of X and P.

- (e) Find expressions for X and P.
- (f) Draw the path of an oscillation in (X, P) phase space, and determine the area in that phase space in which the particle may be found if it has the ΔE and Δt uncertainties discussed above.