

9 points

Classical Theoretical Physics II

Lecture: Prof. Dr. K. Melnikov – Exercises: Dr. H. Frellesvig, Dr. R. Rietkerk

Exercise Sheet 10

Issue: 22.06.18 – Submission: 29.06.18 before 09:30 – Discussion: 3.07.18

Exercise 1: Perturbations from orbit

In this exercise we will investigate the consequence of perturbations away from a circular orbit under the influence of a central force.

- (a) The particle (with mass m) moves in the plane described by polar coordinates r, θ , under the influence of a central force caused by the potential U(r). Show that the Lagrangian is $L = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2) U(r)$.
- (b) Let us now look at the case where U is a power law $U(r) = -ar^{1-n}$. Draw the *effective* potential for various values of n.
- (c) If the particle moves in a circular orbit with constant radius R and constant angular frequency Ω , what is the relation between R, Ω , n, m, and a?
- (d) Let us now consider a small perturbation away from the stable orbit, such that $r = R + \epsilon \rho$ and $\theta = \Omega t + \epsilon \phi$, where ϵ is a small parameter. Show that in this case, the Lagrangian can be written as

$$L = \frac{1}{2}a(1+n)R^{1-n} + \epsilon m R^2 \Omega \dot{\phi}$$
(1)
+ $\frac{\epsilon^2}{2} \left(aR^{-n-1}(n^2-1)\rho^2 + m(R^2 \dot{\phi}^2 + \dot{\rho}^2 + 4\Omega R \dot{\phi} \rho) \right) + \mathcal{O}(\epsilon^3) .$

- (e) Derive the equations of motion for the particle in the new coordinates.
- (f) Assume an oscillating solution to the EOM for ρ and ϕ of the form $\exp(i\omega t)$, such that $\dot{\rho} = i\omega\rho$, $\ddot{\rho} = -\omega^2\rho$, $\dot{\phi} = i\omega\phi$, $\ddot{\phi} = -\omega^2\phi$. Show that with this assumption, the EOMs can be written as $A_{11}\rho + A_{12}\phi = 0$ and $A_{21}\rho + A_{22}\phi = 0$ with

$$A_{11} = a(1 - n^2)R^{-1 - n} - m\omega^2, \qquad A_{12} = -2i\omega mR\Omega, A_{21} = 2i\omega mR\Omega, \qquad A_{22} = -\omega^2 mR^2.$$
(2)

- (g) Show that the criterion for the existence of a non-zero solution to the system of EOMs (using the oscillating ansatz), is $A_{11}A_{22} = A_{12}A_{21}$.
- (h) Show that this criterion implies $\omega = 0$ or $\omega = \pm \Omega \sqrt{3-n}$.
- (i) The oscillating ansatz used, were on the form $\exp(i\omega t)$, so in general complex. Given the allowed values for ω , what are a set of real solutions?
- (j) What is the physical interpretation of these solutions? How do we interpret the imaginary ω for n > 3?

Exercise 2: A more true pendulum

In this exercise, we will consider a pendulum of length R and mass m, as seen of fig. 1.

- (a) Write down the Lagrangian for the pendulum in terms of the angle θ , and find the equation of motion.
- (b) A common approximation to the equation of motion for the pendulum, is $\ddot{\theta} + \omega_0^2 \theta = 0$ with $\omega_0^2 = g/R$. This approximation is valid whenever $\theta \ll 1$. In this exercise we will, however, discuss the next term in the expansion. Show that the EOM for small angles, can be approximated as

What is the expression for α ?

(c) We will make an ansatz for the solution to that EOM, of the form

$$\theta(t) = A_0(\cos(\omega t) + \phi(t))$$
 with $\omega = \omega_0 + \omega_1$ (2)

under the assumptions $|\phi| \ll 1$ and $\omega_1 \ll \omega_0$. Show that the EOM for ϕ can be approximated as

$$\ddot{\phi} + \omega_0^2 \phi = (A_0^2 \alpha/4) \cos(3\omega t) + (2\omega_0 \omega_1 + 3A_0^2 \alpha/4) \cos(\omega t)$$
(3)

Hint 1: The size hierarchy is such that A_0^2 , ϕ , and ω_1 can be considered about equally small.

 $\ddot{\theta} + \omega_0^2 \theta = \alpha \theta^3$

Hint 2: Use the relation between $\cos^3(x)$ and $\cos(3x)$.

(d) The EOM for ϕ implies that, physically, it has to be the case that

$$\omega_1 = \frac{-3A_0^2\alpha}{8\omega_0}.\tag{4}$$

Why is that?

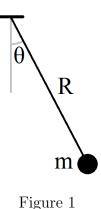
- (e) Find a solution for ϕ .
- (f) Plot $\theta(t)/A_0$ for the harmonic solution $\theta(t) = A_0 \cos(\omega_0 t)$, and for the anharmonic solution given by eq. (2), in the same graph. Do this for a few different values of A_0 . Does this agree with what you would expect for the small angle approximation?

Exercise 3: Anharmonic kinetic term

A certain oscillator has a kinetic term with a small position-dependent contribution, such that

$$L = \frac{1}{2}m(1 + \gamma x)\dot{x}^2 - \frac{1}{2}m\omega_0^2 x^2$$
(1)

https://www.ttp.kit.edu/courses/ss2018/theob/start page 2 of 3



(1)

5 points

6 points

We make a solution ansatz of the form

$$x(t) = A\cos(\omega t) + x_1(t) \tag{2}$$

where $\omega = \omega_0 + \omega_1$, and where $x_1(t)$ and ω_1 may be considered small, and of comparable size to γ .

(a) Using the methods of anharmonic oscillations, find expressions for ω_1 and $x_1(t)$ in terms of ω_0 , γ , and A.