In supersymmetric grand-unified models, the lepton mixing matrix can possibly
affect flavor-changing transitions in the quark sector. We present a detailed
analysis of a model proposed by Chang, Masiero and Murayama, in which the
near-maximal atmospheric neutrino mixing angle governs large new b -> s
transitions. Relating the supersymmetric low-energy parameters to seven new
parameters of this SO(10) GUT model, we perform a correlated study of several
flavor-changing neutral current (FCNC) processes. We find the current bound on
B(tau -> mu gamma) more constraining than B(B -> X_s gamma). The LEP limit on
the lightest Higgs boson mass implies an important lower bound on tan beta,
which in turn limits the size of the new FCNC transitions. Remarkably, the
combined analysis does not rule out large effects in B_s-B_s-bar mixing and we
can easily accomodate the large CP phase in the B_s-B_s-bar system which has
recently been inferred from a global analysis of CDF and DO data. The model
predicts a particle spectrum which is different from the popular Constrained
Minimal Supersymmetric Standard Model (CMSSM). B(tau -> mu gamma) enforces
heavy masses, typically above 1 TeV, for the sfermions of the degenerate first
two generations. However, the ratio of the third-generation and
first-generation sfermion masses is smaller than in the CMSSM and a (dominantly
right-handed) stop with mass below 500 GeV is possible.