TTP96-17 THREE-LOOP HEAVY QUARK VACUUM POLARIZATION

TTP96-17 THREE-LOOP HEAVY QUARK VACUUM POLARIZATION

TTP96-17 THREE-LOOP HEAVY QUARK VACUUM POLARIZATION

The real and imaginary part of the vacuum polarization function $\Pi(q^2)$ induced by a massive quark is calculated in perturbative QCD up to order $\alpha_s^2$. We combine the information from small and large momentum region and from the threshold using conformal mapping and Pad\'e approximation. This leads us to formulae for $\Pi(q^2)$ valid for arbitrary $m^2/q^2$. Taking subsequently the imaginary part we get the ${\cal O}(\alpha_s^2)$ to $R \equiv \sigma(e^+ e^- \to \mbox{hadrons})/

          \sigma(e^+ e^- \to \mu^+ \mu^-)$.

This extends the calculation by K\“all\'en and Sabry from two to three loops.

K.G. Chetyrkin, J.H. Kuehn, M. Steinhauser
Elementary Particle Theory, QCD and QED in Higher Orders, Nucl. Phys. B</B> (Proc.Suppl.)<B>51C 66-70 1996
PDF PostScript