Description of c2HDM.m

Thomas Hermann, Mikołaj Misiak and Matthias Steinhauser

August 2012

The file c2HDM.m contains computer-readable results for the Two Higgs Doublet Model (2HDM) contributions to the Wilson coefficients C_7 and C_8 that have been calculated in Ref. [1]. Furthermore, the corresponding effective Wilson coefficients are also provided. They are defined through

$$C_i^{\text{eff}}(\mu) = \begin{cases} C_i(\mu), & \text{for } i = 1, ..., 6, \\ \frac{4\pi}{\alpha_s} C_7(\mu) + \sum_{j=1}^6 y_j C_j(\mu), & \text{for } i = 7, \\ \frac{4\pi}{\alpha_s} C_8(\mu) + \sum_{j=1}^6 z_j C_j(\mu), & \text{for } i = 8, \end{cases}$$

with $\vec{y} = (0, 0, -\frac{1}{3}, -\frac{4}{9}, -\frac{20}{3}, -\frac{80}{9})$ and $\vec{z} = (0, 0, 1, -\frac{1}{6}, 20, -\frac{10}{3}).$

The notation used in the file c2HDM.m is described in the tables below, where we use

$$C_i^{\text{eff}} = C_i^{\text{SM,eff}} + C_i^{\text{2HDM,eff}},$$

$$C_i^{\text{2HDM,eff}} = C_i^{H(0)\text{eff}} + \left(\frac{\alpha_s}{4\pi}\right)C_i^{H(1)\text{eff}} + \left(\frac{\alpha_s}{4\pi}\right)^2C_i^{H(2)\text{eff}} + \dots$$

together with the variables

$$r = \frac{m_t^2(\mu_0)}{M_{H^+}^2}, \qquad u = 1 - \frac{1}{r}, \qquad \bar{u} = 1 - r.$$

The quantities c7t3L2HDM and c8t3L2HDM are defined as piecewise functions according to Eqs. (34) and (35) of Ref. [1].

MATADMasterIntegralRule are MATHEMATICA replacement rules for symbols.

The file c2HDM.m contains also expansions of the three-loop Wilson coefficients C_7 and C_8 of the Standard Model (SM) around the point $M_W \approx m_t$. More terms in such expansions have been computed in Ref. [1]. The quantities c7t3LSM and c8t3LSM are the respective results for $C_7^{t(3)}$ and $C_8^{t(3)}$ as power series in

$$w = 1 - \frac{M_W^2}{m_t^2}.$$

References

[1] T. Hermann, M. Misiak and M. Steinhauser, $\bar{B} \to X_s \gamma$ in the Two Higgs Doublet Model up to Next-to-Next-to-Leading Order in QCD, SFB/CPP-12-60, TTP12-29, IFT-5/2012.

r	r	
u	u	
ubar	\bar{u}	
mt	$m_t(\mu_0)$	
mu	μ_0	

Table 1: Notation for used variables.

c2HDM.m	quantity
cH[0,i]	$C_i^{H(0)}$ for $i = 1, \dots, 6$
cHeff[0,i]	$C_i^{H(0)\text{eff}}$ for $i = 7, 8$
cH[1,i]	$C_i^{H(1)}$ for $i = 1, \dots, 6$
cH[2,7]	$C_{7}^{H(2)}$
cH[2,8]	$C_8^{H(2)}$
cHeff[1,i]	$C_i^{H(1)\text{eff}}$ for $i = 7, 8$

Table 2: LO (top) and NLO (bottom) Wilson coefficients.

c2HDM.m	quantity
cH3uuL[7]	Eq. (14) of $[1]$
cH3duL[7]	Eq. (15) of $[1]$
cH3uuL[8]	Eq. (16) of $[1]$
cH3duL[8]	Eq. (17) of $[1]$
cH3uur0[7]	Eq. (18) of $[1]$
cH3uur1m[7]	Eq. (19) of $[1]$
cH3uur1p[7]	Eq. (20) of $[1]$
cH3uurinf[7]	Eq. (21) of $[1]$
cH3dur0[7]	Eq. (22) of $[1]$
cH3dur1m[7]	Eq. (23) of $[1]$
cH3dur1p[7]	Eq. (24) of $[1]$
cH3durinf[7]	Eq. (25) of $[1]$
cH3uur0[8]	Eq. (26) of $[1]$
cH3uur1m[8]	Eq. (27) of $[1]$
cH3uur1p[8]	Eq. (28) of $[1]$
cH3uurinf[8]	Eq. (29) of $[1]$
cH3dur0[8]	Eq. (30) of $[1]$
cH3dur1m[8]	Eq. (31) of $[1]$
cH3dur1p[8]	Eq. (32) of $[1]$
cH3durinf[8]	Eq. (33) of $[1]$
cH[2,i]	$C_i^{H(2)}$ for $i = 1, \dots, 6$
cH[3,7]	$C_{7}^{H(3)}$
cH[3,8]	$C_{8}^{H(3)}$
cHeff[2,i]	$C_{i}^{H(2)\text{eff}}$ for $i = 7, 8$

Table 3: NNLO Wilson coefficients.