Description of decsusy31.m

Alexander Kurz, Matthias Steinhauser, Nikolai Zerf

In the Mathematica file decsusy31.m one can find the results for the decoupling constants listed in the following table:

Mathematica expression	relation
ZetaAlphas[5,"exact"] ZetaAlphas[5,"h1"] ZetaAlphas[5,"h2"] ZetaAlphas[5,"h3"]	$\alpha_s^{(5)}(\mu_{\rm dec}) = \zeta_{\alpha_s}(\mu_{\rm dec})\alpha_s^{\rm SQCD}(\mu_{\rm dec})$
ZetaAlphas[6,"exact"] ZetaAlphas[6,"h1"]	$\alpha_s^{(6)}(\mu_{\rm dec}) = \zeta_{\alpha_s}(\mu_{\rm dec})\alpha_s^{\rm SQCD}(\mu_{\rm dec})$
ZetaAlphasForC1[5,"h1"] ZetaAlphasForC1[5,"h2"] ZetaAlphasForC1[5,"h3"]	$C_1(\mu_{\rm ren}) = D_h \ln \zeta_{\alpha_s}(\mu_{\rm ren} = \mu_{ m dec})$

- "exact" refers to the exact expressions with no assumptions on the relations between the mass parameters.
- "h1", "h2" and "h3" refer to the hierarchies defined in Section 2 of Ref. [1].
- ZetaAlphas should be used for numerical values for the decoupling constants.
- ZetaAlphasForC1 should only be used to derive C_1 up to three loops using the LET. It contains the relevant dependence on $m_{\tilde{q}_1}$ and $m_{\tilde{q}_2}$ through mass differences, as well as on the generic mass $m_{\tilde{q}}$ itself. In this limit $D_{\tilde{q}}$ (see Ref. [1]) reads:

$$D_{\tilde{q}} = V_{11}^{\tilde{q}} \frac{\partial}{\partial m_{\tilde{q}_1}^2} + V_{22}^{\tilde{q}} \frac{\partial}{\partial m_{\tilde{q}_2}^2} + \frac{V_{11}^q + V_{22}^q}{2} \frac{\partial}{\partial m_{\tilde{q}}^2}.$$
 (1)

The masses $m_{\tilde{q}_1}$, $m_{\tilde{q}_2}$ and $m_{\tilde{q}}$ have to be treated as independent variables. After the derivatives are taken one has to set $m_{\tilde{q}_1} = m_{\tilde{q}_2} = m_{\tilde{q}}$ and $\theta_q = 0$. [Note that there is still a dependence on ϵ (where $D = 4 - 2\epsilon$) and the mass of the ε scalar if this identification is not done.]

symbol	meaning	symbol	numerical value/meaning
apifull	$\alpha_s^{\rm SQCD}/\pi$	tr	$\frac{1}{2}$
MB1	m_R	cf	$\frac{1}{2}$ $\frac{4}{3}$
MB2	m_{R_2}	ca	3
mst1	$m_{ ilde{t}_1}$	na	8
mst2	$m_{ ilde{t}_2}$	d33	$\frac{5}{6}$
msq	$m_{ ilde q}$	nq	5
mgl	$m_{ ilde{g}}$	nt	1
mt	m_t		
mudec	$\mu_{ m dec}$	lm'M'	$\frac{\ln \frac{\mu_{\text{dec}}^2}{{}^{\prime} M^{22}}}{\text{m'X'}^2 - \text{m'Y'}^2}$
Sthetat	$\sin \theta_t$	Dm2'X''Y'	$m'X'^2 - m'Y'^2$
Cthetat	$\cos \theta_t$	Dm1'X''Y'	m'X' - m'Y'

In the expressions listed in the above table the following variables are used:

In case m_{R_2} is present, m_R is interpreted as m_{R_1} .

The following combinations of mass differences appear in ZetaAlphas: Dm2B1gl, Dm2B1sq, Dm2B1st1, Dm2B1st2, Dm2B2st1, Dm2B2t

For ZetaAlphasForC1 the reference masses are fixed to $m_R = m_{\tilde{t}_1}$ (h1), $m_R = m_{\tilde{g}}$ (h2) and $m_{R_1} = m_{\tilde{g}}$ and $m_{R_2} = m_t$ (h3). These expressions furthermore contain the colour invariants of $SU(N_C)$ and are expressed in terms of the following mass differences: Dm1glst1, Dm2st1st2, Dm2sqst1, Dm2sq1st1, Dm2sq2st1, Dm2st1t, Dm2glst2, Dm2sqg1, Dm2sq1g1, Dm2sq2g1

For further details on the meaning and definition of the parameters we refer to Ref. [1].

References

[1] A. Kurz, N. Zerf, and M. Steinhauser "Decoupling constant for α_s and the effective gluon-Higgs coupling to three loops in supersymmetric QCD," SFB/CPP-12-30, TTP12-22, LPN12-068.