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The package TwoMassTadpoles.m contains a collection of tadpole integrals with two different mass
scales. For convenience also all related single mass scale integrals are included. For further details see [1].
If you use any of the contents of this file, please refer to [1] in the corresponding publication.

The integrals with two different mass scales are expressed in terms of HPLs, the Mathematica package
HPL.m [2, 3] is needed. Note that depending on the Mathematica version the application of Series[] to
HPLs might lead to wrong results.

Functions

TwoMassTadpoles.m provides two functions:

• TwoMassTadpoles[id, ep, x [,options]]

for integrals with two mass scales (Figs. 1, 2 and 3) and

• OneMassTadpoles[id, ep [,options]]

for integrals with one mass scale (Fig. 4).

Parameters

• id Identifier of the integral (see figures), e.g. "m-3l-1";

• ep Symbol of the variable ǫ in d = 4− 2ǫ dimensions and

• x (for TwoMassTadpoles[...] only) mass ratio x = m2

m1

.

Return value

The functions TwoMassTadpoles and OneMassTadpoles provide the integrals corresponding to the iden-
tifier id. The form of the result is adjustable via the options.

Options

• epOrder -> no

By default the integral is given as a series expansion in ǫ or (if known) with exact ǫ-dependence.
Via setting epOrder -> n (integer) the n-th coefficient of the ǫ-expansion is returned instead. If
the requested coefficient is not known,

unknown[integral:<id>,epOrder: <n>,<x>]

will be returned. In Figs. 1 – 4 we indicate below each individual diagram the identifier and the
highest known ǫ-coefficient, in case only a limited number of expansion terms are available.

• massM1 -> 1

This option allows to adjust the mass m1. This implies that for the integrals with two masses the
second mass is given by m2 = xm1. Note that in the logarithmic contributions we set µ = 1.
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• loopConstant -> I*Pi^(2-ep)*Gamma[1+ep]

The result is divided by this constant per loop order.

• switchPropagatorSign -> False

The global sign corresponds to propagators in Minkowski space as follows:

1

−p2 +m2
and

1

−p2
.

Setting this option to True switches the propagator sign, i.e. for each integral an additional factor

(−1)number of propagators

is multiplied.

• solutionType -> "numeric" (integrals in Fig. 3 only)
For the integrals in Fig. 3, which are not known analytically, one can choose from different approx-
imations:

– "numeric"

Interpolation based on series expansions and numerical evaluation of the integrals.

∗ for the integrals in Fig. 3 with four lines:
asymptotic expansion (0 ≤ x ≤ 0.2), the numerical evaluation (0.2 < x < 0.5) and the
Taylor expansion (0.5 ≤ x ≤ 1);

∗ for the integrals in Fig. 3 with six lines: asymptotic expansion (0 ≤ x ≤ 0.3) and the
Taylor expansion (0.3 < x ≤ 1);

– "expansion0"

asymptotic expansion around x = 0, numerical coefficients

– "expansion0-symbolic"

asymptotic expansion around x = 0, exact coefficients expressed by the symbols B4, D3, S2,
OepS2 and T1ep (see below)

– "expansion0-exact"

asymptotic expansion around x = 0, exact coefficients expressed by Mathematica-known func-
tions and constants (e.g. Im[PolyLog[2, Exp[I Pi/3]]])

– "expansion1"

Taylor expansion around x = 1, exact coefficients

– "interpolation" (integrals with four lines only)
interpolation, based on the numerical evaluation for x ∈ [0.1, 1], step size 0.005

• warn -> True

If set to False, warnings are suppressed.
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MATAD symbols

The following constants B4, D3, S2, OepS2 and T1ep are introduced in [4]:
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Figure 1: Analytically known master integrals. Thick, thin and dotted lines denote massive (m1, m2)
and massless propagators. A cross on a line indicates that the corresponding propagator is
raised to power minus one. m-3l-4b is no master integral since it can be expressed by m-3l-3
and m-3l-4. It is listed here for the sake of convenience.
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Figure 2: Analytically known integrals which are reducible to the master integrals in Fig. 1. A dot on a
line indicates that the corresponding propagator is squared.
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Figure 3: Integrals for which the finite part is only known numerically.
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Figure 4: Integrals with one mass scale.
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