User Guide for the Mathematica Package coefhl2.m

J. Grigo, J. Hoff, P. Marquard and M. Steinhauser

version: June 2012

This package contains the moments of non-diagonal current correlators presented in [1]. If you use any of the contents of this file, please refer to $[1$ in the corresponding publication. coefhl2.m contains improved results compared to the original package coefhl.m introduced in [2]. For further details see [1].

In order to use the (partly) known exact analytic results, the Mathematica package HPL.m [3,4] is needed. Note that depending on the Mathematica version the application of Series [] to HPLs might lead to wrong results. The numerical results and series expansions contained in coefhl2.m do not need any additional package. coefhl2.m provides the results in terms of two functions:

- Cbar2[case, aOrd, zOrd, x [,options]]
for the moments of the (pseudo-)scalar and the transverse part of the (axial-)vector correlator and
- CbarL2[case, aOrd, zOrd, x [,options]]
for the longitudinal part of the (axial-)vector correlator.

Parameters

- case: "s", "p", "v", "a"
scalar, pseudo-scalar, vector or axial-vector current
- aOrd: 0,1,2
order of the perturbative expansion in $\frac{\alpha_{s}}{\pi}$
- zOrd: if aOrd $<2:$ zOrd $\in\{-1, \ldots, 9\}$, if aOrd $=2:$ zOrd $\in\{-1, \ldots, 4\}$ order of the momentum expansion in $z=q^{2} / m_{1}^{2}$
- x : symbol or number $\in[0,1]$
mass ratio $\mathrm{x}=m_{2} / m_{1}$

Return value

Following the notation introduced in [1] we have:

$$
\begin{array}{rll}
\text { Cbar2 [case, a0rd, zOrd, x] } & \text { returns } & \bar{C}_{\mathrm{zOrd}}^{\text {(aOrd),case }}(\mathrm{x}), \\
\text { CbarL2 [case, a0rd, zOrd, x] } & \text { returns } & \bar{C}_{L, \mathrm{zOrd}}^{\text {(a0rd),case }}(\mathrm{x}) .
\end{array}
$$

At one- and two-loop level $(\mathrm{aOrd}=0,1)$ the exact analytic result in terms of HPLs is returned. At three-loop level $(\mathrm{aOrd}=2)$ by default a numerical solution (using InterpolatingFunction) valid for $x \in[0,1]$ is returned, see "numeric" below.

By default all results are given for the gauge group $\mathrm{SU}(3)$ with two massive (m_{1} and m_{2}, $m_{1} \geq m_{2}$) and three massless quarks at the renormalization scale $\mu=m_{1}$. There are several options to obtain the result in a different form.

Options

- "solutionType" -> "numeric" (for aOrd = 2 only)

This option concerns the treatment of the master integrals for which only series expansions and numerical results are known.

- "numeric"

Interpolation based on

* (integrals $J_{8 a, b}^{(3)}$ and $\left.J_{9 a, b}^{(3)}\right)$ the asymptotic expansion $(0 \leq x \leq 0.2)$, the numerical evaluation $(0.2 \leq x \leq 0.5)$ and the Taylor expansion $(0.5 \leq x \leq 1)$;
* (integrals $\left.J_{10 a, b}^{(3)}\right)$ the asymptotic expansion $(0 \leq x \leq 0.3)$ and the Taylor expansion $(0.3 \leq x \leq 1) ;$
- "expansion0"

Expansion around $x=0$;

- "expansion1"

Expansion around $x=1$;

- "exact"

Exact analytic results where the (so far unknown) finite parts of the following integrals remain as symbols (the poles have already been plugged in):

$J_{8 a}^{(3)}$, master318a[x]

$J_{8 b}^{(3)}$, master318b [x]

$J_{9 a}^{(3)}$, master319a[x]

$J_{9 b}^{(3)}$, master319b[x]

$J_{10 a}^{(3)}$, master3110a[x]

$J_{10 b}^{(3)}$, master3110b[x]

- SU3 -> True

The moments are given by default for the $\mathrm{SU}(3)$ case. If set to False, the result is given in terms of $\mathrm{ca}=\mathrm{nc}$ and $\mathrm{cf}=\frac{\mathrm{nc}^{2}-1}{2 \mathrm{nc}}$ corresponding to $\mathrm{SU}(\mathrm{nc})$;

- nh -> 1

Number of heavy quarks (mass m_{1});

- nm -> 1

Number of medium heavy quarks (mass m_{2});

- nl -> 3

Number of massless quarks;

- imu -> 1

Ratio of the renormalization scale μ and the heavy mass m_{1} :

$$
\mathrm{imu}=\frac{\mu}{m_{1}}
$$

- subtractPoles -> True

If set to False the remaining poles in ϵ of the moments with zOrd $=-1$ or 0 are not subtracted in the $\overline{M S}$ scheme but left untouched.

References

[1] J. Grigo, J. Hoff, P. Marquard, and M. Steinhauser, "Moments of heavy quark correlators with two masses: Exact mass dependence to three loops," Nuclear Physics B (2012), arXiv:1206.3418 [hep-ph]. http://www.sciencedirect.com/science/article/pii/ S0550321312003902.
[2] J. Hoff and M. Steinhauser, "Moments of heavy-light current correlators up to three loops," Nucl.Phys. B849 (2011) 610-627, arXiv:1103.1481 [hep-ph].
[3] D. Maitre, "HPL, a mathematica implementation of the harmonic polylogarithms," Comput.Phys.Commun. 174 (2006) 222-240, arXiv:hep-ph/0507152 [hep-ph].
[4] D. Maitre, "Extension of HPL to complex arguments," Comput.Phys.Commun. 183 (2012) 846, arXiv:hep-ph/0703052 [HEP-PH].

