User Guide for the Mathematica Package TwoMassTadpoles.m

J. Grigo, J. Hoff, P. Marquard and M. Steinhauser

version: June 2012

The package TwoMassTadpoles.m contains a collection of tadpole integrals with two different mass scales. For convenience also all related single mass scale integrals are included. For further details see [1]. If you use any of the contents of this file, please refer to [1] in the corresponding publication.

The integrals with two different mass scales are expressed in terms of HPLs, the Mathematica package HPL.m [2,3] is needed. Note that depending on the Mathematica version the application of Series[] to HPLs might lead to wrong results.

Functions

TwoMassTadpoles.m provides two functions:

- TwoMassTadpoles[id, ep, x [,options]] for integrals with two mass scales (Figs. 1, 2 and 3) and
- OneMassTadpoles[id, ep [,options]] for integrals with one mass scale (Fig. 4).

Parameters

- id Identifier of the integral (see figures), e.g. "m-3l-1";
- ep Symbol of the variable ϵ in $d = 4 2\epsilon$ dimensions and
- x (for TwoMassTadpoles[...] only) mass ratio $x = \frac{m_2}{m_1}$.

Return value

The functions TwoMassTadpoles and OneMassTadpoles provide the integrals corresponding to the identifier id. The form of the result is adjustable via the options.

Options

• epOrder -> no

By default the integral is given as a series expansion in ϵ or (if known) with exact ϵ -dependence. Via setting epOrder -> n (integer) the n-th coefficient of the ϵ -expansion is returned instead. If the requested coefficient is not known,

```
unknown[integral:<id>,epOrder: <n>,<x>]
```

will be returned. In Figs. 1 - 4 we indicate below each individual diagram the identifier and the highest known ϵ -coefficient, in case only a limited number of expansion terms are available.

• massM1 -> 1

This option allows to adjust the mass m_1 . This implies that for the integrals with two masses the second mass is given by $m_2 = xm_1$. Note that in the logarithmic contributions we set $\mu = 1$.

• loopConstant -> I*Pi^(2-ep)*Gamma[1+ep]

The result is divided by this constant per loop order.

• switchPropagatorSign -> False

The global sign corresponds to propagators in Minkowski space as follows:

$$\frac{1}{-p^2 + m^2} \qquad \text{and} \qquad \frac{1}{-p^2} \ .$$

Setting this option to True switches the propagator sign, i.e. for each integral an additional factor

 $(-1)^{\text{number of propagators}}$

is multiplied.

• solutionType -> "numeric" (integrals in Fig. 3 only)

For the integrals in Fig. 3, which are not known analytically, one can choose from different approximations:

- "numeric"

Interpolation based on series expansions and numerical evaluation of the integrals.

- * for the integrals in Fig. 3 with four lines: asymptotic expansion ($0 \le x \le 0.2$), the numerical evaluation (0.2 < x < 0.5) and the Taylor expansion ($0.5 \le x \le 1$);
- * for the integrals in Fig. 3 with six lines: asymptotic expansion $(0 \le x \le 0.3)$ and the Taylor expansion $(0.3 < x \le 1)$;
- "expansion0"

asymptotic expansion around x = 0, numerical coefficients

- "expansionO-symbolic" asymptotic expansion around x = 0, exact coefficients expressed by the symbols B4, D3, S2, DepS2 and T1ep (see below)
- "expansion0-exact"

asymptotic expansion around x = 0, exact coefficients expressed by Mathematica-known functions and constants (e.g. Im[PolyLog[2, Exp[I Pi/3]]])

- "expansion1" Taylor expansion around x = 1, exact coefficients
- "interpolation" (integrals with four lines only) interpolation, based on the numerical evaluation for $x \in [0.1, 1]$, step size 0.005
- warn -> True

If set to False, warnings are suppressed.

MATAD symbols

The following constants B4, D3, S2, OepS2 and T1ep are introduced in [4]:

References

- J. Grigo, J. Hoff, P. Marquard, and M. Steinhauser, "Moments of heavy quark correlators with two masses: Exact mass dependence to three loops," *Nuclear Physics B* (2012), arXiv:1206.3418 [hep-ph]. http://www.sciencedirect.com/science/article/pii/ S0550321312003902.
- [2] D. Maitre, "HPL, a mathematica implementation of the harmonic polylogarithms," *Comput.Phys.Commun.* 174 (2006) 222-240, arXiv:hep-ph/0507152 [hep-ph].
- [3] D. Maitre, "Extension of HPL to complex arguments," Comput. Phys. Commun. 183 (2012) 846, arXiv:hep-ph/0703052 [HEP-PH].
- M. Steinhauser, "MATAD: A program package for the computation of massive tadpoles," *Comput. Phys. Commun.* 134 (2001) 335-364, arXiv:hep-ph/0009029.

Figure 1: Analytically known master integrals. Thick, thin and dotted lines denote massive (m_1, m_2) and massless propagators. A cross on a line indicates that the corresponding propagator is raised to power minus one. m-3l-4b is no master integral since it can be expressed by m-3l-3 and m-3l-4. It is listed here for the sake of convenience.

Figure 2: Analytically known integrals which are reducible to the master integrals in Fig. 1. A dot on a line indicates that the corresponding propagator is squared.

Figure 3: Integrals for which the finite part is only known numerically.

Figure 4: Integrals with one mass scale.