User Guide for the Mathematica Package TwoMassTadpoles.m

J. Grigo, J. Hoff, P. Marquard and M. Steinhauser

version: June 2012

The package TwoMassTadpoles.m contains a collection of tadpole integrals with two different mass scales. For convenience also all related single mass scale integrals are included. For further details see [1]. If you use any of the contents of this file, please refer to [1] in the corresponding publication.

The integrals with two different mass scales are expressed in terms of HPLs, the Mathematica package HPL.m [2,3] is needed. Note that depending on the Mathematica version the application of Series [] to HPLs might lead to wrong results.

Functions

TwoMassTadpoles.m provides two functions:

- TwoMassTadpoles[id, ep, x [,options]] for integrals with two mass scales (Figs. 11, 2 and (3) and
- OneMassTadpoles [id, ep [,options]]
for integrals with one mass scale (Fig. (4).

Parameters

- id Identifier of the integral (see figures), e.g. "m-31-1";
- ep Symbol of the variable ϵ in $d=4-2 \epsilon$ dimensions and
- x (for TwoMassTadpoles [...] only) mass ratio $\mathrm{x}=\frac{m_{2}}{m_{1}}$.

Return value

The functions TwoMassTadpoles and OneMassTadpoles provide the integrals corresponding to the identifier id. The form of the result is adjustable via the options.

Options

- epOrder -> no

By default the integral is given as a series expansion in ϵ or (if known) with exact ϵ-dependence. Via setting epOrder $\rightarrow \mathrm{n}$ (integer) the n -th coefficient of the ϵ-expansion is returned instead. If the requested coefficient is not known,
unknown[integral:<id>,epOrder: <n>,<x>]
will be returned. In Figs. $1-4$ we indicate below each individual diagram the identifier and the highest known ϵ-coefficient, in case only a limited number of expansion terms are available.

- massM1 -> 1

This option allows to adjust the mass m_{1}. This implies that for the integrals with two masses the second mass is given by $m_{2}=x m_{1}$. Note that in the logarithmic contributions we set $\mu=1$.

- loopConstant -> I*Pi^ (2-ep) *Gamma[1+ep]

The result is divided by this constant per loop order.

- switchPropagatorSign -> False

The global sign corresponds to propagators in Minkowski space as follows:

$$
\frac{1}{-p^{2}+m^{2}} \quad \text { and } \quad \frac{1}{-p^{2}}
$$

Setting this option to True switches the propagator sign, i.e. for each integral an additional factor

$$
(-1)^{\text {number of propagators }}
$$

is multiplied.

- solutionType -> "numeric" (integrals in Fig. 3 only)

For the integrals in Fig. 3, which are not known analytically, one can choose from different approximations:

- "numeric"

Interpolation based on series expansions and numerical evaluation of the integrals.

* for the integrals in Fig. 3 with four lines:
asymptotic expansion $(0 \leq x \leq 0.2)$, the numerical evaluation $(0.2<x<0.5)$ and the Taylor expansion $(0.5 \leq x \leq 1)$;
* for the integrals in Fig. 3 with six lines: asymptotic expansion $(0 \leq x \leq 0.3)$ and the Taylor expansion $(0.3<x \leq 1)$;
- "expansion0"
asymptotic expansion around $x=0$, numerical coefficients
- "expansion0-symbolic"
asymptotic expansion around $x=0$, exact coefficients expressed by the symbols B4, D3, S2, OepS2 and T1ep (see below)
- "expansion0-exact"
asymptotic expansion around $x=0$, exact coefficients expressed by Mathematica-known functions and constants (e.g. Im[PolyLog[2, Exp[I Pi/3]]])
- "expansion1"

Taylor expansion around $x=1$, exact coefficients

- "interpolation" (integrals with four lines only)
interpolation, based on the numerical evaluation for $x \in[0.1,1]$, step size 0.005
- warn -> True

If set to False, warnings are suppressed.

MATAD symbols

The following constants B4, D3, S2, OepS2 and T1ep are introduced in 4]:

$$
\begin{aligned}
\mathrm{D} 3= & 6 \zeta_{3}-\frac{15}{4} \zeta_{4}-6\left[\mathrm{Cl}_{2}\left(\frac{\pi}{3}\right)\right]^{2} \\
\mathrm{~B} 4= & -4 \zeta_{2} \ln ^{2} 2+\frac{2}{3} \ln ^{4} 2-\frac{13}{2} \zeta_{4}+16 \operatorname{Li}_{4}\left(\frac{1}{2}\right) \\
\mathrm{S} 2= & \frac{4}{9 \sqrt{3}} \mathrm{Cl}_{2}\left(\frac{\pi}{3}\right) \\
\text { OepS2 }= & -\frac{763}{32}-\frac{9 \pi \sqrt{3} \ln ^{2} 3}{16}-\frac{35 \pi^{3} \sqrt{3}}{48}+\frac{195}{16} \zeta_{2}-\frac{15}{4} \zeta_{3}+\frac{57}{16} \zeta_{4} \\
& +\frac{45 \sqrt{3}}{2} \mathrm{Cl}_{2}\left(\frac{\pi}{3}\right)-27 \sqrt{3} \operatorname{Im}\left[\operatorname{Li}_{3}\left(\frac{e^{-i \pi / 6}}{\sqrt{3}}\right)\right] \\
\mathrm{T} 1 \mathrm{ep}= & -\frac{45}{2}-\frac{\pi \sqrt{3} \ln ^{2} 3}{8} \\
& -\frac{35 \pi^{3} \sqrt{3}}{216}-\frac{9}{2} \zeta_{2}+\zeta_{3}+6 \sqrt{3} \mathrm{Cl}_{2}\left(\frac{\pi}{3}\right)-6 \sqrt{3} \operatorname{Im}\left[\operatorname{Li}_{3}\left(\frac{e^{-i \pi / 6}}{\sqrt{3}}\right)\right]
\end{aligned}
$$

References

[1] J. Grigo, J. Hoff, P. Marquard, and M. Steinhauser, "Moments of heavy quark correlators with two masses: Exact mass dependence to three loops," Nuclear Physics B (2012),
arXiv:1206.3418 [hep-ph]. http://www.sciencedirect.com/science/article/pii/ S0550321312003902.
[2] D. Maitre, "HPL, a mathematica implementation of the harmonic polylogarithms," Comput.Phys.Commun. 174 (2006) 222-240, arXiv:hep-ph/0507152 [hep-ph].
[3] D. Maitre, "Extension of HPL to complex arguments," Comput.Phys.Commun. 183 (2012) 846, arXiv:hep-ph/0703052 [HEP-PH].
[4] M. Steinhauser, "MATAD: A program package for the computation of massive tadpoles," Comput. Phys. Commun. 134 (2001) 335-364 arXiv:hep-ph/0009029.

Figure 1: Analytically known master integrals. Thick, thin and dotted lines denote massive (m_{1}, m_{2}) and massless propagators. A cross on a line indicates that the corresponding propagator is raised to power minus one. m-3l-4b is no master integral since it can be expressed by m-3l-3 and $\mathrm{m}-3 \mathrm{l}-4$. It is listed here for the sake of convenience.

i-3l-5a, ϵ^{2}

i-31-5b, ϵ

i-3l-6a, ϵ

i-3l-6b, ϵ

Figure 2: Analytically known integrals which are reducible to the master integrals in Fig. 11 A dot on a line indicates that the corresponding propagator is squared.

Figure 3: Integrals for which the finite part is only known numerically.

$K^{(1)}, \mathrm{s}-11-0$

s-31-0

s-2l-0

$K_{1}^{(2)}, \mathrm{s}-2 \mathrm{l}-1$
s-3l-2
$\mathrm{s}-3 \mathrm{l}-3, \epsilon^{2}$

$$
K_{2}^{(2)}, \text { s-2l-2 }
$$

$K_{4}^{(3)}, \mathrm{s}-3 \mathrm{l}-4, \epsilon^{0}$

$K_{5}^{(3)}$, s-3l-5

s-31- $6, \epsilon^{0}$

s-31-7

Figure 4: Integrals with one mass scale.

