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Corrections of order α
4
s for the axial singlet contributions for the decay rate of the Z-boson into

hadrons are evaluated in the limit of the heavy top quark mass. Combined with recently finished
O(α4

s) calculations of the non-singlet corrections, the new results directly lead us to the first complete
O(α4

s) prediction for the total hadronic decay rate of the Z-boson.
The new O(α4

s) term in Z-decay rate lead to a significant stabilization of the perturbative series,
to a reduction of the theory uncertainty in the strong coupling constant αs, as extracted from these
measurements, and to a small shift of the central value.

PACS numbers: 12.38.-t 12.38.Bx 12.20.-m

The precise determination of the Z-boson decay rate
into hadrons at LEP [1] has led to one of the most precise
determinations of the strong coupling constant αs. From
the experimental side, in view of the fully inclusive nature
of this measurement, the result is fairly robust, in partic-
ular since it is insensitive to simulations of the hadronic
final state. Hence the error is essentially dominated by
the statistical uncertainty. From the theory side the ad-
vantage of the measurement is its high energy, and as a
result, the irrelevance of nonperturbative and power-law
suppressed terms. The smallness of αs at high energies
then leads to a rapid decrease of higher order corrections
in the perturbative series and, correspondingly, to a sig-
nificant reduction of the theory error.

A variety of methods has been suggested to estimate
the remaining uncertainty in the theory prediction. Us-
ing the last calculated term is probably the most con-
servative approach, varying the renormalization scale µ
within an energy range characteristic for the problem
(e.g. MZ/3 < µ < 3MZ) is frequently used, albeit with
considerable ambiguity in the actual choice of the region
of the µ-variation. In order to reduce the theoretical un-
certainty in the extraction of αs to a level significantly
smaller than the experimental one (which amounts to
±0.0026 at present [1]), the knowledge of the corrections
of O(α4

s) is necessary. At the same time this calcula-
tion opens the window for a considerable improvement
in the αs-determination at GigaZ, the project of a high-
luminosity linear collider operating at the Z-resonance
(see e.g. [2], where a precision of 0.0005 to 0.0007
has been advertised). The dominant part of the α4

s-
corrections, the ”non-singlet”-piece, has been evaluated
in [3]. This has lead to a slight shift of the central value
of αs upwards from 0.1185±0.0026 to 0.1190±0.0026 [3]
and a reduction of the theory error far below the error
of 0.0026 from experiment. However, as noted already in
[3], for a complete evaluation of the decay rate in O(α4

s)
an additional set of corrections, namely those for the

“singlet” contributions, is required. For the axial cur-
rent correlator these start at O(α2

s) [4, 5], for the vector
correlator at O(α3

s). Both of them are presently known
to third order in αs only [6–10]. Hence, for a completely
consistent O(α4

s) extraction of the strong coupling the
extension of these results by one order in αs is required.
Before describing this calculation in detail, let us

briefly recall the basic structure of QCD corrections to
the correlator of the electromagnetic and the neutral cur-
rent, respectively, their similarities and their main differ-
ences. After splitting off inessential kinematic factors,
the absorptive part of the current-current correlator of
the electromagnetic current is expressed by the familiar
R-ratio

Rem = 3
[

∑

f

q2f r
V
NS + (

∑

f

qf )
2rVS

]

, (1)

where rVNS and rVS stand for the (numerically dominant)
non-singlet and the singlet part respectively. The corre-
sponding decomposition for the correlator of the neutral
current involves the following four terms

Rnc = 3
[

∑

f

v2f r
V
NS +

(

∑

f

vf
)2
rVS +

∑

f

a2fr
A
NS + rAS;t,b

]

,

(2)
with vf ≡ 2If − 4qfs

2
W , af ≡ 2If and sW defined as

effective weak mixing angle. Here all but the top quark
are assumed to be massless.
(Mass corrections to both vector and axial vector cor-

relator due to other massive quarks are dominated by the
bottom quark and can be classified by orders in m2

b/M
2
Z

and αs. Up to O(α2
sm

2
b/M

2
Z) and O(α2

sm
4
b/M

4
Z) they can

be found in [11], as well terms of order α2
sm

2
b/M

2
Z (const

+ log m2
b/M

2
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sm
2
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2
t (const + log m2
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that arise from axial vector singlet contributions. Terms
of order α3

sm
4
b/M

4
Z and α4

sm
2
b/M

2
Z can be found in [12]

and [13] respectively. Corrections of order α2
sm

2
Z/m

2
t and

α3
sm

2
Z/m

2
t from singlet and non-singlet terms are known
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from [4, 5, 14] and [15] respectively. These are important
for the actual αs-determination, but will not be discussed
further in the present paper.)

From the prefactors of the non-singlet contributions
in electromagnetic, vector and axial correlator it is ev-
ident that different quark flavours contribute incoher-
ently, hence additive to the rate. Thus their contribution
is significantly enhanced in comparison with the singlet
terms where amplitudes from different flavours interfere
destructively, with prefactors (

∑

f qf )
2 and (

∑

f vf )
2 for

the electromagnetic and neutral current respectively.

Non-singlet contributions are present at the parton
level and the QCD corrections are known in second [16],
third [6, 7] and fourth [3] order in αs. In terms of Feyn-
man diagrams, non-singlet contributions are character-
ized by the fact that one quark loop connects the two ex-
ternal currents (Fig. 1a). In the absorptive part of this
fermion loop no top quark is present due to kinematic
reasons, whence the non-singlet functions are identical
rVNS = rANS ≡ rNS.

In the case of singlet contributions of the vector current
the two currents couple to two different quark loops (Fig.
1b) requiring a three-gluon intermediate state. Corre-
spondingly the leading term is of O(α3

s) and has been
obtained already long time ago [6, 7]. The NLO correc-
tions to this result are of O(α4

s). They serve to soften the
strong scale dependence of the O(α3

s) result, stabilize the
theory prediction and will be the subject of this paper.

The situation is different in the case of the singlet ax-
ial vector current correlator. The axial couplings of the
two members of an isospin doublet are opposite equal.
Hence their singlet contributions vanishes, if the corre-
sponding quark masses are equal. This approximation
is valid for the two lightest quark doublets. The only
remaining contribution originates from the combination
of bottom and top quarks with their specific mass hier-
archy m2

b << M2
Z << m2

t (Fig. 1c). In this case the
contribution starts at O(α2

s) and is further enhanced by
the ”large” logarithm log(m2

t /M
2
Z) [4, 5]. Corrections of

O(α3
s) have been calculated in [8–10], those of O(α4

s) will
be the subject of this paper.

The evaluation of the NLO terms of rSV requires the
calculation of the absorptive parts of five-loop diagrams
with massless propagators which, with the help of some
complicated combinatorics based on the R∗-operation
[17], can be boiled down to the calculation of four-loop

(a) (b)

t,b t,b

(c)

FIG. 1: Different contributions to r-ratios: (a) non-singlet,
(b) vector singlet and (c) axial vector singlet.

propagator diagrams. The latter have been computed
via reduction to 28 master integrals, based on evaluating
sufficiently many terms of the 1/D expansion [18] of the
corresponding coefficient functions [19]. This direct pro-
cedure required huge computing resources and was per-
formed using a parallel version [20] of FORM [21]. The
master integrals are reliably known from [22–24]. The de-
tails of the calculation, the results in analytic form and
their relation to the Gross-Llewellyn Smith sum rule will
be given in [27].
The evaluation of the NNLO terms of RA

S;t,b involves
again absorptive parts of five-loop diagrams with mass-
less propagators, however, in addition also absorptive
parts of four-loop diagrams combined with one-loop mas-
sive tadpoles, etc. down to one-loop massless diagrams
together with four-loop massive tadpoles. The latter have
been computed with the help of the Laporta algorithm
[25] implemented in Crusher [26]. The methods employed
in our calculations, together with the results will be de-
scribed in more detail in [27].
The result is valid in the limit M2

Z ≪ 4M2
t , an ex-

cellent approximation as evident from the lower orders.
The relative importance of the various terms is best seen
from the results for the various r-ratios introduced above,
expressed in numerical form

rNS =1 + as + 1.4092 a2s − 12.7671 a3s − 79.9806 a4s ,

rVS =− 0.4132 a3s − 4.9841 a4s ,

rAS:t,b =(−3.0833 + lt) a
2
s (3)

+ (−15.9877 + 3.7222 lt + 1.9167 l2t ) a
3
s

+ (49.0309− 17.6637 lt + 14.6597 l2t + 3.6736 l3t ) a
4
s ,

with as = αs(MZ)/π and lt = ln(M2
Z/M

2
t ). Since all

three r-ratios are separately scale invariant, the corre-
sponding results for a generic value of αs(µ) can easily
be reconstructed. Using for the pole mass Mt the value
172 GeV the axial singlet contribution is given in numer-
ical form by

rAS;t,b = −4.3524 a2s − 17.6245 a3s + 87.5520 a4s . (4)

Collecting now all QCD terms, the decay rate of the Z-
boson into hadrons can be cast into the following form

ΓZ = Γ0 R
nc =

GF M3

Z

24π
√
2
Rnc . (5)

Here all electroweak corrections are assumed to be col-
lected in the prefactor Γ0, and the forementioned mass
corrections are ignored as well as electroweak and mixed
QCD-electroweak corrections [28–30]. Thus the R-ratio
is now known up to O(a4s)

Rnc =20.1945 + 20.1945 as

+ (28.4587− 13.0575 + 0) a2s

+ (−257.825− 52.8736− 2.12068) a3s

+ (−1615.17 + 262.656− 25.5814) a4s , (6)
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with s2W = 0.231. The three terms in the brackets dis-
play separately non-singlet, axial singlet and vector sin-
glet contributions.

Let us now evaluate the impact of the newly calcu-
lated terms on the αs-determination from Z-decays. Fol-
lowing our approach for the non-singlet terms (where
a shift δαs = 0.0005 had been obtained [3], consis-
tent with an analysis [31] based on results of the elec-
troweak working group [1] and a modified interface to
ZFITTER v. 6.42 [32, 33] and confirmed by the G-fitter
collaboration [32,30,31]), we consider the quantity Rnc

as “pseudo-observable”. With a starting value Rnc =
20.9612, if evaluated for αs = 0.1190 and without the α4

s

singlet terms, a shift δαs = −0.00008 is obtained after
including the newly calculated contributions.

As discussed in [3], the non-singlet α4
s term leads to a

considerable stabilization of the theory prediction, and,
correspondingly, to a reduction of the theory error. A
similar statement holds true for the singlet contribution.
To illustrate this aspect, the dependence on the renor-
malization scale µ is shown in Fig. 2 for rNS, r

V
S and

rAS;t,b. The relative variation is significantly reduced in
all three cases. In particular for the vector singlet case
we observe a shift of the result by about a factor 1.45
(for µ = MZ) and a considerable flattening of the result.
Using for example the Principle of Minimal Sensitivity
(PMS) [35] as a guidance for the proper choice of scale,
µ = 0.3MZ seems to be favoured, leading to an amplifi-
cation of the LO result by a factor 1.68 (if the latter is
evaluated for µ = MZ , as done traditionally).

Let us assume that the remaining theory uncertainties
from rNS, r

V
S and rAS;t,b can be estimated by varying µ be-

tween MZ/3 and 3MZ and using the maximal variation
as twice the uncertainty δr. This leads to δΓNS = 0.101
MeV, δΓV

S = 0.0027 MeV and δΓA
S = 0.042 MeV. Even

adding these terms linearly, they are far below the exper-
imental error of δΓexp = 2.0 MeV [36]. In combination
with the quadratic and quartic mass terms, which are
known to O(α4

s) and O(α3
s) respectively, this analysis

completes the QCD corrections to the Z decay rate.

Let us also comment on the impact of the α4
s singlet

result on the measurement of Rem at low energies, i.e. in
the region accessible at BESS or at B-factories, say be-
tween 3 GeV and 10 GeV. Considering the large luminosi-
ties collected at these machines, a precise αs determina-
tion from Rem seems possible [38]. In the low energy re-
gion only rVS and rVNS contribute. Since

∑

f=u,d,s qf = 0,
the singlet contribution vanishes in the three flavour case.
If we consider the region above charm and below bottom
threshold, say at 10 GeV, only u, d, s and c quarks con-
tribute, the relative weight of the rVS in eq. (1) is given by
(
∑

qf )
2/(

∑

q2f ) = 2/5, and thus is fairly suppressed. At
energy of 10 GeV, in the absence of open bottom quark
contribution, it seems appropriate to analyze the results

in an effective four flavour theory with

rVS = −0.41318 a3s(µ)− (5.1757 + 2.5824 lnµ2/s) a4s(µ).

As shown in Fig. 3, it is evident that the scale depen-
dence is softened in NLO. Again a scale µ around 0.3

√
s
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FIG. 2: Scale dependence of (a) non-singlet rNS, (b) vector
singlet r

V
S and (c) axial vector singlet r

A
S;t,b. Dotted, dash-

dotted, dashed and solid curves refer to O(αs) up to O(α4
s)

predictions. αs(MZ) = 0.1190 and nl = 5 is adopted in all
these curves.
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minimizes the NLO corrections.
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FIG. 3: Scale dependence of the vector singlet r
V
S around

10 GeV. Dashed and solid curves refer to O(α3
s) and O(α4

s)
predictions. nl = 4 and αs(10GeV) = 0.1806 as obtained
with the use of package RunDec [37] have been assumed.

In conclusion we want to mention that all our calcu-
lations have been performed on a SGI ALTIX 24-node
IB-interconnected cluster of 8-cores Xeon computers us-
ing parallel MPI-based [20] as well as thread-based [39]
versions of FORM [21]. For evaluation of color factors we
have used the FORM program COLOR [40]. The dia-
grams have been generated with QGRAF [41]. This work
was supported by the Deutsche Forschungsgemeinschaft
in the Sonderforschungsbereich/Transregio SFB/TR-9
“Computational Particle Physics”, by Graduiertenkolleg
1694 “Elementarteilchenphysik bei höchster Energie und
höchster Präzision” and by RFBR grants 11-02-01196
and 10-02-00525.
We thank P. Marquard for his friendly help with the

package Crusher.
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