Low- and High-Energy Expansion of Heavy-Quark Correlators at Next-To-Next-To-Leading Order

The attached files contain the results of TTP11-25 in computer readable form for the case of **nh** degenerate massive and **nl** massless quark flavors at an arbitrary renormalization scale μ . The files contain the combined 1-, 2- and 3-loop contributions.

Each file contains the expansion of one correlator in a specific kinematic region. The file names follow the pattern

<flavour structure>_<Lorentz structure>_<region>_<renormalization scheme>. <region> is le for the low-energy region and he for the high-energy region. The renormalisation schemes are MS ($\overline{\rm MS}$) and OS (on-shell).

Lm		Lq		Lz	Z	pi	asPi
$\log{(m^2/\mu^2)}$		$\log\left(-q^2/\mu^2\right)$	m^2)	$\log\left(-q^2/r\right)$	q^2/m^2	π	α_s/π
a	5	2, z3, z4, z5	z2	tf	cf ca		cf
Li ₄ (1/2)		$),\zeta(3),\zeta(4),\zeta(5)$	$\zeta(2$	$T_F = 1/2$	$C_A = 3$	4/3	$C_F =$
ls2 log2		c4					
log	$^{(3)}]$	$Im[Li_2((-1)^{2/2})]$	$24\text{Li}_4(1/2) + \log^4(2) - 6\zeta(2)\log^2(2)$				

We use the following notation: