Two-loop master-integrals

We define all integrals in the Euclidean space with $D=4-2\epsilon$ dimensions. In each integral we only compute a piece of the imaginary part, which includes only cuts crossing the line with mass x (corresponding to the normalized Higgs boson mass present in the denominator D_1). Master integrals were identified with the help of Laporta algorithm. Integral U6 is a linear combination of U1, U1a, and U8, other integrals are linearly independent.

The forward scattering kinematics is assumed: the external momenta are on-shell, $p_1^2 = p_2^2 = 0$, normalized by $(p_1 + p_2)^2 = -1$. Each integral depends on x, 0 < x < 1. The topologies are defined as follows:

$$TT\#(a_1,...,a_7;x) = \frac{1}{\pi \mathcal{F}^2} \Im^* \int \frac{d^D v_1 \ d^D v_2}{(2\pi)^{2D}} \frac{1}{D_1^{a_1}...D_7^{a_7}}, \ D_1 = v_1^2 + x, \ D_2 = v_2^2, \ D_i = k_i^2, \ k = 3...7$$

with the loop factor $\mathcal{F} = \frac{\Gamma(1+\epsilon)}{(4\pi)^{2-\epsilon}}$, symbol \mathfrak{F}^* denoting the sum over appropriate cuts, and

#	k_3	k_4	k_5	k_6	k_7
A	$v_1 + v_2 - p_1 - p_2$	$v_1 + v_2 - p_2$	$v_2 - p_1$	$v_2 - p_2$	$v_1 + v_2 - p_1$
В	$v_1 + v_2 - p_1 - p_2$	$v_2 - p_1$	$v_1 - p_1$	$v_1 + v_2 - p_1$	$v_2 - p_2$
$^{\mathrm{C}}$	$v_1 + v_2 - p_1 - p_2$	$v_2 - p_1$	$v_1 - p_1$	$v_1 - p_2$	$v_1 + v_2 - p_1$
D	$v_1 + v_2 - p_1 - p_2$	$v_2 - p_1$	$v_1 - p_1$	$v_1 - p_2$	$v_2 - p_2$
\mathbf{E}	$v_2 + p_1$	$v_2 - p_2$	$v_1 + v_2 + p_1$	$v_1 + v_2 - p_2$	$v_1 + v_2$
\mathbf{F}	$v_2 + p_1$	$v_2 - p_2$	$v_1 + v_2 + p_1$	$v_1 + p_1 + p_2$	$v_1 + p_1$
G	$v_2 + p_1$	$v_2 - p_2$	$v_1 + v_2 + p_1$	$v_1 + p_1 + p_2$	$v_1 + p_2$
Η	$v_2 + p_1$	$v_2 - p_2$	$v_1 + v_2 + p_1$	$v_1 + v_2 - p_2$	$v_1 + v_2 + p_1 - p_2$
J	$v_2 + p_1$	$v_1 + v_2 + p_1 + p_2$	$v_1 + v_2 + p_1$	$v_1 + p_1 + p_2$	$v_1 + p_1$
K	$v_2 + p_1$	$v_1 - p_2$	$v_1 + v_2 + p_1$	$v_1 + v_2 - p_2$	$v_1 + v_2$
L	$v_2 + p_1$	$v_2 - p_2$	$v_1 + v_2 + p_1 - p_2$	$v_1 + v_2 + p_1$	$v_1 + p_1$

For example, using also the Cutkoski relation, integral U7a is

$$U7a(x,\epsilon) = \frac{1}{2\pi\mathcal{F}^2} \int \frac{d^D v_1 \ d^D v_2}{(2\pi)^{2D}} \frac{v_2^2 \ (2\pi)^3 \ \delta \left(v_1^2 + x\right) \delta \left((v_2 - p_2)^2\right) \delta \left((v_1 + v_2 + p_1)^2\right)}{(v_2 + p_1)^2 \ (v_1 + p_2)^2}.$$
(1)

We find the integrals by solving the system of differential equations $dU_i(x,\epsilon)/dx = \sum c_j(x,\epsilon)U_j(x,\epsilon)$, in terms of harmonic polylogarithms (HPLs), and fix the integration constants with the expansion of each integral in $(1-x) \ll 1$ to a few orders: two in case of U1 (U1a) and U7 (U7a), and one for the remaining integrals. For most integrals, we have managed to over-constrain the derivation and produce three or more expansion terms.

The file masters.m contains Mathematica expressions according to the list below. For each integral, we present a few orders in the fixed-order ϵ -expansion, e.g., U1[x,ep], and the singular limit regulated by a factor $(1-x)^{n\epsilon}$ with integer n, e.g. U1[x -> 1,ep].

In order to use those expression, one has to add and subtract the singularity. E.g. if the limit is $U(x \to 1, \epsilon) = C(\epsilon)(1-x)^{k-m\epsilon}$, the regularized solution is

$$U_r(x) = U(x) + C(\epsilon)(1-x)^{k+1} \left[\left\{ \frac{\delta(1-x)}{m\epsilon} + \left\lfloor \frac{1}{1-x} \right\rfloor_+ + \dots \right\} - \left\{ \frac{1}{1-x} - \frac{m\ln 1 - x}{1-x} + \dots \right\} \right]. \quad (2)$$

The expression in the square brackets represents the difference $[(1-x)^{-1-m\epsilon} - (1-x)^{-1-m\epsilon}]$, where the first term is expanded in plus-distributions and the second term is expanded "naively", canceling the non-integrable divergences in U(x).

Integrals U17 and U12 have two possible cuts, presented separately as U12d (two-particle) and U12t (three-particle cut), and U17d and U17t.

