Two-loop master-integrals

We define all integrals in the Euclidean space with D = 4 — 2¢ dimensions. In each integral we
only compute a piece of the imaginary part, which includes only cuts crossing the line with mass
2 (corresponding to the normalized Higgs boson mass present in the denominator D). Master
integrals were identified with the help of Laporta algorithm. Integral U6 is a linear combination
of Ul, Ula, and U8, other integrals are linearly independent.

The forward scattering kinematics is assumed: the external momenta are on-shell, p? = p3 = 0,
normalized by (p1 +p2)? = —1. Each integral depends on x, 0 < x < 1. The topologies are defined
as follows:
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with the loop factor F = (22;51, symbol &* denoting the sum over appropriate cuts, and
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For example, using also the Cutkoski relation, integral U7a is
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We find the integrals by solving the system of differential equations d U, (x,€)/d x = ) ¢j(z, €)U;(z, €),
in terms of harmonic polylogarithms (HPLs), and fix the integration constants with the expansion
of each integral in (1 — x) < 1 to a few orders: two in case of Ul (Ula) and U7 (U7a), and one
for the remaining integrals. For most integrals, we have managed to over-constrain the derivation
and produce three or more expansion terms.

The file masters.m contains Mathematica expressions according to the list below. For each
integral, we present a few orders in the fixed-order e-expansion, e.g., Ul[x,ep], and the singular
limit regulated by a factor (1 — )™ with integer n, e.g. Ul[x -> 1,ep].

In order to use those expression, one has to add and subtract the singularity. E.g. if the limit
is U(x — 1,¢) = C(e)(1 — x)*~™¢ the regularized solution is
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The expression in the square brackets represents the difference [(1 — 2)~17™¢ — (1 — z)~1=™¢],
where the first term is expanded in plus-distributions and the second term is expanded “naively”,
canceling the non-integrable divergences in U(x).

Integrals U17 and U12 have two possible cuts, presented separately as Ul2d (two-particle) and
U12t (three-particle cut), and U17d and U17t.

minl —x

Ur(z) = U(x) + C(e)(1 — )kt [{
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