Description of AnDimSquark.m

Thomas Hermann, Luminita Mihaila, Matthias Steinhauser

May 2011

In the Mathematica file $\mathtt{AnDimSquark.m}$ the renormalization constants and anomalous dimensions of the squark sector are listed to three-loop order in SUSY QCD.

AnDimSquark.m contains the results of the following quantities

Symbol in AnDimSquark.m	quantity
Zmst1	$Z_{m_{ ilde{t}_1}}$
Zmst2	$Z_{m_{\tilde{t}_{\alpha}}}$
dThetat	$\delta heta_t$
Zmsq	$Z_{m_{ ilde{q}}}$
Zmes	$Z_{m_{\epsilon}}$
gamThetat	$\gamma_{ heta_t}$
gamMst1	$\gamma_{m_{\tilde{t}_1}}$
gamMst2	$\gamma_{m_{\tilde{t}_2}}$
gamMsq	$\gamma_{m_{ ilde{q}}}$
gamMst1DRbarPrime	$\gamma_{m_{\tilde{t}_1}}^{\overline{\mathrm{DR}}'}$
gamMst2DRbarPrime	$\gamma_{m_{\tilde{t}_2}}^{\overline{\mathrm{DR}}'}$
gamMsqDRbarPrime	$\gamma_{m_{\tilde{q}}}^{\overline{\mathrm{DR}}'}$
${\rm gamMst1withMeOS}$	$\gamma_{m_{ ilde{t}_1}}^{ec{M}_{\epsilon}}$
${\rm gamMst2withMeOS}$	$\gamma_{m_{\tilde{t}_2}}^{M_{\epsilon}}$
${\rm gamMsqwithMeOS}$	$\gamma_{m_{ ilde{q}}}^{M_{\epsilon}}$
gamAt	γ_{A_t}
gamMQ	$\gamma_{M_{ ilde{Q}}}$
gamMU	$\gamma_{M_{ ilde{U}}}$
gamMQDRbarPrime	$\gamma_{M_{ ilde{Q}}}^{\overline{ m DR}'}$
gamMUDRbarPrime	$\gamma_{M_{\tilde{U}}}^{\overline{\mathrm{DR}}'}$

where the precise definition is given in Ref. [1], except for the following

quantities:

$$\begin{split} \frac{\mu^2}{M_{\tilde{Q}}^2} \frac{d}{d\mu^2} M_{\tilde{Q}}^2 &= \gamma_{M_{\tilde{Q}}} \\ \frac{\mu^2}{M_{\tilde{U}}^2} \frac{d}{d\mu^2} M_{\tilde{U}}^2 &= \gamma_{M_{\tilde{U}}} \; . \end{split}$$

 $Z_{m_{\epsilon}}$ is the two-loop renormalization constant for the ϵ -scalar mass in the $\overline{\rm DR}$ scheme,

$$(m_{\epsilon}^{(0)})^2 = m_{\epsilon}^2 Z_{m_{\epsilon}}.$$

gamMst1withMeOS is the anomalous dimension of \tilde{t}_1 in the $\overline{\rm DR}$ scheme where the ϵ scalar mass is renormalized in the on-shell scheme and terms up to order $\mathcal{O}(M_{\epsilon}^6)$ are kept. gamMst2withMeOS can be derived from gamMst1withMeOS by interchanging $m_{\tilde{1}}$ and $m_{\tilde{2}}$ and changing θ_t to $-\theta_t$.

If you use any of the contents of this file, please refer to Ref. [1] in the corresponding publication.

The following notation has been used:

as	$\frac{\alpha_s}{\pi}$
ep	ϵ
z3	$\zeta(3)$
CF	C_F
CA	C_A
Tf	T_f

Mst1	$m_{ ilde{t}_1}$
Mst2	$m_{ ilde{t}_2}$
Msq	$m_{\tilde{q}}$
Mfg	$m_{ ilde{g}}$
Mt	m_t
Me	m_{ϵ}
MeOS	M_{ϵ}
cthetat	$\cos \theta_t$
sthetat	$\sin \theta_t$
	l

MQ	$M_{\tilde{Q}}$
MU	$M_{ ilde{U}}$
MQ1	$M_{\tilde{Q}_1}$
MQ2	$M_{\tilde{Q}_2}$
MU1	$M_{\tilde{U}_1}$
MU2	$M_{ ilde{U}_2}$
MD1	$M_{\tilde{D}_1}$
MD2	$M_{\tilde{D}_2}$
MD3	$M_{\tilde{D}_3}$

 M_{ϵ} is the on-shell ϵ -scalar mass.

References

[1] T. Hermann, L. Mihaila, and M. Steinhauser "Three-loop anomalous dimensions for squarks in supersymmetric QCD," SFB/CPP-11-27, TTP11-16.