Description of Dec1step.m

Andrey G. Grozin, Maik Höschele, Jens Hoff and Matthias Steinhauser

The Mathematica file Dec1step.m contains decoupling constants for α_s and the light quark masses up to three-loop order for the case of simultaneously decoupling two heavy quarks. They depend on two arbitrary scales μ_c and μ_b according to

$$\alpha_s^{(n_l)}(\mu_c) = \zeta_{\alpha_s}(\mu_c, \mu_b) \, \alpha_s^{(n_l + n_b + n_c)}(\mu_b) , m^{(n_l)}(\mu_c) = \zeta_m(\mu_c, \mu_b) \, m^{(n_l + n_b + n_c)}(\mu_b) ,$$
 (1)

where n_l is the number of massless quarks. There is one quark with mass M_1 and one with mass M_2 . Nevertheless we have introduced the labels n_b and n_c , respectively. Declstep.m also contains the inverted relations which are parametrized in terms of $\alpha_s^{(n_l)}$

$$\zeta_{\alpha_s}^{-1}(\mu_c, \mu_b) \, \alpha_s^{(n_l)}(\mu_c) = \alpha_s^{(n_l + n_b + n_c)}(\mu_b) ,
\zeta_m^{-1}(\mu_c, \mu_b) \, m^{(n_l)}(\mu_c) = m^{(n_l + n_b + n_c)}(\mu_b) .$$
(2)

The corresponding symbols are defined in the table:

symbol in Dec1step.m	quantity	parametrized by
Zetaa3lmubmuc	ζ_{α_s}	$\alpha_s^{(n_l+n_b+n_c)}$ and $\overline{\rm MS}$ masses
ZetaaInv3lmubmuc	$\zeta_{\alpha_s}^{-1}$	$\alpha_s^{(n_l)}$ and $\overline{\rm MS}$ masses
ZetaaOS3lmubmuc	ζ_{lpha_s}	$\alpha_s^{(n_l+n_b+n_c)}$ and OS masses
ZetaaInvOS3lmubmuc	$\zeta_{\alpha_s}^{-1}$	$\alpha_s^{(n_l)}$ and OS masses
Zetam3lmubmuc	ζ_m	$\alpha_s^{(n_l+n_b+n_c)}$ and $\overline{\rm MS}$ masses
ZetamInv3lmubmuc	ζ_m^{-1}	$\alpha_s^{(n_l)}$ and $\overline{\rm MS}$ masses
ZetamOS3lmubmuc	ζ_m	$\alpha_s^{(n_l+n_b+n_c)}$ and OS masses
ZetamInvOS3lmubmuc	ζ_m^{-1}	$\alpha_s^{(n_l)}$ and OS masses

In the case of the $\overline{\rm MS}$ scheme the parameters M_1 and M_2 have to be interpreted as the $\overline{\rm MS}$ masses of the $(n_l + n_b + n_c)$ -flavour theory.

The meaning of the symbols used in ${\tt Dec1step.m}$ can be found in the following table.

symbol in Dec1step.m	function/parameter/constant
Lpx	$L_{+}(x)$
Lmx	$L_{-}(x)$
Hp10xm1	$H(\{1,0\},x^{-1})$
Hm10xm1	$H(\{-1,0\},x^{-1})$
Hp10xp1	$H(\{1,0\},x)$
Hm10xp1	$H(\{-1,0\},x)$
121	$\ln(M_2/M_1)$
lcb	$\ln(\mu_c/\mu_b)$
lb1	$\ln(\mu_b/M_1)$
X	M_2/M_1
api	$\alpha_s^{(n_l+n_b+n_c)}/\pi$
anlpi	$lpha_s^{(n_l)}/\pi$
M1	$M_1^{'}$
M2	M_2
nb	n_b
nc	n_c
nl	n_l
TF	T_F
CA	C_A
CF	C_F
z2	$\zeta(2)$
z3	$\zeta(3)$
z4	$\zeta(4)$
B4	B_4
$\log 2$	$\ln(2)$

 $L_+(x)$ and $L_-(x)$ are defined in the paper [1]. $H(\{1,0\},x^{-1}), H(\{-1,0\},x^{-1}), H(\{1,0\},x), H(\{-1,0\},x)$ denote harmonic polylogarithms, which enter the result via the transformations from $\overline{\text{MS}}$ to OS masses.

funcLabels is a list of replacements which expresses the self-defined functions in the decoupling constants by quantities known by Mathematica. A second list, constantLabels, replaces the symbols (CA, CF, z2, z3...) by their numerical values. Afterwards only the symbols M1, M2, lcb, lb1 and nl are un-specified and have to be provided by the user.

Setting $\mu_c = \mu_b = \mu$ leads to expressions which can be used for the simultaneous decoupling at the scale μ .

The results $\zeta_{\alpha_s}(m_c(\overline{m}_b), \overline{m}_b)$ and $\zeta_m(m_c(\overline{m}_b), \overline{m}_b)$ as given in [1] are obtained with the help of

Zetaa3lmubmuc/.{lcb->121,lb1->0} and Zetam3lmubmuc/.{lcb->121,lb1->0}, respectively.

If you use any of the contents of this file, please refer to Ref. [1] in the corresponding publication.

References

[1] A.G. Grozin, M. Höschele, J. Hoff, and M. Steinhauser, *Simultaneous decoupling of bottom and charm quarks*, SFB/CPP-11-32, TTP11-07.