******************************************************************** Input and output of a few test run of the program sunemexample.for ******************************************************************** For this test we considered values of the momentum transfer around the points where we switch from one expansion to the other (s=-11, s=5.15, s=17.45) as well as a few other representative input values (s=-100,s=0,s=100) ******************************************************************** Input squared momentum transfer S: -100.d0 First Master integral in d=2 dimensions Re S(2,-1.000000000000000E+02) = 3.931354422441342E-02 Im S(2,-1.000000000000000E+02) = 0.000000000000000E+00 Second Master integral in d=2 dimensions Re S1(2,-1.000000000000000E+02) = 5.784651867728197E-03 Im S1(2,-1.000000000000000E+02) = 0.000000000000000E+00 First Master integral in d=4 dimensions: finite parts Re S^(0)(4,-1.000000000000000E+02) = 5.806440880782690E+00 Im S^(0)(4,-1.000000000000000E+02) = 0.000000000000000E+00 Second Master integral in d=4 dimensions: finite parts Re S1^(0)(4,-1.000000000000000E+02)= -4.341718518851801E-01 Im S1^(0)(4,-1.000000000000000E+02)= 0.000000000000000E+00 Input squared momentum transfer S: -11.001d0 First Master integral in d=2 dimensions Re S(2,-1.100100000000000E+01) = 1.007395496837412E-01 Im S(2,-1.100100000000000E+01) = 0.000000000000000E+00 Second Master integral in d=2 dimensions Re S1(2,-1.100100000000000E+01) = 2.439101021420169E-02 Im S1(2,-1.100100000000000E+01) = 0.000000000000000E+00 First Master integral in d=4 dimensions: finite parts Re S^(0)(4,-1.100100000000000E+01) = -6.576410525916754E-02 Im S^(0)(4,-1.100100000000000E+01) = 0.000000000000000E+00 Second Master integral in d=4 dimensions: finite parts Re S1^(0)(4,-1.100100000000000E+01)= -1.314961401395102E-01 Im S1^(0)(4,-1.100100000000000E+01)= 0.000000000000000E+00 Input squared momentum transfer S: -10.999d0 First Master integral in d=2 dimensions Re S(2,-1.099900000000000E+01) = 1.007445616620086E-01 Im S(2,-1.099900000000000E+01) = 0.000000000000000E+00 Second Master integral in d=2 dimensions Re S1(2,-1.099900000000000E+01) = 2.439310665308318E-02 Im S1(2,-1.099900000000000E+01) = 0.000000000000000E+00 First Master integral in d=4 dimensions: finite parts Re S^(0)(4,-1.099900000000000E+01) = -6.584519192374069E-02 Im S^(0)(4,-1.099900000000000E+01) = 0.000000000000000E+00 Second Master integral in d=4 dimensions: finite parts Re S1^(0)(4,-1.099900000000000E+01)= -1.314829900974774E-01 Im S1^(0)(4,-1.099900000000000E+01)= 0.000000000000000E+00 Input squared momentum transfer S: 0.d0 First Master integral in d=2 dimensions Re S(2, 0.000000000000000E+00) = 1.464942024180912E-01 Im S(2, 0.000000000000000E+00) = 0.000000000000000E+00 Second Master integral in d=2 dimensions Re S1(2, 0.000000000000000E+00) = 4.883140080603039E-02 Im S1(2, 0.000000000000000E+00) = 0.000000000000000E+00 First Master integral in d=4 dimensions: finite parts Re S^(0)(4, 0.000000000000000E+00) = -4.365086963728632E-01 Im S^(0)(4, 0.000000000000000E+00) = 0.000000000000000E+00 Second Master integral in d=4 dimensions: finite parts Re S1^(0)(4, 0.000000000000000E+00)= -4.199710120904559E-02 Im S1^(0)(4, 0.000000000000000E+00)= 0.000000000000000E+00 Input squared momentum transfer S: 5.149d0 First Master integral in d=2 dimensions Re S(2, 5.149000000000000E+00) = 2.074709282591548E-01 Im S(2, 5.149000000000000E+00) = 0.000000000000000E+00 Second Master integral in d=2 dimensions Re S1(2, 5.149000000000000E+00) = 1.043135241848172E-01 Im S1(2, 5.149000000000000E+00) = 0.000000000000000E+00 First Master integral in d=4 dimensions: finite parts Re S^(0)(4, 5.149000000000000E+00) = -5.380502093014945E-01 Im S^(0)(4, 5.149000000000000E+00) = 0.000000000000000E+00 Second Master integral in d=4 dimensions: finite parts Re S1^(0)(4, 5.149000000000000E+00)= 2.329692746655500E-02 Im S1^(0)(4, 5.149000000000000E+00)= 0.000000000000000E+00 Input squared momentum transfer S: 5.151d0 First Master integral in d=2 dimensions Re S(2, 5.151000000000000E+00) = 2.075119080667752E-01 Im S(2, 5.151000000000000E+00) = 0.000000000000000E+00 Second Master integral in d=2 dimensions Re S1(2, 5.151000000000000E+00) = 1.043627659705754E-01 Im S1(2, 5.151000000000000E+00) = 0.000000000000000E+00 First Master integral in d=4 dimensions: finite parts Re S^(0)(4, 5.151000000000000E+00) = -5.380760585911164E-01 Im S^(0)(4, 5.151000000000000E+00) = 0.000000000000000E+00 Second Master integral in d=4 dimensions: finite parts Re S1^(0)(4, 5.151000000000000E+00)= 2.332888404369243E-02 Im S1^(0)(4, 5.151000000000000E+00)= 0.000000000000000E+00 Input squared momentum transfer S: 17.449d0 First Master integral in d=2 dimensions Re S(2, 1.744900000000000E+01) = 4.668996612062760E-02 Im S(2, 1.744900000000000E+01) = 2.163661313594839E-01 Second Master integral in d=2 dimensions Re S1(2, 1.744900000000000E+01) = -3.803907386923291E-02 Im S1(2, 1.744900000000000E+01) = 1.748214495269611E-02 First Master integral in d=4 dimensions: finite parts Re S^(0)(4, 1.744900000000000E+01) = -4.321795699275685E-01 Im S^(0)(4, 1.744900000000000E+01) = 2.810101978806593E-01 Second Master integral in d=4 dimensions: finite parts Re S1^(0)(4, 1.744900000000000E+01)= 1.822158831837492E-01 Im S1^(0)(4, 1.744900000000000E+01)= 2.175976290562214E-01 Input squared momentum transfer S: 17.451d0 First Master integral in d=2 dimensions Re S(2, 1.745100000000000E+01) = 4.667153793322383E-02 Im S(2, 1.745100000000000E+01) = 2.163473447892067E-01 Second Master integral in d=2 dimensions Re S1(2, 1.745100000000000E+01) = -3.803104882953019E-02 Im S1(2, 1.745100000000000E+01) = 1.748046337322896E-02 First Master integral in d=4 dimensions: finite parts Re S^(0)(4, 1.745100000000000E+01) = -4.321644803573114E-01 Im S^(0)(4, 1.745100000000000E+01) = 2.811172361352666E-01 Second Master integral in d=4 dimensions: finite parts Re S1^(0)(4, 1.745100000000000E+01)= 1.822114658925950E-01 Im S1^(0)(4, 1.745100000000000E+01)= 2.176324077524417E-01 Input squared momentum transfer S: 100.d0 First Master integral in d=2 dimensions Re S(2, 1.000000000000000E+02) = -2.115404200912603E-02 Im S(2, 1.000000000000000E+02) = 5.546368966359356E-02 Second Master integral in d=2 dimensions Re S1(2, 1.000000000000000E+02) = -5.924883247554101E-03 Im S1(2, 1.000000000000000E+02) = 3.628524613185688E-03 First Master integral in d=4 dimensions: finite parts Re S^(0)(4, 1.000000000000000E+02) = -3.674455931982301E+00 Im S^(0)(4, 1.000000000000000E+02) = 7.168333946400606E+00 Second Master integral in d=4 dimensions: finite parts Re S1^(0)(4, 1.000000000000000E+02)= -8.199157488095291E-02 Im S1^(0)(4, 1.000000000000000E+02)= 6.693404090979084E-01