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Abstract

We reconstruct the explicit formalism of qubit quantum theory from elementary
rules on an observer’s information acquisition. Our approach is purely operational:
we consider an observer O interrogating a system S with binary questions and define
S’s state as O’s ‘catalogue of knowledge’ about S; no ontic assumptions are nec-
essary. From the rules we derive the state spaces for N qubits and show that (a)

they coincide with the set of density matrices over C
2N ; (b) states evolve unitarily

under the group PSU(2N) according to the von Neumann evolution equation; and (c)
the binary questions by means of which O interrogates the systems corresponds to
projective measurements on Pauli operators with outcome probabilities given by the
Born rule. Besides offering a novel conceptual perspective on qubit quantum theory,
the reconstruction also unravels new structural insights. Namely, we show that, in
a quadratic information measure, (d) qubits satisfy informational complementarity
inequalities which bound the information content in any set of mutually complemen-
tary questions to 1 bit; and (e) maximal sets of mutually complementary questions
for 2 qubits must carry precisely 1 bit of information in pure states. The latter re-
lations constitute 6 conserved informational charges which define the unitary group
and, together with their 15 conservation conditions, the set of pure states. This un-
derscores the benefits of this informational approach and emphasizes the sufficiency
of restricting to an observer’s information in order to reconstruct the theory. This
article completes the work started in [1].
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1 Introduction

Quantum theory has enjoyed an outstanding success, allowing us to make precise predic-
tions about the physical microcosm, leading to new information technologies and with-
standing every experimental test to which it has been exposed thus far. Yet, in contrast to
special and general relativity, quantum theory has evaded a commonly accepted apprehen-
sion and interpretation of its physical content, in part as a consequence of a lack of physical
statements that fully characterize it. But what makes quantum theory special? Quantum
theory has perhaps become so successful that questioning its foundations and physical con-
tent have become peripheral matters in physics. However, with the ambition of developing
more fundamental theories, involving or going beyond quantum theory, the question as
regards its physical meaning and characterizing features returns. How could the world be
different if we dropped some of the latter? The answer requires a better understanding
of quantum theory within a larger landscape of alternative theories. Furthermore, a con-
vincing conceptual scheme for a putative quantum theory of gravity presumably requires
a deeper understanding of what quantum theory tells us about Nature – and of what we
can say about it.

To be sure, within the simplified context of finite dimensional Hilbert spaces, there
have been considerable efforts to identify physical attributes special to quantum theory to
remedy the flaw that quantum theory is still defined by operationally obscure textbook
axioms rather than transparent physical statements. Among them are violation of the Bell
[2, 3] and more generally Clauser-Horne-Shimony-Holt inequalities [4], the ‘no-signaling’
principle [5] and, its generalization, ‘information causality’ [6], absence of third and higher
order interference [7, 8], a limit on the information content carried by systems [9–21] and
others. However, all of these attributes yield incomplete characterizations, being shared
by other probabilistic theories some of which admit unphysical correlation structures, as
well as exotic information communication and processing tasks.

In fact, there actually exist a number of successful reconstructions of finite dimensional
quantum theory from operational axioms, most of which have been performed within the
frameworks of generalized or operational probability theories [8,22–31] (see also [32] which
is adapted to a space-time language and the more mathematical reconstructions [33, 34]).
Despite the beauty and great technical achievements of some of these reconstructions, they
arguably come short of providing a fully satisfactory physical and conceptual picture of
quantum theory. Firstly, the underlying axioms, while mathematically crisp, are opera-
tionally and intuitively less transparent than a statement of the type “all inertial observers
agree on the speed of light” underlying special relativity. However, for clarity it would
be desirable to have easily understandable, yet powerful postulates. Secondly, the ensuing
derivations of the quantum formalism are rather implicit than constructive, lacking, in
particular, simple and intuitively comprehensible explanations for typical quantum phe-
nomena such as entanglement or for the origin of the explicit structure of the formalism.
By contrast, in special relativity, most of its characteristic traits, such as relativity of simul-
taneity, Lorentz contraction, etc., can be explained in simple thought experiments invoking
essentially only the constancy of the speed of light. Thirdly, apart from showing that an

2



operational perspective is sufficient for deriving quantum theory, these reconstructions are
interpretationally fairly neutral, focusing on characterizing the formalism rather than the
physical and conceptual content of the theory.

The goal of this manuscript is to improve the situation; we shall show that, at least in the
simple context of qubit systems, one can understand the physical content of quantum theory
from an informational perspective. To this end, we shall exhibit, using the novel framework
developed in [1], how the quantum formalism can be constructively and explicitly derived
from simple operationally comprehensible rules which restrict an observer’s acquisition of
information about systems he is observing. This reconstruction yields the detailed (and
not only general) structure of qubit quantum theory and is thereby much less abstract
than previous reconstructions. However, it also involves many more steps.

In contrast to earlier works which aim at intrinsic properties and states of systems, here
we shall solely focus on the relation of the observer with the systems, i.e., ultimately on
the information which the observer has experimentally access too. In particular, we take
the quantum state to represent the observer’s ‘catalogue of knowledge’ about the observed
system(s), rather than an intrinsic state of the latter. This is conceptually motivated
by and in line with the relational interpretation of quantum mechanics [1, 9, 35–37], the
informational interpretation in [10, 11, 13, 15] and (at least elements of) QBism [38–40].

While here we shall focus less on conceptual matters than in [1], the successful recon-
struction from this perspective underscores the sufficiency of taking a purely operational
perspective, addressing only what an observer can say about the observed systems, in or-
der to understand and derive the formalism of quantum theory. Ontic statements about
a reality underlying the observer’s interactions with the physical systems are unnecessary.
This lends weight to Bohr’s famous quote: “It is wrong to think that the task of physics
is to find out how Nature is. Physics concerns what we can say about Nature” [41].

Even apart from the fact that this reconstruction offers a novel perspective on the
physical content of quantum theory, it leads to new practically useful results. The tools
of [1], while not geared for doing concrete physics with them, are simple and especially
devised to expose the structure of qubit quantum theory. They not only admit intuitive
graphical representations of the ensuing logical and informational structure of the theory.
But they also permit to unravel novel structural insights into qubit quantum theory that
have gone unnoticed in the literature. In particular, we shall show how finitely many
conserved informational charges, resulting from complementarity relations, elucidate the
origin of the unitary (time evolution) group and characterize pure state spaces.

Certainly, there are also some shortcomings of our approach. Firstly, at present the
language of [1] is only applicable to qubit systems, although a suitable generalization
appears feasible. Secondly, while our background assumptions are operationally and con-
ceptually transparent, they may be mathematically stronger than those underlying, e.g.,
[22–24, 26, 29], thus, in a strict sense, admitting a mathematically weaker reconstruction
from within a smaller landscape of theories. Nevertheless, the derivation is a non-trivial
proof of principle of the approach and can presumably be strengthened since the set of
assumptions and postulates may be non-optimal in the sense of containing partially redun-
dant information. Thirdly, the explicit framework restricts to projective measurements on a
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subset of qubit observables (although, once one has reconstructed the quantum formalism,
one ultimately has access to all quantum operations and POVMs).

The content of the paper is organized as follows. In section 2 we give a review of the
framework developed in [1], which provides the context for our reconstruction of qubit
quantum theory. All relevant assumptions and postulates for the reconstruction are sum-
marized in order to make the paper self-contained and we refer to [1] for a more detailed
account. In section 3.1 we reconstruct the correct unitary time evolution group and state
space of quantum theory for N = 2 qubits and in section 3.2 we extend their reconstruction
to N > 2 qubits. The derivation of the set of binary questions which we permit an observer
to ask a system of N qubits is performed in section 3.3. This also involves a derivation
of the Born rule for projective measurements. In section 3.4 we briefly discuss how the
von Neumann evolution equation for the density matrix arises from our reconstruction
and finally we present our conclusions in section 4. The appendices A and B contain the
detailed derivations of statements made in sections 3.1-3.2 and 3.3 respectively.
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2 Background assumptions and postulates

The focus of this approach lies on the acquisition of information of an observer O about
a set of systems and the relation this establishes between O and these systems. We shall
follow the premise that we may only speak about the information which O has access to
through interaction with the systems. This approach is thus purely operational, focusing
on what an observer can say about a system rather than on the latter’s intrinsic properties
and states.

We shall begin by reviewing the landscape of theories within which the postulates for
qubit quantum theory are formulated. This landscape is established by a set of operational
background assumptions to which we expose O and the systems. The postulates will
constitute rules on O’s acquisition of information about the systems. This framework
has been developed in Ref. [1] to which we refer for further details and more thorough
explanations of the concepts employed below.

As in figure 1, the setup consists of a preparation device spitting out an ensemble
of (identical) systems Sa, a = 1, . . . , n, which then are interrogated by O with binary
questions. Every way of preparing the systems is assumed to yield a specific statistics
over the answers to the binary questions which O may ask the Sa (for a sufficiently large
ensemble). More precisely, we shall employ two basic ingredients:

Q denotes the set of those binary questions Qi which in this approach we permit O
to ask a system S. We shall subject Q to a number of restrictions such that Q
will ultimately be a strict subset of all possible binary questions which O could, in
principle, ask S. For instance, whenever O asks S any Qi ∈ Q he shall always get
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Preparation Interrogation

S
O

Qi?

Figure 1: An observer O interrogating a system S.

an answer1 and any Qi ∈ Q shall be non-trivial such that S’s answer to it is not
independent of its preparation. Furthermore, any Qi ∈ Q shall be repeatable, i.e. if
O asks the same Qi m times in immediate succession on the same S he shall receive
m times the same answer.

Σ denotes the set of all possible answer statistics for all Qi ∈ Q for all possible ways of
preparing the Sa. For operational reasons Σ is assumed to be convex.

Just like any experimenter in a real laboratory, we assume O to have developed a
theoretical model by means of which he interprets the outcomes to his interrogations (and
which, up to his experimental accuracy, is consistent with his observations). In particular,
we shall assume O to have a model for both Q and Σ and thereby to be able to decide
whether a given question is contained in (his model for) Q or not. In this work it is not
our ambition to clarify how O has arrived at this model. Instead, it will be our task to
determine what this model is – subject to the background assumptions and postulates
below.

For any specific system S to be interrogated next, O assigns a probability yi that the
answer to any Qi ∈ Q will be ‘yes’ in a Bayesian manner. O will estimate yi according to
his model of Σ and to any prior information about S, which consists of frequencies of ‘yes’
and ‘no’ answers recorded in a previous interrogation of an ensemble of systems prepared
identically to S. O is only permitted to acquire information about the systems through the
binary questions in Q. Hence, the yi encode O’s entire information about a system S. We
thus identify the state of S relative to O as O’s ‘catalogue of knowledge’ about S, namely
as the collection of {yi}∀Qi∈Q. It thus is a state of information associated to the relation
of O with S and not an intrinsic state of S. The state is an element of Σ which therefore
constitutes the state space of S and any state in Σ assigns a probability yi for all Qi ∈ Q.

We require that a special method of preparation exists which produces entirely random
question outcomes. More precisely, we assume that there exists a special state in Σ, defined
by yi = 1

2
, ∀Qi ∈ Q and referred to as the state of no information. Note that the existence

1In this work, we tacitly assume the probability for S being present to be 1.
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of this state is a restriction on the pair (Q,Σ).2 This state serves two purposes: (1) it is
the prior state O will start with in a Bayesian updating once he has ‘no prior information’
about a system; and (2) it permits us to define a notion of independence of questions.
Indeed, the notion of independence of questions is state dependent3 such that we need a
distinguished state relative to which we can unambiguously define it.

More precisely, consider Qi ∈ Q and assume O receives S in the state of no information.
On account of repeatability, upon asking S the question Qi and receiving the answer ‘yes’
or ‘no’, O will assign a probability of yi = 1 or yi = 0, respectively, that he will receive a
‘yes’ answer from S if asking Qi again. This is part of a state update rule which permits
O to update his information about the specific S which he is interrogating according to
the answers he receives. Clearly, the probability yj for any other Qj ∈ Q will depend on
this update rule. We shall not specify the update rule much further, but just assume that
there is a consistent one. Given such an update rule, we shall call Qi, Qj ∈ Q

independent if, after having asked Qi to S in the state of no information, the probability
yj = 1

2
. That is, if the answer to Qi relative to the state of no information tells O

‘nothing’ about the answer to Qj .

dependent if, after having asked Qi to S in the state of no information, the probability
yj = 0, 1. That is, if the answer to Qi relative to the state of no information implies
also the answer to Qj .

partially dependent if, after having asked Qi to S in the state of no information, the
probability yj 6= 0, 1

2
, 1. That is, if the answer to Qi relative to the state of no

information gives O partial information about the answer to Qj .

We shall require that these (in-)dependence relations be symmetric such that, e.g. Qi is
independent of Qj iff Qj is independent of Qi,

4 etc. We emphasize that these notions of
(in-)dependence are a priori update rule dependent.

We also need a notion of compatibility and complementarity; Qi, Qj ∈ Q are called

(maximally) compatible if O may know the answers to both Qi, Qj simultaneously, i.e.
if there exists a state in Σ such that yi, yj can be simultaneously 0 or 1.

(maximally) complementary if every state in Σ which features yi = 0, 1 necessarily
implies yj = 1

2
(and vice versa).

2Clearly, not all pairs (Q,Σ) will satisfy this. E.g., ({binary POVMs}, {density matrices}) would not
satisfy this restriction since there does not exist a quantum state which yields probability 1/2 for all binary
POVMs. Namely, there exist binary POVMs with an inherent bias, such as (E1 = 2/3 · 1, E2 = 1/3 · 1).

3E.g., in quantum theory, the questions Qx1
=“Is the spin of qubit 1 up in x-direction?” and Qx2

=“Is
the spin of qubit 2 up in x-direction?” are independent relative to the completely mixed state, however,
not relative to an entangled state (with correlation in x-direction).

4This means that Qi, Qj are stochastically independent with respect to the state of no information, i.e.
the joint probabilities factorize relative to the latter, p(Qi, Qj) = yi · yj = 1

2 · 12 = 1
4 , where p(Qi, Qj) =

p(Qj , Qi) denotes the probability that Qi and Qj give ‘yes’ answers if asked in sequence on the same S.
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One can also define notions of partial compatibility [1].
This brings us to our last constraint on the update rule: if Qi, Qj are maximally com-

patible and independent then asking Qi shall not change yj, and vice versa – regardless
of S’s state. That is, by asking a question Q, O shall not gain or lose information about
questions which are compatible with but independent of Q.

Pairwise independent questions constitute the fundamental building blocks of the the-
ories we shall consider. As such we shall assume that any maximal set of pairwise in-
dependent questions QM := {Q1, . . . , QD} constitutes an informationally complete set of
questions in the sense that the probabilities {yi}Di=1 are sufficient to compute all yj ∀Qj ∈ Q.
In consequence, we may represent Σ as a D-dimensional convex set, with states as vectors

~y =











y1
y2
...
yD











.

Any convex set is defined by its extremal points [42]. The extremal states in Σ are
special because they cannot be written as convex mixtures of other states, but all other
states are convex mixtures of these. Since (finite) convex mixtures can be operationally
understood in terms of (cascades of biased) coin flips, O may prepare non-extremal states
by applying cascades of coin flips to ensembles of extremal states. But, since the extremal
states themselves cannot be prepared via coin flip cascades from other states, their prepa-
ration must have an unambiguous operational meaning. For this purpose, we wish any
extremal state to be achievable by O as the posterior state of an individual system in an
interrogation. More specifically, we shall require that O can prepare any extremal state
from the state of no information in a single shot interrogation5 by only asking questions
from an informationally complete set QM and possibly letting the resulting state evolve in
time.

It will become crucial to appropriately quantify O’s information about any system. To
this end, we quantify O’s information about the outcome to any Qi ∈ Q implicitly by a
function α(yi) with 0 ≤ α(yi) ≤ 1 bit and α(y) = 0 ⇔ y = 1

2
and y = 0, 1 ⇒ α(y) = 1

bit. O’s total information about S must be a function of the state ~y; we define it to be

I(~y) :=

D
∑

i=1

α(yi).

The specific form of α is derived from the principles.
For practical purposes, we shall also sharpen the notion of complementarity of questions.

Firstly, we shall permit O to use classical rules of inference (in the form of Boolean logic)
exclusively on sets of mutually compatible questions. Classical rules of inference assume
propositions to have truth values simultaneously which, in O’s description of the world, is

5In a single shot interrogation a single system S is prepared in some state and subsequently exposed to
questions (see [1] for more details).
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only true for mutually compatible questions because any truth value must be operational.
This is to prevent him from making statements about logical connectives of complementary
questions whose truthfulness he could never test by interrogations (see [1]).

Secondly, we shall require that any set of n ∈ N mutually (maximally) complementary
questions {Q1, . . . , Qn} (not to be confused with QM above) cannot support more than 1
bit of information:

α(y1) + · · ·+ α(yn) ≤ 1 bit. (2.1)

This statement follows trivially from the definition of complementarity and the basic re-
quirements on α whenever O has maximal information α(yi) = 1 bit about any question
in this set. However, we require (2.1) for all states for otherwise it would be possible for O
to reduce his total information about this set by asking another question from it. Namely,
suppose (2.1) was violated. Then, upon asking any question from this set, he will have
maximal information about this question and none about the others such that (2.1) would
be saturated again and O has experienced a net loss of information about the set. Such
peculiar situations will be ruled out in O’s world. We shall call the informational rela-
tions defined by (2.1) complementarity inequalities. They can be viewed as informational
uncertainty relations, describing how the information gain about one question enforces an
information loss about questions complementary to it.

Since we will be dealing with systems composed of N qubits below, we must clarify what
kind of composite systems we shall consider in this language. Let QA,B be the question
sets associated to systems SA,B. We shall say that they form the composite system SAB if
all questions in QA are compatible with questions in QB and if

QAB = QA ∪QB ∪ {QA ∗QB| QA,B ∈ QA,B, ∗ some logical connective}. (2.2)

The logical connective ∗ which can be used to build informationally complete sets for
composite systems will be determined later. We use this definition recursively for more
than two systems. This concludes our review of the landscape of inference theories.

Within this landscape, we shall impose four rules on the acquisition of information of
O about a composite system S of N generalized bits (or gbits) from Ref. [1] to which we
refer for motivation. The rules are given both in colloquial and mathematical form. For
clarification we shall attach the number N henceforth to QN ,ΣN . The first two principles
assert a limit on the information available to O and the existence of complementarity.

Principle 1. (Limited Information) “The observer O can acquire maximally N ∈ N

independent bits of information about the system S at any moment of time.”
There exists a maximal set Qi, i = 1, . . . , N , of N mutually independent and compatible
questions in QN .

Principle 2. (Complementarity) “The observer O can always get up to N new inde-
pendent bits of information about the system S. But whenever O asks S a new question,
he experiences no net loss of information.”
There exists another maximal set Q′

i, i = 1, . . . , N , of N mutually independent and com-
patible questions in QN such that Q′

i, Qi are complementary and Q′
i, Qj 6=i are compatible.
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The systems are thus characterized by the number N . Principles 1 and 2 are con-
ceptually motivated by earlier proposals by Rovelli [9] and Brukner and Zeilinger [10–14].
However, they do not suffice. We also require O not to gain or lose information without
asking questions.

Principle 3. (Information Preservation) “The total amount of information O has
about (an otherwise non-interacting) S is preserved in between interrogations.”
I(~y) is constant in time in between interrogations for (an otherwise non-interacting) S.

In fact, this principle can also be used to define the notion of ‘non-interacting’.
We stipulate that there exists time evolution which preserves the state space. In order to

render O’s world interesting for him, it should be as dynamical and interactive as possible.
We shall thus require that it ‘maximizes’ the number of ways in which any given state of
S can change in time – rather than the number of states in which it can be relative to O.

Principle 4. (Time Evolution) “Any actual information O may have about S changes
continuously in time in between interrogations and can do so in a maximal variety of ways.”
Any given state ~y changes continuously in time in between interrogations and the set of pos-
sible states into which it can evolve is the maximal one which is compatible with principles
1-3.

Denoting by TN the set of all possible time evolutions for any N ∈ N, it is our task to
derive what the triple (QN ,ΣN , TN) compatible with the rules is. As shown in [1], there
are only two solutions to these four principles within the established landscape of theo-
ries: in this manuscript we shall complete the proof that one solution is standard qubit
quantum theory and, as exhibited in a companion paper [43], the second solution is rebit
quantum theory, i.e. two level systems over real Hilbert spaces. The second solution is
mathematically a subcase of the former and also experimentally realizable in a laboratory.
Therefore, the above four rules are physically sufficient. If, however, one wishes to dis-
criminate between the two solutions, one may invoke the following additional rule adapted
from [23–26, 28, 44, 45]:

Principle 5. (Tomographic Locality) “If S is a composite system, O can determine its
state by interrogating only its subsystems.”

It follows from [1] that this last rule eliminates rebits in favour of qubits. We shall
appeal to tomographic locality in this manuscript solely for this purpose.6

More precisely, we shall prove that principles 1–5 are equivalent to the textbook axioms:

Claim. The only solution to principles 1–5 is qubit quantum theory where

• ΣN ≃ convex hull of CP2N−1 is the space of 2N × 2N density matrices over C2N ,

6In fact, this rule is quite possibly a partially redundant addition. At least in the context of generalized
probability theories [23–26, 28, 44, 45] tomographic locality implies some of the properties that already
follow from the other rules.
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• states evolve unitarily according to TN ≃ PSU(2N) and the equation describing the
state dynamics is (equivalent to) the von Neumann evolution equation.

Using two further requirements, we shall also show that

• QN ≃ CP
2N−1 is (isomorphic to) the set of projective measurements onto the +1

eigenspaces of N-qubit Pauli operators7 and the probability for Q ∈ Q to be answered
with ‘yes’ in some state is given by the Born rule for projective measurements.

The essential steps of the proof and derivation of qubit quantum theory, involving
results from [1] can be summarized diagrammatically:

limited information complementarity information preservation time evolution

tomographic locality

independence, compatibility and cor-

relation structure on QN (in [1])

linear reversible time evolution

and information measure (in [1])

Σ1 is a Bloch ball with D1 = 3, and

T1 ≃ SO(3) ≃ PSU(2) (in [1])

T2 ≃ PSU(4) and

Σ2 is the convex hull of CP3 (in sec. 3.1)

ΣN , TN for N > 2 (in sec. 3.2)

QN for arbitrary N (in sec. 3.3)

In particular, in [1] the entire compatibility, complementarity and independence struc-
ture of any informationally complete set QMN

for arbitrary N is derived, showing that the
logical connective ∗ in (2.2) which can be used to build QMN

from subsystem questions
must either be the XNOR or XOR. As a by-product, it is demonstrated how entangle-
ment, monogamy, and the correlation structure for arbitrarily many qubits follow from
principles 1 and 2 alone. Furthermore, principles 3 and 4, together with elementary opera-
tional conditions, can be shown to entail (a) a linear reversible time evolution of the Bloch

7The set of Pauli operators is given by all hermitian operators on C2N with two eigenvalues ±1 of equal
eigenspace dimensions.
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vector ~r = 2 ~y − ~1 under a continuous one-parameter matrix group, and (b) a quadratic
information measure

α(yi) = (2 yi − 1)2. (2.3)

The total information IN (~y) = |~r|2, quantifying O’s information about S is thus the square
norm of the Bloch vector [1]. This quadratic information measure was earlier proposed by
Brukner and Zeilinger from a different perspective [11, 12, 14, 46, 47]. Finally, it is demon-
strated in [1] how the conjunction of these results correctly yields the three-dimensional
Bloch ball together with its isometry group SO(3) ≃ PSU(2) as the state space Σ1 and
time evolution group T1, respectively, for a single qubit (i.e., the N = 1 case). It was also
argued that Q1 = CP

1. But the reconstruction of (QN ,ΣN , TN) was left open for N > 1.
With principle 1 at our disposal, we can define a notion of pure state: a pure state of

SN is a state of maximal information (and thus of maximal length) in which O knows the
maximal amount of N independent bits of information.8

3 Reconstruction

These results will be exploited in the sequel to extend the reconstruction to arbitrary N > 1
and thus to prove the claim given in the previous section.

3.1 N = 2 qubits

Principles 1, 2 and 5 imply that an informationally complete question set for two qubits is
given by six individual questions {Qx1, Qy1 , Qz1, Qx2 , Qy2, Qz2} about qubit 1 and 2 and
by nine ‘correlation questions’ {Qxx, Qxy, Qxz, Qyx, Qyy, Qyz, Qzx, Qzy, Qzz}, where, e.g.,
Qxx := Qx1 ↔ Qx2 represents the question ‘are the answers to Qx1 and Qx2 the same?’ and
↔ denotes the XNOR connective [1].9 For example, for two spin-1

2
particles Qx1 , Qxx could

represent the questions ‘is the spin of qubit 1 up in x-direction?’ and ‘are the spins of qubit
1 and 2 correlated in x-direction?’, respectively. The compatibility, complementarity and
correlation structure of these questions, ensuing from principles 1 and 2, is derived in [1]
and is represented in terms of correlation triangles in figure 2.

We note that a pure state as a state of maximal information will have length

IN=2(~rpure) = |~rpure|2= 3 bits,

corresponding to O knowing the answers to two independent and compatible questions with
certainty (principle 1) – this yields two independent bits – and, on account, of the XNOR
properties also knowing the correlation of these questions – this yields a third dependent
bit [1]. For instance, if O knows the answers to Qx1, Qx2 , he evidently knows the answer
to Qxx too. By principle 3, the time evolution image of any such state will feature the
same length and thus constitutes a pure state too.

8We emphasize the difference to reconstructions within the context of generalized probability theories
[23–26,28,44,45] where pure states are simply defined to be the extremal states of the convex state space.

9We recall that Q↔ Q′ = 1 if Q = Q′ and Q↔ Q′ = 0 otherwise.
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Figure 2: The compatibility, complementarity and correlation structure of an informationally
complete set for two qubits. If two questions are connected by an edge, they are compatible.
If two questions are not connected by an edge, they are complementary. Red triangles denote
odd (or anti-)correlation; for instance, Qzz = ¬(Qxx ↔ Qyy). Green triangles symbolize even

correlation; for example, Qzz = Qxy ↔ Qyx. Every question resides in exactly three triangles and
is thereby compatible with six and complementary to eight other questions. (See [1] for further
details.)

3.1.1 Maximal mutually complementary sets of questions

The three questions {Qx, Qy, Qz} form a single maximal mutually complementary set of
questions for a single qubit. It is also useful to group the 15 questions for two qubits
into maximal mutually complementary sets such that no further question can be added
which would be complementary to all others in the set too. This results in six sets, each
containing five questions, which can be understood and represented conveniently in terms
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of question graphs
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Pent6 = {Qxz, Qyz, Qzz, Qx2, Qy2}.

(3.1)

The vertices correspond to individual questions while the edges connecting them represent
the corresponding correlation questions. Vertices on the left correspond to qubit 1 and are
compatible with the vertices on the right, corresponding to qubit 2, but not with each other.
Vertices are compatible with edges if and only if they are vertices of the latter and edges
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are compatible if and only if they do not intersect in a vertex [1]. These complementarity
relations are conveniently represented in figure 3 in terms of a lattice of pentagons, where
each pentagon corresponds to one of the six sets in (3.1). It can be easily checked, using
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Figure 3: The six maximal mutually complementary question sets (3.1) represented as pen-
tagons. In contrast to figure 2, if two questions lie in the same pentagon or are connected by an
edge it means they are complementary (in all other cases they are compatible). Every question
appears in precisely two pentagons such that every pentagon is connected to all other five. The
green triangles are four of 20 maximal complementarity triangles (see appendix A.1). The red
arrows denote the information swap between pentagons 1 and 2 in (3.9) which leaves all pentagon
equalities invariant and defines the time evolution generator (3.11).

such graphs, that no other maximally complementary sets of five or more questions exist.
However, there also exist 20 maximal sets of three elements, four of which are shown as
green triangles in figure 3. Since these 20 sets will only be employed for consistency checks
of the complementarity inequalities (2.1) but not for the main flow of the arguments, we
choose to display and explain them using the question graphs in appendix A.1. There are
no other maximal complementarity sets for two qubits.

3.1.2 Constraints on the information distribution over the questions

For pure states of a single qubit, the single maximal complementarity set carries precisely
1 bit of information, IN=1 = αx + αy + αz = 1 bit which, according to principle 3, is a
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conserved ‘charge’ of time evolution. This defines the unitary time evolution group PSU(2)
for a single qubit [1]. We shall now show the analogue for two qubits.

Since every question is contained in precisely two pentagons, the sum of the information
contained in each pentagon yields twice the total information of O about the two qubits

6
∑

a=1

I(Penta) = 2

(

∑

i=x,y,z

(αi1 + αi2) +
∑

i,j=x,y,z

αij

)

= 2 IN=2(~r), (3.2)

where, thanks to (2.1), 0 bits ≤ I(Penta) =
∑

i∈Penta αi ≤ 1 bit is the sum of the informa-
tion carried by the five questions in pentagon a. Since for pure states IN=2(~rpure) = 3 bits,
it follows that every pure state must satisfy what we shall call the pentagon equalities

pure states: I(Penta) ≡ 1 bit, a = 1, . . . , 6. (3.3)

In analogy to the single qubit case, every pentagon therefore carries precisely one bit of
information for every pure state. Hence, the pentagon equalities must also be conserved
‘informational charges’ of time evolution. We shall see shortly in section 3.1.3 that these
relations single out the unitary group for two qubits. There are no such conserved infor-
mational charges for the maximal complementarity sets consisting of only three elements
(see appendix A.1).

These identities are remarkable because the underlying probabilities yi in αi = (2 yi−1)2

of the 15 questions are independent coordinates on Σ2 and thus do not satisfy any linear
identities for all pure states. This observation emphasises the strength of considering the
information content in the questions in addition to their probabilities in quantum theory.
In fact, writing |ψ〉 = α|x+x+〉+ β|x−x−〉+ γ|x+x−〉+ δ|x−x+〉 for an arbitrary two-qubit
pure state, where |α|2+|β|2+|γ|2+|δ|2= 1 and x± stands for ‘up/down’ in x-direction, one
can easily verify (using a computer programme) that quantum theory actually satisfies the
pentagon equalities (3.3) for the quadratic measure αi = (2 yi − 1)2. (For instance, yx1 is
the probability that the spin of qubit 1 is ‘up’, yxx is the probability that the spins of qubit
1 and 2 are correlated in x-direction, etc.) These informational pentagon identities (3.3)
seem to have previously gone unnoticed in quantum theory.

The pentagon equalities have two interesting consequences for pure states. Firstly,
I(Pent1) + I(Pent3) + I(Pent5)− I(Pent2)− I(Pent4)− I(Pent6) = 0 implies that O knows
as much individual information about qubit 1 as about qubit 2

pure states: αx1 + αy1 + αz1 = αx2 + αy2 + αz2 .

(Clearly, this identity cannot hold for all states of non-maximal information.) We exhibit
further such identities in appendix A.1. Secondly, the pentagon equalities entail that the
amount of information carried by any question is determined by the amount of information
carried by the six questions compatible with it – and vice versa. In terms of the correlation
triangles in figure 2 this results in a ‘bulk/boundary’ relation. For instance, for the three
correlation triangles in figure 4, excised from figure 2, (3.2, 3.3) yield

pure states: αz1 = Boundaryz1
− 1 bit, where (3.4)
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1 bit ≤ Boundaryz1
:= αx2 + αzx + αy2 + αzy + αzz + αz2 ≤ 2 bit.

The special case αz1 = 1 bit arises if and only if Boundaryz1 = 2 bits and the three
triangles adjacent to Qz1 thus carry all 3 bits of information. Analogous relations hold
for any other question in figure 2.

+ +

+

Qz1
Qx2

Qy2

Qz2

Qzx

Qzy

Qzz

αz1 = 1 bit

αzx = αx2 αzy = αy2

αzz = αz2

Figure 4: If any question carries precisely 1 bit, the adjacent correlation triangles carry all
remaining information – also for states of non-maximal information. Moreover, within any cor-
relation triangle, the information contained in the two other questions must be equal.

It is easy to convince oneself, using that any question in a correlation triangle of figure
2 is either the correlation or anti-correlation of the other two questions in the triangle,
that whenever one question carries 1 bit of information, the other two questions in the
correlation triangle must carry equal amounts. For example, if the central vertex Qz1 in
figure 4 carries αz1 = 1 bit, then αzz = αz2 , etc. as indicated.10 While this must hold
for states of non-maximal information too, for pure states it also follows directly from
the pentagon identities (3.3): e.g., inserting αz1 = 1 bit, and thus αi = 0 for any Qi

complementary to Qz1 , into I(Pent5) + I(Pent6)− I(Pent2)− I(Pent4) = 0 implies directly
αzz = αz2. The analogous results can be similarly derived for any triangle neighbours of
any αi = 1 bit.

These observations will become valuable shortly.

3.1.3 Derivation of the unitary group

Any given time evolution acts linearly and continuously on the states (in between interro-
gations), ri(t) = Tij(t) rj(0), where ~r = 2 ~y −~1 ∈ R15 is the generalized Bloch-vector, and
constitutes a one-parameter subgroup of T2 which itself is a group [1]. Principle 3 asserts
that the total information is a ‘conserved charge’ of time evolution, IN=2(T (t)·~r) = IN=2(~r).
Since the total information is given by the square norm of the Bloch vector (2.3), this
implies that T2 ⊂ SO(15) (time evolution must be connected to the identity). In fact,
T2 must be a proper subgroup of SO(15) because the latter contains transformations

10E.g., if O knew with certainty that Qz1 = ‘yes’, he would know that the answers to Qzz, Qz2 are
correlated, such that yzz = yz2 and hence αzz = αz2 . (Note that yzz = yz2 = 1

2 is possible too, of course.)
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that map all 3 bits of information into a single question, e.g., ~r = (1, 1, 1, 0, . . . , 0) to
~r = (

√
3, 0, 0, 0, . . . , 0) – which is illegal.

In particular, every pure state evolves to a pure state. Therefore, the pentagon equal-
ities (3.3) are likewise ‘conserved charges’, such that we must have I(Penta(T (t) · ~r)) =
I(Penta(~r)), a = 1, . . . , 6. Given that T2 ⊂ SO(15) and T (t1 + t2) = T (t1) · T (t2) =
T (t2) ·T (t1), we may write T (t) = exp(t G) for some generator G ∈ so(15) which yields (to
linear order in t)

∑

i∈Penta,1≤j≤15

riGij rj = 0, a = 1, . . . 6, (3.5)

where Gij = −Gji since G ∈ so(15). This implies, in particular, conservation of the total
information IN=2.

(3.5) constitute restrictions on both the set of pure states and time evolution generators;
any legal pure state must satisfy (3.5) for every legal time evolution generator G and, vice
versa, any legal time evolution generator must satisfy (3.5) for every legal pure state. Of
course, at this stage, we neither know what the set of legal pure states nor what the time
evolution group T2 is. As we shall see shortly, however, the pentagon equalities (3.3) and the
conditions (3.5) are sufficient, together with the principles and background assumptions,
to single out T2 = PSU(4) and the two qubit quantum state space. This is subject to the
already employed convention to use only the XNOR connective ↔ (rather than the XOR)
for building multipartite questions from the individuals, e.g., Qxx = Qx1 ↔ Qx2 .

To this end, we recall principle 4 which declares that for any state the set of states
into which it can time evolve is the maximal one compatible with the other principles.
Given that the set of all time evolutions forms a group (which acts linearly and state
independently on states), the principle thus requires the latter somehow to be ‘maximal’.
In particular, we can check maximality for specific states that we know must be in ΣN .
Namely, for any set of mutually compatible questions, there must, by definition, exist a
state in which these questions are simultaneously answered. Furthermore, for every set
of N mutually compatible and independent questions (as in principle 1) there must exist
a state for every ‘yes/no’-answer configuration. For N = 2 every such state must also
respect the correlation structure of figure 2. This entails that the set of legal pure states
must contain

~r = ~δz1 + ~δz2 + ~δz1z2 , ~r = ~δz1 − ~δz2 − ~δz1z2, ~r = ~δz1 + ~δz2 − ~δz1z2, (3.6)

where ~δi denotes a vector with the i-th component equal to 1 and all others 0. But (3.5)
must, in particular, be satisfied for these three pure states which results in

Gz1z1 +Gz1z2 +Gz1(z1z2) = 0, Gz1z1 −Gz1z2 −Gz1(z1z2) = 0, (3.7)

Gz1z1 +Gz1z2 −Gz1(z1z2) = 0,

and thus

Gz1z1 = Gz1z2 = Gz1(z1z2) = 0.
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It is easy to convince oneself, by repeating the same argument with every correlation or
anti-correlation triangle in figure 2, that any legal time evolution generator G must feature

Gij = 0, whenever Qi, Qj are compatible. (3.8)

That is, any legal time evolution generator can only have non-zero components for pairs
of indices corresponding to complementary questions. It follows from figure 2 that every
question is complementary to precisely eight questions from the informationally complete
set. Since there are 15 questions, there are precisely 15×8/2 = 60 pairs of complementary
questions. Thus, given the anti-symmetry Gij = −Gji, there could at most be 60 linearly
independent generators satisfying conditions (3.5) for every pure state.

We shall now construct such a set of 60 linearly independent generators which satisfy
(3.8) and have a clear operational meaning. However, as we shall see shortly, only 15 of
such generators can be consistent with the principles at once.

Since any two pentagons overlap in precisely one question, there is no transformation
which redistributes the information only within a single pentagon and leaves all pentagon
equalities invariant. However, for any pair of pentagons there exists a unique transfor-
mation which swaps the information from one pentagon to the other and leaves all other
pentagons and all pentagon equalities (3.3) invariant. Consider, e.g., pentagons Pent1 and
Pent2 in figure 3. The red arrows denote the complete information swap (←→ is not to be
confused with the XNOR)

αy1 ←→ αzx (Pent5), αz1 ←→ αyx (Pent3), αxy ←→ αz2 (Pent4), αxz ←→ αy2 (Pent6)
(3.9)

between the two pentagons which leaves the composite αxx and all other questions invariant.
Since each of the swaps in (3.9) occurs within precisely one of the remaining four pentagons,
all pentagon equalities (3.3) are preserved. Such a full swap of information between two
pentagon sets is thus a good candidate for a legal time evolution. W.l.o.g. this swap
transformation can be written as T = exp((π/2)GPent1,Pent2) acting on ~r with

GPent1,Pent2
ij = δiy1δjzx + s1 δiz1δjyx + s2 δixyδjz2 + s3 δixzδjy2 − (i←→ j), (3.10)

where s1, s2, s3 are three signs to be determined. Given that there are four linearly indepen-
dent terms in the generator, one can produce precisely four linearly independent generators
from (3.10) by changing the signs s1, s2, s3. However, a legal time evolution generator must
be consistent with the correlation structure in figure 2 and the constraints on information
distribution of section 3.1.2. In appendix A.2.1 it is shown that these constraints uniquely
determine the generator candidate (up to an unimportant overall sign) to

GPent1,Pent2
ij = δiy1δjzx − δiz1δjyx + δixyδjz2 − δixzδjy2 − (i←→ j). (3.11)

For every pair of pentagons there exists such a unique information swap, resulting
in
(

6
2

)

= 15 transformations which are consistent with the correlation structure and the
constraints on the information distribution. The form of their generators can be found
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similarly (see (A.5, A.7) in appendix A.2.1). There are nine swaps leaving a composite and
six swaps leaving an individual question as the overlap of the pentagons invariant. As an
example for the latter, the information swap between Pent3 and Pent5 leaves the individual
αx1 invariant and is generated by

GPent3,Pent5
ij = δiy1δjz1 − δiyxδjzx − δiyyδjzy − δiyzδjzz − (i←→ j). (3.12)

In Appendix A.2.1, it is shown that the various sign distributions over these 15 gen-
erators, as in (3.10), produce precisely 60 linearly independent generators satisfying (3.8).
Regardless of the sign structure, each of these 60 linearly independent generators thus
corresponds precisely to a complete information swap between two pentagon sets and for
each pair of pentagon sets there are four linearly independent such swap generators. That
is, whatever the resulting time evolution group consistent with (3.5) may be, it must be
fully generated by complete information swaps between pentagons. Clearly, it cannot be
generated by all 60 such generators as the only state which would satisfy (3.5) for all 60
generators is the state of no information ~r = 0. Indeed, requiring consistency with the
correlation structure of figure 2, and thus consistency with the convention of only using
the XNOR connective for building bipartite questions from individuals, results in one per-
missible generator candidate per pair of pentagon sets and in precisely the 15 candidate
generators exhibited here and in appendix A.2.1. The time evolution group can thus not
be generated by any other than these 15 surviving generator candidates; in fact, the re-
maining 45 possible sign distributions can be argued to correspond to different conventions
(see appendix A.2.1).

Using a computer algebra program, one can easily check that these 15 surviving infor-
mation swap generators (A.5, A.7) (see appendix A.2.1)

(a) satisfy the commutator algebra of su(4) ≃ so(6) ≃ psu(4) ⊂ so(15), and

(b) coincide exactly (in some cases up to an unimportant overall sign) with the adjoint
representation

(Gi)jk := f ijk =
1

4
tr([σj , σk] σi)

of the 15 fundamental generators of the unitary group SU(4). f ijk are the structure
constants of SU(4), the indices i, j, k take the 15 values x1, y1, z1, x2, . . . , xz, xy, . . . , zz
(as in our reconstruction) and σx1 := σx⊗1, ..., σx2 := 1⊗σx, ..., σxx := σx⊗σx, ...,
σzz := σz ⊗σz and σx, σy, σz are the usual Pauli matrices. In particular, the ordering
of coincidence is Gi ≡ ±GPenta,Pentb where Qi is the single question in Penta ∩ Pentb
which is left invariant by the swap; e.g., Gxx ≡ GPent1,Pent2 , etc.

Next, we must check whether the (image of any state under the) full group T ′
2 generated

by exponentiating the 15 surviving swap generators (A.5, A.7) and their linear combina-
tions is consistent with the principles and thus by principle 4 whether T ′

2 is contained in T2.
Clearly, T ′

2 obeys principle 3 by construction and the only background assumption which
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it is not evidently consistent with are the complementarity inequalities (2.1). Similarly,
the only structure entailed by principles 1 and 2 that T ′

2 is not evidently consistent with
is the correlation structure of figure 2. We thus have to expose T ′

2 to a few non-trivial
consistency checks. In appendix A it is shown that

(i) (3.5) results in 15 independent conservation equations, one for each swap generator:

∑

i∈Penta,1≤j≤15

riG
Penta,Pentb
ij rj = 0, a < b, a, b = 1, . . . , 6. (3.13)

All other combinations of the swap generators with the Bloch vector components of
some pentagon lead via (3.5) to conservation equations which are either trivial or
implied by (3.13). (Appendix A.2.3)

(ii) Together with the six pentagon equalities (3.3) these 15 conservation equations (3.13)
constitute 21 equations which define an invariant set under T ′

2 , i.e. for any Bloch
vector ~r solving (3.3, 3.13), T (t)·~r will again solve these 21 equations for all T (t) ∈ T ′

2 .
In particular, writing T (t) = exp(t G) with G in the lie algebra of T ′

2 , the pentagon
equalities will be preserved to all orders in t (recall that (3.5) was only the preservation
condition to linear order in t). (Appendix A.2.3)

(iii) The complementarity inequalities (2.1) are preserved by T ′
2 and all Bloch vectors

~r satisfying (3.3, 3.13) also necessarily obey all complementarity inequalities. (Ap-
pendix A.2.6)

(iv) T ′
2 preserves the correlation structure of figure 2 and, fixing the convention to only

employ the XNOR for constructing multipartite questions from individuals, (3.3,
3.13) implies unambiguously the correlation structure of figure 2. (Appendix A.2.7)

Accordingly, T ′
2 maps states satisfying principles 1–3, all background assumptions and (3.3,

3.13) to other such states. Principle 4 requires the existence of any time evolution fulfilling
these conditions such that we must indeed conclude T ′

2 ⊆ T2.
But which group is T ′

2? In (a) it was seen that the swap generators form the Lie algebra
of su(4) ≃ so(6) ≃ psu(4). SU(4) is a double cover of SO(6) which, in turn, is a double
cover of PSO(6) ≃ PSU(4). The exponentiation of the swap generators (A.5, A.7) cannot
result in a faithful representation of either SU(4) or SO(6) – which feature a non-trivial
centre –, because by Schur’s lemma all centre elements read c · 1 with c15 = 1 such that
c ≡ 1 and the representation is centreless. The exponentiation will thus result in a faithful
representation of PSU(4). Hence, PSU(4) ⊆ T2 ⊂ SO(15).

Can T2 contain any additional transformations not contained in T ′
2? Given that the 15

surviving swap generators (A.5, A.7) constitute a maximal set consistent with (3.5) and
the correlation structure of figure 2, we must conclude that the answer is negative. In
fact, in appendix A.2.4 it is further shown that PSU(4) is a maximal subgroup11 of SO(15).

11A maximal subgroupH of a groupG is a proper subgroup which is not contained in any other subgroup
other than H itself and the full group G.
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Since T2 must be a proper subgroup of SO(15), we conclude that

T2 ≃ PSU(4).

This is the correct time evolution group for two qubits in quantum theory and, thanks to
(b), we obtain it in the correct Bloch vector representation.12

It is interesting to note that the six generators (A.7) of the information swaps between
the pentagons which overlap in an individual question satisfy the commutator algebra of
so(3)⊕ so(3) and therefore generate the subgroup PSU(2)× PSU(2) ≃ SO(3)× SO(3) of
product unitaries corresponding to the Bloch sphere rotations of the two individual qubits.
By contrast, the nine generators (A.5) of the swaps between pentagons overlapping in a
composite question generate the entangling unitaries in PSU(4) (see appendix A.2.1).

3.1.4 State space reconstruction

Now that we have concluded that T2 = PSU(4) is the correct time evolution group, we are
also in a position to determine Σ2. The 21 equations (3.3, 3.13) define a T2-invariant set
of Bloch vectors and every legal pure state must lie within it. One may be worried that
these 21 equations over-constrain the 15 components of the Bloch vector ~r. However, the
legitimate ‘product’ states (3.6) satisfy all 21 equations and T2 preserves these equations
such that the set defined by (3.3, 3.13) is clearly non-empty. In fact, in appendix A.2.5
it is shown, using the information distribution results of section 3.1.2, that for any Bloch
vector fulfilling (3.3, 3.13) there exists a time evolution in T2 which maps all information to
the ‘product state’ form αz1 = αz2 = αzz = 1 bit and all other αi = 0. This informational
configuration has eight solutions in terms of the Bloch vector which can be divided into
two mutually exclusive sets (all other ri = 0)

SXNOR : 1./2. rzz = +1, rz1 = ±1, rz2 = ±1, 3./4. rzz = −1, rz1 = ±1, rz2 = ∓1,

SXOR : 5./6. rzz = −1, rz1 = ∓1, rz2 = ∓1, 7./8. rzz = +1, rz1 = ∓1, rz2 = ±1,

the first of which is consistent with the XNOR conjunction Qzz = Qz1 ↔ Qz2, the second
of which corresponds to the XOR connective Qzz = ¬(Qz1 ↔ Qz2). These are two perfectly
consistent conventions for building up the composite questions (the information measure
cannot distinguish between XNOR and XOR) [1].

It can be easily verified that the four solutions in SXNOR are connected by elements of
T2, as are the four solutions in SXNOR.13 However, the two sets of Bloch vectors generated
by acting with T2 on each of SXNOR and SXOR are not connected by time evolution since,
using the time connectedness of each set,

T2(SXOR) := {T · (−1)(~δz1 + ~δz2 + ~δz1z2) |T ∈ T2}
12The adjoint action of U ∈ SU(4) in an evolution ρ 7→ U ρU † of a 4×4 density matrix yields a projective

representation of SU(4), i.e. PSU(4).
13For instance, solutions 1 and 2 (or 5 and 6) are mapped to solutions 4 and 3 (or 8 and 7), respectively,

by T = exp(πGPent3,Pent5) or T = exp(π GPent1,Pent5). Similarly, solutions 1 and 2 (or 5 and 6) are mapped
to solutions 3 and 4 (or 7 and 8), respectively, by T = exp(π GPent4,Pent6) or T = exp(πGPent2,Pent6). (See
appendix A for the explicit representations of the swap generators and formulas for their exponentiation.)
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= −{T · (~δz1 + ~δz2 + ~δz1z2) |T ∈ T2} =: −T2(SXNOR)

such that T2(SXOR) and T2(SXNOR) are related by a global multiplication with −115×15 /∈
T2 ⊂ SO(15) which commutes with all elements in T2. This corresponds precisely to a
change of convention of building composite questions with XOR rather than XNOR.

In conclusion, the 21 equations (3.3, 3.13) define exactly two isomorphic sets T2(SXOR)
and T2(SXNOR) which are disconnected by time evolution, however, on each of which the
time evolution group T2 acts transitively.

It is well-known that, thanks to transitivity, T2 ≃ PSU(4) generates all two-qubit pure
states of quantum theory by acting with all its elements on any legal pure state (in the Bloch

or hermitian representation) [22,24,45]. The seed pure state ~r = ~δz1 +~δz2 +~δz1z2 in SXNOR,
written in the basis defined by the informationally complete question set {Qx1 , . . . , Qzz},
coincides with the generalized Bloch vector representation of the two-qubit product state
density matrix ρ = 1/4 (14×4 + σz ⊗ 1 + 1 ⊗ σz + σz ⊗ σz), written in the basis of the
informationally complete Pauli operators 1 ⊗ σi, σj ⊗ 1, σi ⊗ σj, i, j = x, y, z. We also
recall from (b) in subsection 3.1.3 that the 15 swap generators (A.5, A.7), expressed in the
question basis, coincide with the adjoint representation of the fundamental generators of
the quantum time evolution group SU(4), written in the Pauli operator basis. It is thus
clear that the orbit T2(SXNOR), expressed in the question basis, is exactly the set of two-
qubit pure states of quantum theory, expressed in the Pauli operator basis.14 Furthermore,
since the seed states in SXNOR are legal pure states in Σ2 and since the time evolution
image of any legal state must again be legal, we conclude that T2(SXNOR) is fully contained
in the set of pure states implied by the principles. Geometrically, this set of two-qubit pure
states is T2(SXNOR) ≃ CP3 [48], of which T2 ≃ PSU(4) is the isometry group.

Evidently, T2(SXOR) ≃ CP3 also defines a representation of the pure state space which is
physically perfectly equivalent to T2(SXNOR). However, since it corresponds to the ‘XOR-
convention’ it leads to a correlation structure as in figure 2, except that the signs in all
triangles would be flipped.

Hence, adopting the convention, as we did so far, to build up composite questions
from individuals solely by XNOR connectives, we conclude that the N = 2 pure state
space implied by the principles is precisely (one copy of) the pure state space for two
qubits in quantum theory. Accordingly, upon fixing the XNOR convention, a Bloch vector
~r represents a pure two-qubit quantum state if and only if it satisfies the six pentagon
equations (3.3), which are ignorant of the correlation structure, and the 15 conservation
equations (3.13) which also encode the correlation structure (up to an overall XNOR vs.
XOR ambiguity).15

14Indeed, it can be easily checked, using a computer algebra program, that all two-qubit pure states of
quantum theory satisfy the 21 equations (3.3, 3.13).

15Clearly, the 21 equations cannot be fully independent. In fact, only nine of the 21 equations can be
locally independent on R15 to produce a 15− 9 = 6-dimensional pure state space CP3. It is not possible,
however, thanks to pairwise independence of the questions in an informationally complete set, to globally
parametrize the pure state space in terms of the probabilities (or Bloch vector components) of six fixed
questions only.
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The pure states form the set of extremal Bloch vector length within the full state space
Σ2 which must be convex. Thus, clearly, the convex hull of the pure states is contained
in Σ2. But can there by any further legal extremal states? If there was another extremal
state it could not be a state of maximal information and it could also not be a convex linear
combination of pure states. In section 2, we required that O can prepare any extremal state
in a single shot interrogation relative to the state of no information with questions from
an informationally complete set – and possibly a subsequent time evolution. However, it
follows from our constraints on the state update rule in section 2 that any posterior state of
a system of two qubits in such a single shot interrogation will be a quantum state16 which
is already contained in the convex hull of the pure states. Since the pure states are closed
under all possible time evolutions, so is their convex hull. We thus conclude that there can
be no further extremal states than the pure states. The Krein-Milman theorem [42] states
that a (compact) convex set is the closed convex hull of its extreme points. Hence, we find

Σ2 = closed convex hull of CP3.

Σ2 contains the state of no information, ~r = 0, (e.g., multiply each of the four solutions
in SXNOR with 1

4
and sum up) and indeed coincides with the set of unit trace density

matrices over the two-qubit Hilbert space C2 ⊗ C2. From the fact that all pure states
satisfy all complementarity inequalities (2.1) it follows that all convex mixtures of them
will satisfy them too since the information measure (2.3) satisfies αi(λ~r1 + (1 − λ)~r2) <
max{αi(~r1), αi(~r2)} if λ ∈ (0, 1) and if the pure states ~r1 6= ~r2 are distinct [1].

3.2 N > 2 qubits

Principles 1, 2 and 5 imply that an informationally complete set for N gbits contains
4N − 1 questions Qµ1µ2···µN

= Qµz
↔ Qµ2 ↔ · · · ↔ QµN

, µi = 0, x, y, z, where Q0 = 1,
such that the Bloch vector ~r is (4N − 1)-dimensional [1]. Pure state Bloch vectors have
(squared) length 2N − 1 bits, corresponding to having maximal information about N
mutually independent and compatible questions (principle 1), as well as their (dependent)
multipartite correlations.

3.2.1 Derivation of the unitary group

Again, any given time evolution T (t) acts linearly on the Bloch vector ri(t) = Tij(t) rj(0)
and constitutes a one-parameter subgroup of TN [1]. For analogous reasons to the N = 2
case, TN must be a proper subgroup of SO(4N − 1) for N ≥ 2.

16Any two questions in the informationally complete set are pairwise independent and either maximally
complementary or maximally compatible. Given the two constraints of section 2 on the update rule ((1)
questions are repeatable, and (2) independent compatible information is preserved), it is clear that any
single shot interrogation on the prior state ~r = 0 with the questions of the informationally complete set will
result in a posterior state ~r ′ with any component being one of 0,±1. Any such posterior state must obey
principle 1, complementarity and the correlation structure in figure 2 and thus has either precisely one
or three components equal to ±1 and the rest 0. But any such state respecting the correlation structure
corresponds to a quantum state. In particular, the 3 bit states are legal pure states.
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We label the N gbits by 1, . . . , N . Consider the gbit pair labeled by (12). We shall

say that this pair evolves as an isolated subsystem under T (12)
2 = PSU(4) (to avoid con-

fusion, we label the copy of the two-gbit time evolution group by the pair of gbits) if the
components of the N -gbit Bloch vector ~r ∈ R

4N−1,

rµ1µ200···0 corresponding to the 15 questions Qµ1µ200···0 (excluding µ1 = µ2 = 0) forming
an informationally complete set (see section 3.1) for the gbit pair (12) evolve under

T (12)
2 as derived in section 3.1.3, independently of the other components;17 and

r00µ3µ4···µN
corresponding to all questions Q00µ3µ4···µN

not involving gbits (12) are left in-

variant under T (12)
2 .

Recall that T (12)
2 ⊃ SO(3)×SO(3) contains the local qubit unitaries such that this definition

also accounts for the isolated evolution of individual gbits.
Since N gbits form a composite system, it must be physically possible for every pair of

gbits to evolve in time together as an isolated subsystem, as derived in section 3.1.3, and
for any individual gbit to evolve isolated of the others, as described in [1], thus without
affecting O’s information distribution over any other gbits. Accordingly, we shall require
the time evolutions T2 ≃ PSU(4) for any pair of gbits and T1 ≃ SO(3) for any single gbit,
respectively, to be contained in TN . Of course, given three or more gbits, the different
copies of PSU(4) cannot act simultaneously on all pairs due to monogamy of entanglement
(which also naturally follows from the principles [1]).

In appendix A.3.1, it is shown that this requirement of isolated T2- or T1-evolution,
together with the results of section 3.1, leads to an unambiguous promotion of the repre-
sentation of the PSU(4) time evolution elements for every gbit pair from R

15 to R
4N−1. In

particular, the T (12)
2 -generators of the gbit pair (12) take the form

G
Pent

(12)
a ,Pent

(12)
b

(µ1µ2µ3µ4···µN )(ν1ν2ν3ν4···νN ) = GPenta,Pentb
(µ1µ2)(ν1ν2)

δµ3ν3δµ4ν4 · · · δµNνN , (3.14)

where GPenta,Pentb
(µ1µ2)(ν1ν2)

is the representation of the corresponding two-qubit swap generators on

R
15 of section 3.1.3 (and appendix A.2.1)18 and we define GPenta,Pentb

(00)(ν1ν2)
:= 0 =: GPenta,Pentb

(µ1µ2)(00)
.

In appendix A.3.2, it is furthermore shown that the generators (3.14) coincide precisely
with the adjoint representation of the fundamental generators σi ⊗ 1 ⊗ 1 ⊗ · · ·1,1 ⊗
σi ⊗ 1 · · ·1, σi ⊗ σj ⊗ 1 · · ·1 of pairwise unitaries in quantum theory. The ordering of
coincidence is such that, firstly, Qµ1µ20···0 corresponds to σµ1µ20···0 := σµ1 ⊗σµ2 ⊗1⊗· · ·⊗1

where σ0 = 1 and, secondly, GPent
(1,2)
a ,Pent

(1,2)
b coincides with the adjoint representation of

σµ1µ20···0 corresponding to the unique question Qµ1µ20···0 in Pent(12)a ∩Pent
(12)
b . For example,

GPent
(12)
1 ,Pent

(12)
2 coincides with the adjoint representation of σx ⊗ σx ⊗ 1 ⊗ · · · ⊗ 1. This

coincidence holds analogously for arbitrary pairs among the N gbits. Clearly, also the TN
17Note that these 15 Bloch vector components define an invariant subspace under T (12)

2 of R4N−1.
18In agreement with the more general notation of this section, we have exchanged the indices i, j in

GPenta,Pentb
ij (A.5, A.7) for the equivalent (µ1µ2) and (ν1ν2) indices, respectively.

25



subgroups generated by these bipartite generators will have exactly the same form (at the
Bloch vector level) as in quantum theory.

It is well-known that two-qubit unitaries PSU(4) (between any pair) and local evo-
lutions SO(3) generate the full projective unitary group PSU(2N) [49, 50].19 Since all
local evolutions and pairwise unitaries are required to be contained in TN and since these
have the same representation as in quantum theory, we must conclude, abstractly, that
PSU(2N) ⊆ TN ⊂ SO(4N − 1) and, more explicitly, that the generated copy of PSU(2N)
appears in a Bloch vector representation, relative to the question basis, which is identical
to the Bloch vector (or adjoint) representation of the quantum unitaries relative to the
Pauli operator basis. As in the N = 2 case, PSU(2N) is a maximal subgroup of SO(4N −1)
(see appendix A.2.4) and since TN must be a proper subgroup of the latter, we conclude

TN ≃ PSU(2N)

which is the correct time evolution group for N qubits. The fact that we obtain the full
group PSU(2N) (rather than some of its subgroups) follows from the maximality require-
ment of principle 4 which demands every time evolution compatible with the principles
(and the background assumptions). As a consistency check, we show in appendix A.3.4
that PSU(2N) indeed preserves all complementarity inequalities (2.1), as required.

3.2.2 State space reconstruction

We show in appendix A.3.3 that for every Bloch vector ~r which could be a legal N gbit
pure state there exists a time evolution in TN which transfers all 2N − 1 bits to the
‘product state’ form αz1 = · · · = αzN = αz1z2 = αz1z3 = · · · = αz1z2z3 = · · · = αz1···zN = 1
bit (and all other αi = 0). This informational configuration has 22N−1 Bloch vector
solutions rz1 , . . . , rz1z2 , . . . , rz1···zN ∈ {−1,+1} and the remaining ri = 0. Since by principle
1 only N of the 2N −1 corresponding questions Qz1, . . . , Qz1···zN are mutually independent,
these Bloch vectors can be grouped into 22N−1/2N sets SN

1 , . . . ,SN

22N−1−N
, each consistent

with a specific convention of distributing XNOR or XOR connectives among the different
individual gbit questions Qµ1 , . . . , QµN

to build up multipartite questions – in analogy to
section 3.1.4. Evidently, only one of these sets agrees with our choice of employing solely
the XNOR connective↔ to define multipartite questions Qµ1µ2···µN

= Qµ1 ↔ Qµ2 ↔ · · · ↔
QµN

from the individuals Qµi
, namely the set of 2N solutions defined by

SN
XNOR :=

{

(rz1, · · · , rzN , rz1z2 , . . . , rz1···zN )
∣

∣

∣
rz1 , . . . , rzN ∈ {−1,+1},

rzi1 ···zim =

m≤N
∏

k=1

rzik , ik ∈ {1, . . . , N}, ik < ik+1

}

.

It is not difficult to convince oneself that the 2N Bloch vectors in any convention set SN
i

are connected through the local rotations SO(3)× · · · × SO(3) ⊂ TN .20

19This universality result has also been used in other reconstructions [24, 28].
20Namely, by the local unitaries which map rzi = +1←→ rzi = −1.
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We now focus on SN
XNOR. The state ~rz := ~δz1 + · · · + ~δz1···zN in SN

XNOR, coincides with
the generalized Bloch vector representation of the N -qubit product state density matrix
ρ = (12N×2N + σz ⊗ 1 ⊗ · · · ⊗ 1 + · · · + σz ⊗ · · · ⊗ σz)/2

N in quantum theory and is a
legal pure state since Qz1 , . . . , QzN are mutually compatible and independent [1]. It was
shown in the previous section that the Bloch vector representation of TN is exactly the
same as in quantum theory. As for N = 2, TN acts transitively on the pure states of qubit
quantum theory and therefore the complete pure quantum state space is generated when
TN acts on any pure quantum state [22, 24, 45]. Hence, the orbit TN(SN

XNOR), expressed in
our question basis, coincides exactly with the Bloch vector representation of the N -qubit
pure state space of quantum theory, written in the Pauli operator basis. Since the time
evolution image of any legal pure state must be again a legal pure state, we conclude that
all of TN(SN

XNOR) is contained in the set of pure states implied by the principles.
But can there be more pure states? Since all other sets SN

i 6= SN
XNOR correspond

to distinct conventions of building up composite questions from the individuals Qµi
, the

answer is negative. Indeed, the seed states in any SN
i 6= SN

XNOR are not legal quantum states,
featuring a correlation structure distinct from quantum theory. (There are only 2N pure
quantum states with only ±1 in the z-components and these precisely constitute SN

XNOR.)
Hence, these sets are not connected via TN to our legal pure states TN (SN

XNOR). Some
of these other conventions will yield a distinct, but physically equivalent representation
of the set of quantum pure states (e.g., as in the N = 2 case the set corresponding to
the convention of building up all composite questions with the XOR, rather than XNOR
connective).

Consequently, adhering to our usual convention to build up all composite questions of an
informationally complete set only with XNOR operations from the Qµi

, implies that the set
of all pure states allowed by the principles TN(SN

XNOR) is precisely the set of pure quantum
states. Geometrically, for N qubits this space is given by TN(SN

XNOR) ≃ CP2N−1 [48] of
which PSU(2N) is the transitive isometry group. In complete analogy to the N = 2 case
in section 3.1.4, we thus obtain

ΣN = closed convex hull of CP2N−1

which contains the state of no information and coincides with the set of normalized density
matrices over the N -fold tensor product of single qubit Hilbert spaces C

2 ⊗ · · · ⊗ C
2. For

consistency, we show in appendix A.3.4 that all states in ΣN are compatible with the
principles and, in particular, satisfy all complementarity inequalities (2.1).

In conclusion, we arrive precisely at the correct state spaces and time evolution groups
for arbitrarily many qubits.

3.3 The set of allowed questions QN and the Born rule

The reconstruction of the time evolution groups TN and the state spaces ΣN did not
require the precise structure of QN , but only the structure of an informationally complete
set QMN

⊂ QN . But what is the structure of the question set QN? It is not possible to
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answer this question without further assumptions; in particular, thus far we do not have
an action of TN on QN . We shall therefore discuss this topic separately.

3.3.1 Questions as vectors

Consider an informationally complete question set QMN
= {Qx1, . . . , QxN

, . . . , Qz1···zN}.
For each of the 4N − 1 Qi ∈ QMN

there exists a unique 1 bit state of S, namely ~rx1 =
~δx1 , . . . , ~rxN

= ~δxN
, . . . , ~rz1···zN = ~δz1···zN , in which precisely Qi is answered with ‘yes’ and

O has no information about the other questions in QMN
. Such a 1 bit vector ~ri therefore

represents the truth value Qi = 1 for Qi ∈ QMN
. We could thus equally well describe the

questions in QMN
in terms of these 1 bit vectors ~ri.

We shall require such a 1 bit state/question correspondence for all Q ∈ QN .

Requirement 1. For every Q ∈ QN there exists a unique 1 bit state ~rQ ∈ ΣN which
represents the truth value Q = ‘yes’ and which does not represent the truth value ‘yes’ for
any other question in QN .

This requirement implies that, henceforth, we may equivalently represent each Q ∈ QN

uniquely as a 1 bit question vector ~q = ~rQ. We note that ¬Q ∈ QN iff Q ∈ QN and that
¬Q will be described by a distinct question vector. For N = 1 each question in QN will
therefore be described by the pure state in which it is answered with ‘yes’, while for N > 1
each question is represented by the mixed state in which it is answered with ‘yes’ by S.

Thus, the full set of legitimate 1 bit question vectors, corresponding to QN , coincides
with a subset of the 1 bit quantum states in ΣN . Notice that not every Bloch vector of
length 1 bit represents a legal state in ΣN for N > 1. For instance, consider N = 2 qubits
and the vector ~rill = 1√

2
(1, 1, 0, . . . , 0) which naively could be interpreted as O having half

a bit of information about each of Qx1 and Qx2 . But this would specify the probabilities
that O receives ‘yes’ answers to the latter two questions as yx1 = yx2 = (rx1 + 1)/2 =
(1 + 1/

√
2)/2 > 0.85. In this case it is impossible that the probability yxx that Qxx gives

‘yes’ is 1/2. Accordingly, rxx must be larger than 0 and ~rill is an illegal state. In fact,
one can convince oneself that ~rill is not a convex combination of pure states and that this
Bloch vector would produce a non-positive density matrix.21 We conclude that, at least
for N > 1, not all vectors of length 1 bit can correspond to questions in QN .

Before we are able to say more about the structure of QN , we need to derive how to
compute the probability for the ‘yes’-outcome of any question in any legal state.

3.3.2 Reconstructing the Born rule for projective measurements

The assumption of informational completeness (see section 2) asserts that the probabil-
ities for ‘yes’-outcomes to the question in an informationally complete set are sufficient
to compute the outcome probabilities for all questions in the set QN in any given state.
Hence, by assumption, the probability y(Q|~r) that Q = ‘yes’, given the state ~r, exists and
is meaningful for all Q ∈ QN . But how do we compute it?

21It must hold rxx ≥
√
2− 1 in order for the state to be positive.
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Suppose O has access to two identical (but not necessarily identically prepared) sys-
tems22 S1, S2 such that O may ask the same questions to both. O may perform a biased
coin flip which yields ‘heads’ with probability λ ∈ [0, 1], in which case he will interrogate
S1, and ‘tails’ with probability (1 − λ) in which case he will interrogate S2. This implies
that the state of the combined system (before tossing the coin) reads ~r12 = λ~r1 +(1−λ)~r2
since this holds for each component ri which is linear in the probability yi (see also [1]).
We recall from section 2 that O determines the probabilities by recording the frequencies
of question outcomes in repeated interrogations of identically prepared systems. Hence,
y(Q|~r) must coincide with the frequency of ‘yes’-outcomes of Q when asked to a very large
(ideally infinite) ensemble of systems identically prepared in the state ~r. But then

y(Q|λ~r1 + (1− λ)~r2) = λ y(Q|~r1) + (1− λ) y(Q|~r2)

since O may repeat this interrogation of S1, S2 a very large number of times. In that case,
the ‘heads’ and ‘tails’ ensembles constitute sub-ensembles of the total ensemble of systems
being interrogated and O could just record the frequencies of the Q = ‘yes’ outcomes
relative to (1) the total ensemble, (2), the ‘heads’ ensemble, and (3) the ‘tails’ ensemble.
Taking the relative frequency λ of the ‘heads’ and ‘tails’ ensembles into account, it is clear
that the total frequency of Q = ‘yes’ outcomes must be of the form above (see also [22]).

Using the arguments in [22, 44], this implies affine-linearity in the state ~r:

y(Q|~r) = ~yQ · ~r + c (3.15)

for some ~yQ and c which are state independent and remain to be determined.
Firstly, by construction, in the state of no information ~r = ~0, all ‘yes’ probabilities for

all Q ∈ QN must be 1/2 which immediately yields

c =
1

2
.

Next, in order to determine ~yQ for a given Q, it is sufficient to evaluate y(Q|~r) in a

basis of states. Without loss of generality we can choose the 1 bit states ~ri = ~δi, i =
x1, . . . , z1 · · · zN , representing the ‘yes’ outcomes to the questions Qx1 , . . . , Qz1···zN of an
informationally complete set which constitute an orthonormal basis in R4N−1. In fact, we
can evaluate (3.15) firstly for all Q ∈ {Qx1, . . . , Qz1···zN}. Using that we must have

y(Qi|~rj) =
1

2
(1 + δij)

on account of pairwise independence of the questions (recall the definition of independence
which states that if Qi, Qj are pairwise independent then the probability that Qi = ‘yes’
in a state in which only Qj is known must be 1

2
) and the fact that the probability for Qi =

22By identical systems we means systems featuring the same triple (ΣN , TN ,QN ) (see [1] for further
details on identical systems and a definition of ‘identically prepared’).
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‘yes’ in the state ~ri is equal to 1 on account of repeatability of the questions in QN . But
this immediately implies

~yQi
=

1

2
~qi

for all Qi ∈ {Qx1, . . . , Qz1···zN} where ~qi is the question vector associated to Qi.
Note that this is a coordinate independent statement and is thus independent of the

particular basis in which we represent ~r and ~q. Furthermore, there is nothing special about
the informationally complete set Qx1 , . . . , Qz1···zN . In fact, any Q ∈ QN must be contained
in some informationally complete set23 and we could repeat the same argument for any
informationally complete set and thus any Q ∈ QN . It follows that for any Q ∈ QN we
must have

~yQ =
1

2
~q,

where ~q is the question vector associated to Q.
In conclusion, for all Q ∈ QN and all states ~r we find

y(Q|~r) = y(~q|~r) =
1

2
(1 + ~q · ~r) . (3.16)

But this coincides precisely with the Born rule of quantum theory for projective mea-
surements onto the Pauli operators ~n ·~σ,24 where ~n ∈ R4N−1 with |~n|= 1. Namely, it can be
easily checked that the projector onto the +1 eigenspace of a Pauli operator σµ1···µN

is given
by Pµ1···µN

= 1
2
(1+σµ1···µN

). Indeed, using σ2
µ1···µN

= 1 it follows that P 2
µ1···µN

= Pµ1···µN
and

Pµ1···µN
ρµ1···µN

= ρµ1···µN
where ρµ1···µN

= 1
2N

(1+σµ1···µN
) is the density matrix correspond-

ing to only σµ1···µN
being measured with +1 and all other σν1···νN unknown. Using that all

Pauli operators are connected by unitary conjugation (see appendix B.1), one finds that
P~n = 1

2
(1 + ~n · ~σ) constitutes the projector onto the +1 eigenspace of the Pauli operator

~n · ~σ. But then for all permitted ~n and all density matrices we find

tr(P~n ρ) =
1

2
(1 + ~n · ~r)

in agreement with (3.16) under the identification ~n = ~q.
We have thus reconstructed the Born rule of quantum theory for projective measure-

ments onto Pauli operators.

23Even stronger, every Q must be answered in some pure state. Namely, suppose Q ∈ QN was not
answered in a pure state. This could only be true if Q was not part of a set of N mutually independent
and compatible questions. But in that case O could ask Q to any S in a pure state in which case he would
experience a net loss of information – in contradiction with principle 2. Accordingly, every Q ∈ QN must
be part of a set of N mutually independent and compatible questions and thereby be answered by some
pure state.

24Pauli operators are those hermitian operators on C2N which have two eigenvalues ±1 with equal
dimensionality of the corresponding eigenspaces. These are exactly the hermitian, traceless operators σ
satisfying σ2 = 1 (see section 3.3.3 below, but also [51, 52]). As we shall see in appendix B.1, not every

~n ∈ R4N−1 with |~n|= 1 yields a Pauli operator.
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3.3.3 Structure of the question set

In order to derive the precise structure of QN , we add a further requirement.

Requirement 2. Every length 1 bit vector ~q which features y(~q|~r) ∈ [0, 1] for all states
~r ∈ ΣN , corresponds to a legal question Q with probability function y(Q|~r) = y(~q|~r).

We noted before that not every length 1 bit vector represents a legal mixed state
for N > 1. We proceed with the observation that also not every legal 1 bit mixed
state corresponds to a ‘yes’ answer of a question in QN . For example, for any pure state
~rpure, the rescaling ~rpure/

√
2N − 1 corresponds to a convex sum of the original pure state

and the state of no information and thus yields a legal 1 bit mixed state.25 This state
cannot correspond to a question vector of any Q ∈ QN because (3.16) implies that the
probability for measuring a ’yes’ outcome for Q in the state ~rpure would be larger than one,
y(Q|~rpure) = (1 +

√
2N − 1)/2 > 1 for N > 1.

For a single qubit, requirements 1 and 2 immediately imply Q1 ≃ {~q ∈ R3 | |~q|= 1} ≃
CP

1 ≃ S2 such that Q1 is isomorphic to the set of pure states. This has two consequences.
(1) It induces a transitive action of the time evolution group T1 ≃ SO(3) on Q1: if the
Bloch vector ~r (|~r|= 1) incarnates the ‘yes’ answer to Q, represented by ~q, then T ·~r is the
‘yes’ answer to the question T (Q), represented by T · ~q, for any T ∈ T1 (we can imagine
the ‘time evolution’ of a question to correspond to a rotation of the measurement device
by means of which O asks the questions). (2) Q1 is isomorphic to the set of projective
measurements on single qubit Pauli operators, ~n · ~σ, ~σ = (σx, σy, σz), which likewise are
parametrized by ~n ∈ R3, |~n|= 1.

For N > 1 the situation is more intricate. However, in appendix B we derive the
analogous results also for N > 1. Firstly, on the quantum side, we show the following in
appendix B.1:

(a) The Pauli operators on an N -qubit Hilbert space C2N can be written as ~n · ~σ, where

~σ = (σx1 ⊗ 1⊗ · · · ⊗ 1,1⊗ σx2 ⊗ · · · ⊗ 1, . . . , σz1 ⊗ σz2 ⊗ · · · ⊗ σzN ) (3.17)

constitutes a basis of Pauli operators and the set of permissible unit vectors ~n is the
orbit {T · ~δz1 | T ∈ TN} ≃ CP2N−1 which is thus isomorphic to the set of quantum
pure states. (Note that this set of permissible ~n is a strict subset of the unit sphere
for N > 1.) In particular, TN = PSU(2N) acts transitively on the unit vectors ~n
defining the Pauli operators. Equivalently, for any Pauli operator ~n · ~σ there exists
U ∈ SU(2N) such that σz1 = U (~n · ~σ)U †, where σz1 := σz ⊗ 1 × · · · ⊗ 1. The
set of Pauli operators accounts for all traceless hermitian operators on C2N with ±1
eigenvalues because all diagonal operators on C2N featuring equally many ±1 along
their diagonals are related to σz1 by conjugation with permutation matrices lying in
SU(2N).

25We note that such a state is not connected via time evolution to the 1 bit states corresponding to the
questions in an informationally complete set. For example, ~rpure/

√
2N − 1 cannot be time-connected to ~δx1

for this would be equivalent to ~rpure being time-connected to
√
2N − 1~δx1

which is impossible for N > 1.
Thus, there are subsets of 1 bit mixed states for N > 1 which cannot be related via time evolution.
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On the reconstruction side, we establish in appendix B.2 the below consequences of re-
quirements 1 and 2:

(b) In its 1 bit vector representation, the question set QN inherits an action of the time
evolution group TN from the states ΣN and TN acts transitively on QN . In particular,
the basis question vectors ~qx1 = ~δx1, . . . , ~qxN

= ~δxN
, . . . , ~qz1···zN = ~δz1···zN , correspond-

ing to the informationally complete set QMN
, are connected by time evolution and

no question in QN exists whose question vector is not connected by time evolution
to these basis vectors.

(c) Under the identification ~q ≡ ~n, QN is isomorphic to the set of Pauli operators on

an N qubit Hilbert space. Hence, QN ≃ CP
2N−1 and the set of allowed questions is

thanks to (a) therefore isomorphic to the pure state space also for N > 1.

We conclude that the permissible set of binary questions QN corresponds to a strict
subset of all possible N -qubit observables – the Pauli operators. In fact, any ~n ∈ R4N−1

produces a hermitian operator ~n · ~σ on C2N and thus legitimate N -qubit observable. How-
ever, these operators can feature 2N arbitrary real eigenvalues, corresponding to many
different measurement outcomes per observable such that the latter cannot be represented
by a single binary question. These observables are not captured by QN .

The above results have strong implications for the question set. In particular, under
the identification ~n ≡ ~q, we ultimately obtain the correspondence

Qµ1 ↔ Qµ2 ↔ · · · ↔ QµN
⇔ Pµ1···µN

:=
1

2
(1 + σµ1 ⊗ σµ2 ⊗ · · · ⊗ σµN

)

where Pµ1···µN
is the projector onto the +1 eigenspace of σµ1 ⊗ σµ2 ⊗ · · · ⊗ σµN

. Indeed,
Qµ1···µN

yields 1 or 0 if an even or odd number of Qµi
is 0, respectively, and thus corresponds

to the question “is the product of the spin projections of σµ1 ⊗ σµ2 ⊗ · · · ⊗ σµN
+1?” (see

also [52] for a related discussion of Pauli operators). We thus see that the XNOR connective
↔ at the question level corresponds to the tensor product at the operator level.

In the remainder of this section we shall discuss further consequences of (a)–(c).

3.3.4 The dual time evolution of questions: Heisenberg vs. Schrödinger

We just observed that the set of permissible questions QN inherits an action of the time
evolution group TN from the states ΣN . Specifically, any two legal question vectors are
connected by a time evolution element and the time evolution of a legal question always
yields another legal question.26 At this point, this might be taken as just a mathematical

26For example, let T1 ∈ T1 be a local rotation of qubit 1 and let T̃ ∈ T (1)
1 be its product representation

within TN . Denote by T (Q) the action of some T ∈ TN on a question Q ∈ QN (understood at the question
vector level). Since T1(Qµ1

) is a legal question on qubit 1, so must be

T1(Qµ1
)↔ Qµ2

↔ · · · ↔ QµN
= T̃ (Qµ1

↔ Qµ2
↔ · · · ↔ QµN

).
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observation. However, we might as well interpret the action of the time evolution group on
the questions as transformations (e.g., rotations) of the measurement device(s) by means
of which O interrogates the systems.

The evolution of questions is dual to the evolution of states. Namely, the Born rule
(3.16) implies y(Q|T · ~r) = (1 + ~q · (T · ~r))/2 = (1 + (T t · ~q) · ~r)/2 = y(T−1(Q)|~r). That
is, we may describe O’s interrogation of a system of N qubits as it evolves in time in
two equivalent ways: (1) the state vector ~r(t) evolves in time while the questions are time
independent, or (2) the state vector is time independent and the questions ~q(t) evolve under
the inverse of the time evolution. In particular, if both the state and question are evolved
simultaneously, the probability remains invariant. (1) corresponds to the usual Schrödinger
picture of quantum theory, while (2) parallels the Heisenberg picture; our reconstruction
thus admits these dual interpretations of qubit quantum theory.

Importantly, for the Heisenberg picture, the time evolution invariance of the Born
rule (3.16) immediately implies that the compatibility and independence structure of the
questions is invariant if time evolved simultaneously. Indeed, using that the question
vectors are identical to 1 bit states in which only the corresponding question is positively
answered, we can express the independence relations of two arbitrary question Q1, Q2 ∈ QN

via y(Q1|~q2) and clearly it holds

y(T (Q1)|T · ~q2) = y(Q1|~q2).

By similar arguments, using the Born rule with respect to states, it follows that also their
compatibility relations remain invariant.

Finally, this also entails that every question Q ∈ QN is indeed contained in an infor-
mationally complete set, a mutually complementary set, and a maximal set of compatible
questions. Namely, consider some set of mutually complementary {~q1, ~q2 ′, . . . , ~qk

′} and
another of mutually compatible {~q1, ~q2 ′′, . . . , ~qj

′′} questions. Since for any Q ∈ QN there
is a T ∈ TN such that ~q = T ·~q1, the following time evolved sets {~q, T ·~qi2 ′, . . . , T ·~qik ′} and
{~q, T ·~qi2 ′′, . . . , T ·~qij ′′} constitute a mutually complementary and a compatible set of ques-
tions, respectively, both of which contain ~q. In the sense of compatibility and independence
relations, no question in QN is special.

3.3.5 (Non-)uniqueness of pure state decompositions in terms of questions

Every pure state can be decomposed in terms of a sum of 2N − 1 mutually compatible
question vectors. The reason is that, thanks to the transitivity of TN on the set of pure
states, every pure state ~rpure can be written as ~rpure = T · (~δz1 +~δz2 + · · ·+~δz1···zN ) for some

T ∈ TN . The vectors T · ~δz1 , . . . , T · ~δz1···zN within the decomposition are time connected
to the question vectors ~qz1 , . . . , ~qz1···zN and are therefore themselves legal question vectors,
featuring the same compatibility and independence relations. The Born rule (3.16) implies
that the probability for each of these 2N − 1 questions in the pure state decomposition to
be answered by SN with ‘yes’ equals one in this state. In fact, (b) above implies that, by
running through all elements T in TN , all question vectors will appear in some pure state.
This raises the question whether such a question decomposition of a pure state is unique
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or not and, in consequence, whether SN , prepared in a pure state, answers a unique set of
questions in QN with ‘yes’.

For N = 1 this is trivially the case since every pure state vector is also a legal question
vector. For N > 1 the situation, however, turns out to be less trivial. More precisely, in
appendix B.3, we demonstrate the peculiar fact that

• The decomposition of a pure state vector ~rpure = ~q1 + · · ·+ ~q2N−1 in terms of question
vectors ~qi for Qi ∈ QN is unique for N = 1, 2 and non-unique for N ≥ 3.

This is a consequence of the fact that the isotropy subgroup PSU(2N−1) of TN = PSU(2N)
on CP2N−1 corresponding to a pure state ~rpure contains elements for N ≥ 3 which are not
part of the isotropy subgroups associated to every question vector ~qi in the decomposition.

In other words, for N = 1, 2, SN , prepared in any pure state, answers a unique set of
2N − 1 questions from QN positively. For N ≥ 3, SN answers in every pure state multiple
distinct sets of 2N−1 questions from QN simultaneously with ‘yes’. However, for N ≥ 3 the
total information contained in one of these sets of 2N − 1 questions is evidently equivalent
to that carried by any other such set, even though a question in the first set might be
(partially) independent from all questions in any other set.

3.4 The von Neumann evolution equation

For completeness, we discuss briefly how the von Neumann evolution equation of density
matrices follows from the reconstruction.

After having established coincidence between ΣN and the set of N -qubit density ma-
trices, nothing stops us from passing from the Bloch vector representation of states to the
equivalent hermitian representation in terms of density matrices on C2N

ρ =
1

2N
(12N×2N + ~r · ~σ) ,

where ~r is the Bloch vector and ~σ is given in (3.17). We have seen (e.g., in appendix A.3)
that the linear evolution ~r(t) = T (t)~r(0) with T (t) = etG ∈ PSU(2N) is equivalent to the
adjoint action of U(t) = e−iH t ∈ SU(2N) on its Lie algebra

ρ(t) = U(t) ρ(0)U †(t), (3.18)

for some hermitian operator H on C2N [48]. In particular, using that Tr(σi σj) = 2N δij [52],
Tij(t) = 1

2N
Tr
(

σi U(t) σj U
†(t)
)

. This yields a relation between time evolution generators
G ∈ psu(2N) at the Bloch vector level and a ‘Hamiltonian’ H on a Hilbert space. But
(3.18) is equivalent to ρ(t) satisfying the von Neumann evolution equation

i
∂ ρ

∂t
= [H, ρ]

which, in turn, is well-known to be equivalent to the Schrödinger equation for pure states.
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4 Discussion and conclusions

We have shown that one can derive qubit quantum theory from transparent rules on an
observer’s acquisition of information about an observed system. These rules constitute
a set of physical statements, equivalent to the usual textbook axioms, characterizing the
quantum formalism and thereby completing related ideas put forward in [9–11,16]. One of
the salient conclusions to be drawn from the present reconstruction is that it is sufficient
to speak about the information that an observer has access to through measurement. This
information is associated to the relation between the observer and the system, established
through interaction; the state represents the observer’s ‘catalogue of knowledge’ about the
system and it is not necessary to consider the notion of intrinsic state of the system. This
highlights that quantum theory can be understood as an inference framework governing
an observer’s acquisition of information and pertaining to what the observer can say about
Nature, rather than to how Nature ‘really’ is.

In addition, the reconstruction provides new structural insights into qubit quantum
theory which were previously unnoticed. Specifically, we have derived new constraints on
the distribution of information over the various questions in an informationally complete set
(orthonormal basis of Pauli operators) ofN qubits. This employs the quadratic information
measure derived from the principles in [1] and earlier proposed from a different perspective
in [11, 12, 14, 47]. Most importantly, we have shown for two qubits that the maximal
mutually complementary question sets each carry precisely 1 bit of information for pure
states, constituting six conserved informational charges of time evolution for two qubits.
These six equalities define the unitary group and, together with 15 conservation equalities,
fully characterize the pure state space. This generalizes the single qubit case where a similar
statement holds. While it was not necessary for the completion of the reconstruction, it is
tempting to conjecture that this is a general property, namely that the unitary group and
pure states are characterized by maximal mutually complementary sets carrying precisely
1 bit of information for arbitrarily many qubits. We leave this as an open question.

Such conserved charges thus form part of the invariant structure that observers in
distinct reference frames should agree on. As such, they might be useful, say, in a quantum
communication protocol as in [53] which permits distinct observers, who have never met
before but can communicate, to efficiently agree on their respective descriptions of quantum
states. In this manner, one can derive the appropriate reference frame transformation
group operationally from the structure of the communicated physical objects, rather than
imposing it on the theory ‘by hand’. For instance, depending on the conditions on such a
quantum communication protocol, one can show that either the rotation group SO(3) or the
orthochronous Lorentz group O+(3, 1) constitutes the dictionary among distinct observer’s
quantum descriptions – without presupposing any specific spacetime structure [53].

We have also derived the Born rule for projective measurements and shown that the time
evolution of states implied by the principles is equivalent to the von Neumann evolution
equation. While it was not necessary for us to derive the Born rule for state transition
probabilities, this could presumably be accomplished by using arguments similar to the
ones in [22–24]. We emphasize that it was also not necessary to fully specify (or derive)
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the precise state update rule in order to arrive at the structure of quantum theory. We
shall similarly leave the full clarification of this update rule as an open matter.

The binary question framework in its present form is limited to reconstructing qubit
(and rebit [1, 43]) quantum theory and requires a generalization in order to be applica-
ble to arbitrary n-level quantum systems. A treatment of mechanical systems may even
necessitate an entirely novel approach.
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A Reconstruction of the unitary group and state spaces

In order to present a flowing text in the main part of the paper, some proofs, derivations
and other statements were left out. These are collected in this appendix.

A.1 Maximal mutually complementary triangle sets for N = 2
qubits

The maximal mutually complementary pentagon sets are important for the derivation of
the time evolution group since their information contents constitute conserved charges
under time evolution. In addition to the maximal pentagon sets, there are also maximal
mutually complementary sets which contain three questions:

Tri1 = {Qxx, Qxy, Qz2}, Tri2 = {Qxx, Qxz, Qy2}, Tri3 = {Qxx, Qyx, Qz1},
Tri4 = {Qxx, Qzx, Qy1},Tri5 = {Qxy, Qxz, Qx2}, Tri6 = {Qxy, Qyy, Qz1},
Tri7 = {Qxy, Qzy, Qy1}, Tri8 = {Qxz, Qzz, Qy1}, Tri9 = {Qxz, Qyz, Qz1},

Tri10 = {Qyx, Qyy, Qz2}, Tri11 = {Qyx, Qyz, Qy2}, Tri12 = {Qyx, Qzx, Qx1},
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Tri13 = {Qyy, Qyz, Qx2}, Tri14 = {Qyy, Qzy, Qx1}, Tri15 = {Qyz, Qzz, Qx1},
Tri16 = {Qzx, Qzy, Qz2}, Tri17 = {Qzx, Qzz, Qy2}, Tri18 = {Qzy, Qzz, Qx2},

Tri19 = {Qx1 , Qy1, Qz1}, Tri20 = {Qx2 , Qy2, Qz2}. (A.1)

Similarly as for the pentagon sets, they can be represented by question graphs as given
in (A.2). Again, the vertices correspond to individual questions and edges connecting
them represent the corresponding correlation questions. However, contrary to the maximal
pentagon sets, for pure states the total information carried by each triangle set is not
necessarily equal to the 1 bit bound in (2.1) (e.g., for entangled states the information
content in Tri19,Tri20 is 0 bits) and is furthermore not conserved under time evolution.
The pentagon and triangle sets are the only maximal mutually complementary sets for
N = 2 qubits.
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We note that Tri2, Tri4, Tri19 and Tri20 are represented as green triangles in the pentagon
lattice of figure 3.

These triangle sets define via (2.1) complementarity inequalities 0 ≤ I(Trii) ≤ 1 bit,
where I(Trii) is the information contained in triangle set i. Together with the pentagon
equalities (3.3), these triangle complementarity inequalities define all independent com-
plementarity inequalities which pure states have to satisfy as there are no other maximal
mutually complementary sets. That is, any set of mutually complementary questions
among the informationally complete set will be contained in either the pentagons or the
triangles.

It is easy to show, however, that for pure states the 20 complementarity inequalities
following from the triangle sets (A.2) are not all independent. In fact, the pentagon
equalities (3.3) imply that

I(Tri1) := αz2 + αxx + αxy = αx1 + αyz + αzz =: I(Tri15),

I(Tri2) := αy2 + αxx + αxz = αx1 + αyy + αzy =: I(Tri14),

I(Tri3) := αz1 + αxx + αyx = αx2 + αzy + αzz =: I(Tri18),

I(Tri4) := αy1 + αxx + αzx = αx2 + αyy + αyz =: I(Tri13),

I(Tri5) := αx2 + αxy + αxz = αx1 + αyx + αzx =: I(Tri12),

I(Tri6) := αz1 + αyy + αxy = αy2 + αzx + αzz =: I(Tri17),

I(Tri7) := αy1 + αzy + αxy = αy2 + αyx + αyz =: I(Tri11),

I(Tri8) := αy1 + αxz + αzz = αz2 + αyx + αyy =: I(Tri10),

I(Tri9) := αz1 + αyz + αxz = αz2 + αzx + αzy =: I(Tri16),

38



I(Tri19) := αx1 + αy1 + αz1 = αx2 + αy2 + αz2 =: I(Tri20).

Note the symmetry pattern of these relations in terms of the graphical representation of
the triangle sets in (A.2); the encircled individual question of the triangle set on the left
hand side is the vertex where the two correlation questions of the triangle set on the right
hand side meet and vice versa.

A.2 The swap generators for N = 2 qubits

In this section we discuss the swap generators defining the group T2 = PSU(4), their
exponentiation, the pentagon preservation equations and the consistency conditions arising
from the complementarity inequalities (2.1) and the correlation structure of figure 2.

A.2.1 Derivation of the swap generators

We shall present the derivation of the 15 swap generators of section 3.1.3 which are con-
sistent with the correlation structure of figure 2. Subsequently, we shall argue that by
varying the relative signs in these swap generators one accounts for all possible 60 linearly
independent generators which could satisfy (3.5, 3.8).

At the Bloch vector level, the swap transformation (3.9) between Pent1 and Pent2 is of
the form:

ry1 ←→ ±rzx (Pent5), rz1 ←→ ±ryx (Pent3), rxy ←→ ±rz2 (Pent4), rxz ←→ ±ry2 (Pent6).

Writing the transformation as ~r ′ = T ~r = exp((π/2)GPent1,Pent2)~r, the corresponding gen-
erator is, without loss of generality, of the following form:

GPent1,Pent2
ij = δiy1δjzx + s1 δiz1δjyx + s2 δixyδjz2 + s3 δixzδjy2 − (i←→ j),

where s1, s2, s3 ∈ {−1,+1} are relative signs which must be determined. As can be easily
checked, (3.5) is trivially satisfied for i ∈ Pentk with k 6= 1, 2 and Gij = GPent1,Pent2

ij thanks
to symmetry/anti-symmetry. For both the two swapped pentagons k = 1, 2, on the other
hand, the conservation equations (3.5) with GPent1,Pent2 are equivalent to

ry1 rzx + s1 rz1 ryx + s2 rxy rz2 + s3 rxz ry2 = 0. (A.3)

The sign structure of the generator GPent1,Pent2
ij can be derived by considering three

separate information distributions, all of which correspond to legal states:

Configuration 1: αx2 = 1 bit ⇒ αy1 = αyx, αz1 = αzx, αxy = αz2 = αxz = αy2 = 0,

Configuration 2: αx1 = 1 bit ⇒ αy2 = αxy, αz2 = αxz, αy1 = αzx = αz1 = αyx = 0,

Configuration 3: αzz = 1 bit ⇒ αz1 = αz2, αxy = αyx, αy1 = αzx = αxz = αy2 = 0.

On the right hand sides, we have made use of the constraints on the information distribution
at the end of section 3.1.2 – in particular, figure 4 – and complementarity (e.g., Qx2 , Qxy

being complementary implies that αx2 = 1 bit necessitates αxy = 0, etc.).
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In configuration 1, (A.3) reduces to

ry1 rzx + s1 rz1 ryx = 0. (A.4)

The relevant correlation triangles are represented in figure 5a. Since both triangles repre-
sent even correlations, we have that rx2 = ±1 implies rz1 = ±rzx, ry1 = ±ryx (in this sign
order). Accordingly, (A.4) requires s1 = −1 in order to be satisfied27. Using configuration

+

+

Qx2

Qy1 Qyx

Qz1 Qzx

αx2 = 1 bit

αy1 = αyx

αz1 = αzx

(a)

+

+

Qx1

Qz2 Qxz

Qy2 Qxy

αx1 = 1 bit

αz2 = αxz

αy2 = αxy

(b)

+

+

Qzz

Qxy Qyx

Qz1 Qz2

αzz = 1 bit

αxy = αyx

αz1 = αz2

(c)

Figure 5: The relevant correlation triangles of figure 2 for (A.3) in configurations (a) 1; (b) 2;
and (c) 3.

2 and figure 5b, one shows similarly that s2 · s3 = −1 and, finally, employing configuration
3 and figure 5c, one easily verifies that (A.3) requires s2 = +1 and, hence, s3 = −1. This
yields GPent1,Pent2 in the form (3.11).

The generators of the eight other swaps between pentagons in figure 3 sharing composite
questions are derived similarly. As will become clear shortly, together with GPent1,Pent2 these
constitute the

9 generators of entangling unitaries:

GPent1,Pent2
ij = δiy1δjzx + δixyδjz2 − δiz1δjyx − δixzδjy2 − (i←→ j),

GPent1,Pent4
ij = δiz1δjyy + δixxδjz2 − δiy1δjzy − δixzδjx2 − (i←→ j),

GPent1,Pent6
ij = δiy1δjzz + δixxδjy2 − δiz1δjyz − δixyδjx2 − (i←→ j),

GPent2,Pent3
ij = δiy2δjyz + δizxδjx1 − δiz2δjyy − δixxδjz1 − (i←→ j),

GPent2,Pent5
ij = δiy2δjzz + δixxδjy1 − δiz2δjzy − δiyxδjx1 − (i←→ j),

GPent3,Pent4
ij = δiyzδjx2 + δiz1δjxy − δiyxδjz2 − δix1δjzy − (i←→ j),

GPent3,Pent6
ij = δiyyδjx2 + δix1δjzz − δiyxδjy2 − δiz1δjxz − (i←→ j),

27There must be a state which has all the Bloch components rz1 , rzx, ry1
and ryx being non-zero. If this

was not the case it would imply that whenever the observer O knows the answer to Qx2
completely, O

would then also know the answer to either the pairs Qz1 , Qzx or Qy1
, Qyx completely as well. However

this is not possible since then the question pairs Qz1 , Qzx or Qy1
, Qyx would be (partially) dependent on

Qx2
, which contradicts the fact that they are part of an informationally complete set.
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GPent4,Pent5
ij = δix2δjzz + δiyyδjx1 − δiz2δjzx − δixyδjy1 − (i←→ j),

GPent5,Pent6
ij = δizyδjx2 + δiy1δjxz − δizxδjy2 − δix1δjyz − (i←→ j). (A.5)

Note from the index structure that these generators always swap information between a pair
of an individual and a composite question, thus transferring information from composite
to individual questions and vice versa – as appropriate for an entangling transformation.

Next, we shall briefly explain how to derive the specific form of the swap generators
for pentagon pairs in figure 3 overlapping in an individual question. For example, for the
swap between Pent3 and Pent5, overlapping in Qx1, one arrives in analogy to above at

GPent3,Pent5
ij = δiy1δjz1 + s′1 δiyxδjzx + s′2 δiyyδjzy + s′3 δiyzδjzz − (i←→ j)

such that (3.5) for k = 3, 5 (again, the latter is trivially satisfied for k 6= 3, 5 and GPent3,Pent5)
is equivalent to

ry1 rz1 + s′1 ryx rzx + s′2 ryy rzy + s′3 ryz rzz = 0. (A.6)

The sign structure can be determined by considering the information distributions

Configuration 1’: αx2 = 1 bit ⇒ αy1 = αyx, αz1 = αzx, αyy = αzy = αyz = αzz = 0,

Configuration 2’: αy2 = 1 bit ⇒ αy1 = αyy, αz1 = αzy, αyx = αzx = αzz = αyz = 0,

Configuration 3’: αz2 = 1 bit ⇒ αz1 = αzz, αy1 = αyz , αyx = αzx = αyy = αzy = 0.

The relevant correlation triangles for configurations 1’–3’ are represented in figures 6a–6c.
Now one proceeds as before, using that all relevant triangles represent even correlations, to

+

+

Qx2

Qy1 Qyx

Qz1 Qzx

αx2 = 1 bit

αy1 = αyx

αz1 = αzx

(a)

+

+

Qy2

Qz1 Qzy

Qy1 Qyy

αy2 = 1 bit

αz1 = αzy

αy1 = αyy

(b)

+

+

Qz2

Qz1 Qzz

Qy1 Qyz

αz2 = 1 bit

αz1 = αzz

αy1 = αyz

(c)

Figure 6: The relevant correlation triangles of figure 2 for (A.6) in configurations (a) 1’; (b) 2’;
and (c) 3’.

show that s′1 = s′2 = s′3 = −1. The different sign structure (three − compared to the two
− for the entangling swaps) results from the fact that for all configurations 1’–3’ the sign
is determined by relating the last three terms in (A.6) to the first (signless) term ry1rz1 .
By contrast, e.g., configuration 2 for the swap between Pent1 and Pent2 relates the last
two terms with signs in (A.3) against each other.
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This yields GPent3,Pent5 in the form (3.12) and, in analogy, the full set of swap generators
for pentagon pairs overlapping in an individual. As will be discussed below, these are the

6 generators of product unitaries:

GPent1,Pent3
ij = δix1δjy1 − δiyzδjxz − δiyyδjxy − δiyxδjxx − (i←→ j),

GPent1,Pent5
ij = δiz1δjx1 − δixzδjzz − δixyδjzy − δixxδjzx − (i←→ j),

GPent2,Pent4
ij = δiy2δjx2 − δizxδjzy − δiyxδjyy − δixxδjxy − (i←→ j),

GPent2,Pent6
ij = δiz2δjx2 − δizxδjzz − δiyxδjyz − δixxδjxz − (i←→ j),

GPent3,Pent5
ij = δiz1δjy1 − δiyzδjzz − δiyyδjzy − δiyxδjzx − (i←→ j),

GPent4,Pent6
ij = δiz2δjy2 − δizyδjzz − δiyyδjyz − δixyδjxz − (i←→ j). (A.7)

It can be easily checked that the six generators in (A.7) satisfy the commutator algebra
of so(3) ⊕ so(3). Note from the index structure that these six generators always swap
information between pairs of individual questions or pairs of composite questions – as
appropriate for the generators of the product unitaries.

With a computer algebra program one may check that, remarkably, the 15 generators
(A.5, A.7) coincide exactly (in some cases up to an unimportant overall sign) with the
adjoint representation of the 15 fundamental generators of the Lie group SU(4)

(Gi)jk := f ijk =
1

4
tr([σj , σk] σi), (A.8)

where f ijk are the structure constants of SU(4), the indices i, j, k take the 15 values
x1, y1, z1, x2, . . . , xz, xy, . . . , zz (as in our reconstruction) and σx1 := σx ⊗ 1, ..., σx2 :=
1⊗σx, ..., σxx := σx⊗σx, ..., σzz := σz ⊗σz and σx, σy, σz are the usual Pauli matrices. In
particular, the ordering of coincidence is Gi ≡ ±GPenta,Pentb where Qi is the single question
in Penta ∩ Pentb which is left invariant by the swap; e.g., Gxx ≡ GPent1,Pent2 , etc. This
ultimately also clarifies that indeed (A.5) constitute the generators of entangling unitaries,
while (A.7) are the generators of the product unitaries. Clearly, the 15 swap generators
thus satisfy the commutator algebra of su(4) ≃ so(6) ≃ psu(4)

[Gi, Gj] = f ijkGk,

with f ijk given by (A.8).
Let us now explain how the full information swaps account for all 60 linearly indepen-

dent generators which could solve (3.5, 3.8). While deriving the 15 generators (A.5, A.7)
we have made use of the correlation structure in figure 2 in order to fix the relative signs in
the generators, e.g. in (A.3, A.6). It is clear, however, that by varying these relative signs,
one can produce four linearly independent generators from each generator in (A.5, A.7)
since each such generator contains four linearly independent components. By inspection,
the reader may also verify that each of the 60 distinct pairs of complementary questions
is encoded in precisely one of the 15 generators in terms of a non-vanishing component,
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corresponding to the pair of indices representing the pair of complementary questions. This
immediately entails that by varying the relative signs in the 15 generators (A.5, A.7), one
obtains precisely the maximal amount of 60 linearly independent generators which satisfy
(3.8). The relative sign structure only affects the correlation structure but not the fact
that each of these 60 linearly independent generators represents a full swap of information
between a pair of pentagons sets. As evident from the derivation in this section, however,
it is only the 15 generators in (A.5, A.7) which are consistent with the correlation structure
in figure 2 and which thus are legitimate candidates for legal time evolution generators in
our reconstruction.

As an aside, let us briefly note that the sign structure of the 15 generators would be
exactly the same, had we instead followed the alternative convention to build composite
questions with the XOR connective, e.g., Q̃xx := ¬(Qx1 ↔ Qx2), etc., rather than the
XNOR as done thus far (see also [1] on this). Q̃xx represents an anti-correlation question
“are the answers to Qx1 and Qx2 anti-correlated?”. In this case, the correlation structure
for the XOR composites would coincide with the one in figure 2 except that all even
correlation triangles would be replaced by odd ones and vice versa. However, this would
leave the relative sign structure, determined via figures 5a–6c invariant. This has to be
expected, of course, since both conventions are physically equivalent.

However, we note that the 15 generators for mirror quantum theory [1,23,45], obtained
by swapping the assignment ‘yes’↔ ‘no’ of a single individual question and adhering to the
convention of building composite questions with the XNOR as before, would be distinct.
Indeed, the swap of the answer assignment for, say, Qx1 is equivalent to Qx1 7→ ¬Qx1 (a
partial transpose at the density matrix level) and Qxx, Qxy, Qxz 7→ ¬Qxx,¬Qxy,¬Qxz. This
produces a flip of the sign of the correlation triangles in only the upper graph in figure 2
(involving only the correlation questions), while leaving the lower graph invariant (see [1]
for details). This has the consequence that figures 6a–6c and, more generally, the six
product generators in (A.7) remain invariant. However, the nine generators (A.5) of the
entangling transformations change their sign structure. In particular, figure 5c involves
an even correlation triangle of the composites Qxy, Qyx, Qzz, which would be replaced
by an odd triangle for mirror quantum theory. This would result in s2 = −1 and thus
s3 = +1 for mirror quantum theory (and analogously for the other generators). Mirror
quantum theory thus has distinct entangling Hamiltonians (corresponding to the partial
transpose relating it to standard quantum theory). Nevertheless, mirror quantum theory
is physically perfectly equivalent to standard quantum theory and just employs a distinct
convention for ‘yes/no’ outcomes of questions [1, 45]. The example of mirror quantum
theory thus demonstrates that those swap generators among the 60 linearly independent
ones mentioned above which differ in their relative sign structure from (A.5, A.7) simply
correspond to distinct conventions.

A.2.2 Exponentiation of the generators

For the reasons mentioned in section 3.1.3, the exponentiation of the swap generators
results in the connected, simple Lie group T ′

2 = PSU(4) ≃ PSO(6) (rather than in SU(4)
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or SO(6)).
The exponential of any single generator Ga acts as 2×2-rotation matrices on the planes

spanned by each pair of swapped questions. For example, TPent1,Pent2(t) = exp(t GPent1,Pent2)
acts as rotations of angle ±t in the planes (ry1 , rzx), (rz1, ryx), (rxy, rz2), (rxz, ry2), where
the signs are fixed by the swap generator (3.11). Furthermore, as one can easily convince
oneself, the six generators (A.7) exponentiate to the SO(3) × SO(3) ≃ PSU(2) × PSU(2)
product unitaries. For instance, TPent3,Pent5(t) = exp(t GPent3,Pent5), generated by the swap
which leaves αx1 invariant, describes rotations of the Bloch vector around the rx1 axis
(leaving rx1, rxx, rxy, rxz and rx2, ry2 , rz2 invariant). Similarly, the other generators in (A.7)
generate rotations around the Bloch vector axis corresponding to the individual question
which constitute the overlap of the respective pentagon pairs.

In general, the exponential of any single swap generator GPenti,Pentj is of the form:

TPenta,Pentb(t) = exp(t GPenta,Pentb) = (cos(t)− 1)1̃Penta,Pentb + sin(t)GPenta,Pentb + 1, (A.9)

1̃
Penta,Pentb
kl =

∑

k̄,l̄∈(Penta∪Pentb)\(Penta∩Pentb)

δkk̄δll̄.

The matrix 1̃
Penta,Pentb
kl ∼ (GPenta,Pentb)2kl is the diagonal matrix with ones at the positions

of the eight questions which are swapped by GPenta,Pentb and otherwise zeros.

A.2.3 Pentagon conservation equations for N = 2 qubits

Every swap generator G = GPenta,Pentb puts constraints on the potential pure states ac-
cording to Eq. (3.5). These equalities follow from the requirement that for pure states the
total information in each pentagon set Pentc must be a conserved charge under the time
evolution group T2. Eq. (3.5) defines the pentagon conservation equations to linear order
in t. However, clearly, if the group T ′

2 = PSU(4) generated by (A.5, A.7) did constitute the
correct time evolution group T2, then acting with an arbitrary T (t) ∈ T ′

2 on a legal pure
state state ~r must produce another pure state ~r ′ := T (t) · ~r which satisfies the pentagon
equalities (3.3) to all orders in t. In this section we shall show that the linear order con-
servation conditions (3.5) are, in fact, sufficient to guarantee preservation of the pentagon
equalities to all orders in t and for all T ∈ T2

To this end, we firstly consider the action of the exponential map (A.9) for an arbitrary
of the 15 generators on some pure state ~r. Surely, ~r ′ = TPenta,Pentb(t)~r must again satisfy
the pentagon equalities (time evolution preserves the total information and must map
states to states), i.e. we must have

1 =
∑

l∈Pentc

r2l
!

=
∑

l∈Pentc

(r′l)
2, c = 1, . . . , 6. (A.10)

We shall now show in lemma 1 below that, if the first equation in (A.10) is satisfied, then

∑

l∈Pentc

(r′l)
2 =

∑

l∈Pentc

r2l + 2 sin(t) cos(t)
∑

l∈Pentc,1≤m≤15

rl G
Penta,Pentb
lm rm
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such that (A.10) is satisfied for arbitrary t iff the linear constraints (3.5) holds

∑

l∈Pentc,1≤m≤15

rl G
Penta,Pentb
lm rm = 0. (A.11)

For this purpose we introduce the projector PPenta
kl :=

∑

k̄,l̄∈Penta δkk̄δll̄ onto the Bloch vector
components corresponding to Penta and the symmetric matrix Rkl := (~r · ~r t)kl = rkrl. In
the following we choose the short-hand notation P a := PPenta , Gab := GPenta,Pentb with
a < b. The pentagon equalities and generator constraints (A.11) can now be equivalently
expressed as

Pentagon eq. : tr[P aR] = 1, for all 1 ≤ a ≤ 6, (A.12)

Generator eq. : tr[P aGbcR] =
1

2
tr[[P a, Gbc]R] = 0, for all 1 ≤ a ≤ 6 and 1 ≤ b < c ≤ 6.

Before we show the above mentioned result, we firstly require a few identities. Using the
explicit expressions (A.5, A.7) for the 15 generators, one can check that the following
statements are valid for any 1 ≤ a, b, c, d ≤ 6

(a) [P a, Gbc] = (δab + δac)G
bc(1− 2P a), which also implies {P a, Gab} = {P b, Gab} = Gab.

(b) [P a, Gab] = −[P b, Gab].

(c) [Gab, Gcd] = 0, whenever Gab and Gcd swap different pentagons, i.e. a, b are both
different from c, d.

Note that (a) and (b) imply that there are only 15 independent pentagon conservation
equations arising from (3.5, A.11). These are exhibited in (3.13). Furthermore, (c) corre-
sponds to the vanishing of the structure constants f (ab)(cd)(eg) of PSU(4) whenever Gab and
Gcd swap different pentagons or similarly to the commutation of PSO(6) rotations in the
different planes (ab) and (cd). Throughout the derivation we will also use the relation

1̃
ab := 1̃

Penta,Pentb = P a + P b − 2P aP b.

Lemma 1. Define ~r ′ = exp(tGab) · ~r where Gab is any of the 15 swap generators (A.5,
A.7). If tr[P cR] = 1 for all 1 ≤ c ≤ 6, then tr[P cR′] = tr[P cR] + 2 sin(t) cos(t)tr[P cGabR].

Proof. By using the fact that the diagonal matrices 1̃
ab and P c commute, together with

(1̃ab)2 = 1̃
ab,1̃ab · Gab = Gab, the properties of the trace tr[M ] = tr[M t],tr[MN ] = tr[NM ]

and further straightforward trigonometry we can show

tr[P cR′] = tr[((cos(t)− 1)1̃ab − sin(t)Gab + 1)P cR((cos(t)− 1)1̃ab + sin(t)Gab + 1)]

= tr[P cR] + 2 sin(t) cos(t)tr[P cGabR]− sin2(t)(tr[P c
1̃
abR] + tr[P cGabRGab]),
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where we denoted by R′ = ~r ′ · ~r ′t = exp(−tGab)~r · ~r t exp(tGab) = exp(−tGab)R exp(tGab).
The last term ∼ tr[P c

1̃
abR]+tr[P cGabRGab] on the second line above vanishes. To see this

we use (a), together with 1̃
ab = P a + P b − 2P aP b, (Gab)2 = −1̃ab to get

tr[P cGabRGab] + tr[P c
1̃
abR] = tr[P c(Gab)2R]− tr[[P c, Gab]GabR] + tr[P c

1̃
abR]

= (δca + δcb)tr[(1− 2P c)1̃abR] = (δca + δcb)tr[(1− 2P c)(P a + (1− 2P a)P b)R].

If c 6= a, b the above vanishes because of the δ’s. Choosing c = a without loss of generality,
it vanishes again because of P c · P c = P c and thus (1 − 2P c)2 = 1, which implies tr[(1 −
2P a)(P a+(1−2P a)P b)R] = tr[((1−2P a)P a+P b)R] = tr[(P b−P a)R] = tr[P bR]−tr[P aR] =
1− 1 = 0.

Using this result, we can now move on to show that, in fact, the 21 equations (A.12)
define an T ′

2 -invariant set, where T ′
2 = PSU(4) is the full group generated by exponentiating

the 15 generators (A.5, A.7) and their linear combinations. That is, not only the pentagon,
but also the pentagon conservation equations are preserved by T ′

2 .28

Lemma 2. If ~r satisfies (A.12), then so does ~r ′ = T · ~r for any T ∈ T ′
2 .

Proof. We start by showing that every time evolution T ∈ T ′
2 = PSU(4) can be written

as a product of exponentials, i.e. T =
∏

ab exp(tabG
ab) where always a single generator Gab

(from a given basis) appears in every exponent. First note that any matrix T ∈ GL(R, n2)
lying in SO(n) can be expressed as a product of rotation matrices exp(tGlm

F ), each in some
plane (lm) [54,55] by the use of generalized Euler angles, where Glm

F are the anti-symmetric
generators of the fundamental representation of SO(n), i.e. (Glm

F )ij = δliδmj − δljδmi. This
statement is true for the entire equivalence class of generators, where the equivalence
relation amounts to similarity transformations of the fundamental generators. That is, all of
the choices of Lie algebra bases in that equivalence class have the same structure constants.
The statement that any group element can be written as products of exponentials of single
generators (of a basis from this equivalence class) can also be understood abstractly at
the manifold level of the Lie group and hence must be true for any representation (of the
equivalence class of bases).

The same therefore holds true for the fundamental generators of PSU(4) ≃ PSO(6).
Our 15× 15 swap generator matrices Gab are exactly in a one-to-one correspondence with
the fundamental 6× 6 generator matrices (Glm

F )ij = δliδmj − δljδmi of SO(6). This has also
been explicitly checked for the matrices corresponding to (A.5) and (A.7). In other words,
also in the adjoint representation all the PSU(4) ≃ PSO(6) group elements generated by
the generators (A.5, A.7) are expressible as products of single exponentials of our swap
generators Gab, where only one swap generator appears in each exponent as in (A.9). For

28We note that the pentagon equalities (3.3) alone are generally not preserved under T ′
2 without the

generator conservation equations in (A.12). For instance, the information distribution αxy = αz2 = αxz =
αy2

= 1
2 bit and αx1

= 1 bit (and all other αi = 0) satisfies all pentagon equalities, however, violates the
generator conservation equations. Under a finite evolution with TPent4Pent6(t) in (A.9) (this is a rotation
around the x2-axis) this can be evolved to αxy + αz2 > 1 bit, thereby violating the equality for Pent4.
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this reason it suffices to consider T = exp(tGab) in the following and then the case of a
general T =

∏

ab exp(tabG
ab) ∈ T ′

2 ≃ PSU(4) follows by induction.
Consider ~r ′ = exp(tGab) · ~r where ~r satisfies (A.12), i.e. tr[P cR] = 1 (pentagon equal-

ities) and tr[P cGdeR] = 0 (generator equalities) for all 1 ≤ c, d, e ≤ 6. From lemma 1
it follows that tr[P cR′] = tr[P cR] + 2 sin(t) cos(t)tr[P cGabR] = tr[P cR] = 1 and thus ~r ′

also satisfies the pentagon equalities. It remains to show that ~r ′ satisfies the generator
equalities tr[P cGdeR′] = 0 as well. Note that if d = a and e = b, then tr[P cGdeR′] ∼
tr[P c exp(−t′Gab)R′ exp(t′Gab)] − tr[P cR′] = tr[P c exp(−(t′ + t)Gab)R exp((t′ + t)Gab)] −
tr[P cR] = 2 sin(t′ + t) cos(t′ + t)tr[P cGabR] = 0 because of lemma 1. Therefore, we should
only consider the case where a 6= d, e and/or b 6= d, e. Using the explicit expression for
exp(tGab) in (A.9), one finds

tr[P cGdeR′] = tr[((c(t)− 1)1̃ab − s(t)Gab + 1)P cGdeR((c(t)− 1)1̃ab + s(t)Gab + 1)]

=
1

2
((c(t)− 1)2M1 + 2s(t)(c(t)− 1)M2 − s2(t)M3 + 2(c(t)− 1)M4 + 2s(t)M5),

c(t) := cos(t), s(t) := sin(t), M1 = tr[[P c, Gde](1̃abR1̃ab)], M2 = tr[[P c, Gde](GabR1̃ab)],

M3 = tr[[P c, Gde](GabRGab)], M4 = tr[[P c, Gde](R1̃ab)], M5 = tr[[P c, Gde](GabR)].

We will now show that M1 = −M3 = M4,M2 = M5 = 0, such that tr[P cGdeR′] =
1
2
((c(t)−1)2 +s2(t)+2(c(t)−1))M4 = 0. Because of (a), we will take without loss of gener-

ality c = d throughout the derivation and use tr[[Gab, Gde]P gR] = f (ab)(de)(cg)tr[GcgP gR] =
tr[P gGcgR] = 0, and thus (d): tr[GabGdeP gR] = tr[GabGdeRP g]. From (d) it follows that
M5 = tr[[P d, Gde](GabR)] = −tr[Gde[P d, Gab]R]. Furthermore, using (b) and then (d) im-
plies as well M5 = −tr[[P e, Gde](GabR)] = tr[Gde[P e, Gab]R]. Note that [P d, Gab] = 0 or
[P e, Gab] = 0 because of (a) and also a 6= d, e and/or b 6= d, e and therefore M5 = 0. For
showing the three remaining equalities M1 = −M3 = M4,M2 = 0 we consider two separate
cases, c1: a = d and b 6= d, e, c2: a 6= d, e and b 6= d, e. The symmetric case a = e and
b 6= d, e is also captured because of (b).

Let us start with the case c1, for which [Gde, P b] = 0 because of (a). Then for M2

M2 = tr[[P d, Gde](GdbR1̃db)] = tr[[P d, Gde]P bGdbR] + tr[P d[P d, Gde]((1− 2P b)GdbR)]

=
1

2
(tr[[P d, Gde][P b, Gdb]R]− tr[[Gdb, [P d, Gde]]P bR]) + tr[P d[P d, Gde][Gdb, P b]R]

=
1

2
(−tr[(1− 2P d)[P d, Gde][P d, Gdb]R]− 1

2
tr[[{Gdb, P b}, [P d, Gde]]R])

=
1

2
(tr[Gde[P d, Gdb]R]− 1

2
tr[[Gdb, [P d, Gde]]R]) = 0− 0 = 0.

Similarly, for M3 we can show

M3 = tr[[P d, Gde](GdbRGdb)] = −tr[[P e, Gde](GdbRGdb)]

= −(tr[[P e, [Gde, Gdb]]RGdb] + tr[[P e, Gde]R(Gdb)2])

= −(f (de)(db)(rs)tr[[P e, Grs]RGdb]− tr[[P e, Gde](R1̃db)])
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= tr[[P e, Gde](R1̃db)] = −tr[[P d, Gde](R1̃db)] = −M4.

Finally for M1 it also follows

M1 = tr[[P d, Gde](1̃dbR1̃db)] = tr[[P d, Gde]P dR1̃db(1− 2P b)] + tr[[P d, Gde]R1̃dbP b]

= tr[[[P d, Gde], P d]R1̃db(1− 2P b)] + tr[[P d, Gde]R1̃db] =
1

2
tr[[P d, [[P d, Gde], P d]R] +M4

= −1

2
tr[[P d, Gde]R] + M4 = M4.

Lastly, we consider the simplest case c2, for which [Gde, P a] = [Gde, P b] = 0 and
[Gde, Gab] = 0 because of (a) and (c). In particular, also [Gde, 1̃ab] = 0. Working out
M2 results again in

M2 = tr[[P d, Gde](GabR1̃ab)] = tr[[P d, Gde]1̃abGabR] = tr[[P d, Gde]GabR] = 0.

For M3 the same derivation as in the case of c1 can be used to show M3 = −M4. Finally,
for M1 = tr[[P d, Gde](1̃abR1̃ab)] = tr[[P d, Gde]R(1̃ab)2] = M4.

A.2.4 PSU(2N) is a maximal subgroup of SO(4N − 1)

In the main text we argue that PSU(2N) is a subgroup of the time evolution group TN , which
itself is (isomorphic to) a subgroup of SO(4N−1). In order to conclude that TN ≃ PSU(2N),
we prove here that PSU(2N) is (isomorphic to) a maximal subgroup of the larger group
SO(4N − 1):

Lemma 3. PSU(2N) acts in the adjoint representation on the state space of N qubits and
is a maximal subgroup of SO(4N − 1) for all N ≥ 2.

Proof. The irreducible representations of PSU(NF ) are categorized by NF − 1 numbers.
Each representation corresponds to a Young Tableau to which its dimension is intimately
related [56]. A survey of the irreducible representations of PSU(NF ) shows that whenever
NF ≥ 9, the dimensions of the irreducible representations can be ranked from lowest to
highest as: 1, NF , 1

2
NF (NF −1), 1

2
NF (NF +1), dim(Ad) = N2

F −1, · · · where the dots refer
to higher dimensional representations with dimensions larger than N2

F − 1. The N qubit
state space transforms in some representation R of PSU(NF = 2N). Let us first consider
the case of N > 3, for which NF = 2N > 9. If R was reducible, it would have at least one
copy of the trivial representation in its direct sum, since dim(R) = dim(Ad) is uneven and
all lower dimensional representations are even except the trivial one, which would imply
that R leaves a 1-dimensional subspace invariant. However, this is not possible because
the subgroup PSU(2) × · · · × PSU(2) ⊆ PSU(2N) which corresponds to the rotations of
the individual qubits lies inside the subgroup PSU(2N) and these transformations would
certainly not leave any 1-dimensional subspace invariant. Therefore the representation R
must be irreducible and it must be the adjoint representation since all other representations
are of larger dimension. For N ≤ 3 one observes from explicit tables of group dimensions
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[57] that the same reasoning applies and R again equals the adjoint representation. The
maximality of PSU(2N) in SO(4N−1) now directly follows from Dynkin’s theorem [58] and
the fact that PSU(2N) is simple and its adjoint representation is faithful and irreducible
(acting on the fundamental representation space of SO(4N − 1)).

A.2.5 Evolving to product states

We shall now demonstrate the following claim of section 3.1.4.

Lemma 4. Any ~r satisfying (A.12) can be brought to the configuration αz1 = αz2 = αzz = 1
bit and all other αi = 0 by performing successive T ′

2 -transformations of the form (A.9).

Proof. First note that when two questions are swapped within one pentagon, the other
three questions remain unchanged (cf. figure 3). This is the case because the remaining
three questions do not appear in any of the two pentagons whose information contents
are being swapped. For example, this can be explicitly seen in figure 3, where as αy1

and αzx are swapped within Pent5 via GPent1,Pent2, the information content of αx1, αzz, αzy

in Pent5 are left invariant. Because of this property we can by repeating (at most 4
different) swap transformations (A.9) put all 1 bit of information contained in Pent5 in,
e.g., question Qy1 : 1) first rotate all information from Qzx to Qy1 with TPent1,Pent2(t1) for
some t1 such that αzx = 0,29 2) then use TPent3,Pent5(t2) for some t2 to rotate the information
contained in Qzy into Qy1 which leaves αzx = αzy = 0, 3) use TPent1,Pent6(t3) for some t3
to map the information content of Qzz into Qy1 which leaves αzx = αzy = αzz = 0, 4)
finally use TPent1,Pent3(t4) for some t4 to rotate the information from Qx1 into Qy1 which
leaves αzx = αzy = αzz = αx1 = 0. Since the time evolution group maps pure states to
pure states and I(Pent5) = 1 bit, we conclude αy1 = 1 bit after the four steps. The
information content of questions in other pentagons is also transformed during these four
successive transformations. However, since every employed transformation leaves the other
three questions in Pent5 invariant, this is not relevant for the argument. Nevertheless, all
eight questions complementary to Qy1 will necessarily have αi = 0 too, while the remaining
2 bits will be distributed over the six questions compatible with Qy1.

The above information redistribution algorithm, by using appropriate combinations of
transformations, can similarly be performed on any state satisfying (A.12) to get αz1 = 1
bit. In that case, the remaining 2 bits will be contained in the boundary of the three
compatible triangles with central vertex αz1 = 1 bit (cf. (3.4) and figure 4) and αx2 = αzx,
αzy = αy2, αzz = αz2. Using the three latter equalities and the fact that the 6 boundary
questions contain 2 bits of information, it follows that αx2 + αy2 + αz2 = 1 bit. We can
evolve this 1 bit of information into αz2 = 1 bit by using local rotations of qubit 2: 1)
first rotate around the rx2-axis with TPent4,Pent6 to get αy2 = 0, 2) then rotate around the
ry2-axis with TPent2,Pent6 while leaving αy2 = 0 and putting αx2 = 0 and thus αz2 = 1
bit. Finally, we therefore reach the required product configuration αz1 = αz2 = αzz = 1
bit, starting from any pure state. Note that this required at most six different successive
transformations of the form (A.9).

29Recall from above that TPent1,Pent2(t1) acts as a rotation by ±t1 in the plane (ry1
, rzx).
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A.2.6 Preservation of the complementarity inequalities

Next, we show that T ′
2 = PSU(4) preserves all complementarity inequalities (2.1) – provided

(A.12) is fulfilled. Since T ′
2 preserves all pentagon equalities by construction, it suffices to

check it for the triangle complementarity sets in appendix A.1 since all sets of mutually
complementary questions are either contained in the pentagon or triangle sets on account
of their maximality.

Lemma 5. Any ~r solving (A.12) also satisfies all triangle complementarity inequalities
following from (2.1) for the triangle complementarity sets (A.2).

Proof. By inspection one verifies that any of the three pairs of questions contained in
every of the triangle sets Trii (A.2) also lies in a common pentagon set (3.1). However,
clearly not all three questions in a triangle set can lie in the same pentagon, for otherwise
maximality of the triangle set would be violated. This implies that for every triangle set
and every pair of questions contained in it there exists an information swap generator
in (A.5, A.7) which swaps the information between the two questions of that pair and
leaves the third question in the triangle set invariant (see the arguments in the proof of
lemma 4). For example, for Tri1, G

Pent1,Pent4 swaps the information between Qxx and
Qz2 and leaves Qxy invariant. Accordingly, the exponentiation (A.9) of GPent1,Pent4 rotates
information continuously between Qxx and Qz2 and leaves Qxy invariant. In particular,
there will always exist values of t such that all information carried by Qxx and Qz2 can be
evolved into one of the two questions, e.g., Qxx. By subsequently applying the analogous
rotation generated by GPent2,Pent4 to the pair Qxx, Qxy (which leaves Qz2 invariant), one can
always evolve the entire information I(Tri1)(t) = αxx(t) + αxy(t) + αz2(t), carried by Tri1,
into I(Tri1)(t) = I(Tri1)(t + ∆t) = αxx(t + ∆t) such that αxy(t + ∆t) = αz2(t + ∆t) = 0
bits and no information has leaked out of the triangle (where αi(t) = ri(t)

2). That is,
if the triangle complementarity inequality following from (2.1) for Tri1 was ever violated,
αxx + αxy + αz2 > 1 bit, there would exist a T ∈ T ′

2 which evolves this configuration to
αxx > 1 bit. But this would violate the pentagon equalities which, by lemma 2, can never
happen under T ′

2 if (A.12) is fulfilled. The same argument can be repeated for all 20 triangle
sets such that we conclude that (A.12), in fact, implies that the triangle complementarity
inequalities hold.

In particular, T ′
2 thus preserves all complementarity inequalities (2.1) once (A.12) holds.

A.2.7 Preservation of the correlation structure

We also have to check that T ′
2 = PSU(4) leaves the correlation structure of figure 2 invariant

– provided (A.12) is fulfilled. For this purpose we recall that the correlation structure in
figure 2 encodes that a question in an (anti-)correlation triangle is the (anti-)correlation
of the other two questions in the triangle. The correlation structure thus means that if
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(a) Qi = Qj ↔ Qk then yi = 1 implies rj = rk and yi = 0 implies rj = −rk,30 and if (b)
Qi = ¬(Qj ↔ Qk) then yi = 1 implies rj = −rk and yi = 0 implies rj = rk, where i, j, k =
x1, y1, . . . , zz and i 6= j 6= k 6= i are question indices compatible with a triangle in figure 2.
That is, since any Qi is contained in three triangles (c) if Qi = Qj ↔ Qk = ¬(Ql ↔ Qm)
then yi = 1 implies rj = rk and rl = −rm simultaneously and yi = 0 implies rj = −rk
and rl = rm simultaneously. Finally, (d) if Qi = Qj ↔ Qk = Ql ↔ Qm then yi = 1
implies rj = rk and rl = rm simultaneously and yi = 0 implies rj = −rk and rl = −rm
simultaneously. We thus only show the statement for states with at least one αi = 1 bit

for which the correlation structure has meaning.
We recall from lemma 4 and the arguments of section 3.1.4 that there exist precisely

two T ′
2 -transitive sets solving (A.12), namely

S+
QT := {T · (~δz1 + ~δz2 + ~δz1z2) |T ∈ T ′

2},
S−
QT := −{T · (~δz1 + ~δz2 + ~δz1z2) |T ∈ T ′

2}.

S+
QT is the set of pure quantum states, while S−

QT constitutes an equivalent but different
representation of the pure quantum state space. These two sets are not connected via T ′

2 .

Claim.

1. Any ~r which solves (A.12) and satisfies the correlation structure of figure 2 lies in
S+
QT . This is the set corresponding to the convention of building bipartite questions

from the individuals Qx1 , Qx2, Qy1 , Qy2, Qz1 , Qz2 using the XNOR connective ↔.

2. Any ~r which solves (A.12) and satisfies the correlation structure obtained by replacing
correlation triangles in figure 2 by anti-correlation triangles and vice versa lies in S−

QT .
This is the set corresponding to the convention of building bipartite questions from
the individuals using the XOR connective ¬(· ↔ ·).

Thus, in particular, in the XNOR convention, (A.12) implies the correlation structure of
figure 2 which therefore is T ′

2 -invariant.

Proof. Suppose ~r solves (A.12). This implies that whenever αi = 1 bit, then αj = αk if
either Qi = Qj ↔ Qk or Qi = ¬(Qj ↔ Qk) (as mentioned at the end of section 3.1.2 this
follows from the pentagon identities contained in (A.12)). This means that ri = ±1 and
either rj = rk or rj = −rk. We wish to show consistency with (a)–(d). We shall illustrate
the argument with the example of αz1 = 1 bit. While the proof is straightforward, it
involves many details such we restrict to a sketch.

We adopt the notation of appendix A.2.3 and note that the conservation equation

(P 4 · ~r) ·G46 · ~r = rz2ry2 − rzyrzz − ryyryz − rxyrxz = 0

30For example, Qxx = Qx1
↔ Qx2

is the question “are the answers to Qx1
, Qx2

correlated?” Since yxx
is thus also the probability that the answers to Qx1

, Qx2
are correlated, this means that whenever yxx = 1

we must have yx1
= yx2

and whenever yxx = 0 we must have rx1
= −rx2

.
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reads rz2ry2 = rzyrzz once αz1 = 1 bit such that all questions complementary to Qz1 carry
0 bits. Together with ry2 = ±rzy and rzz = ±rz2 , which is implied by the pentagon
equalities as noted above, this entails for the right and lower triangles in figure 4 that

ry2 = +rzy ⇔ rzz = +rz2 and ry2 = −rzy ⇔ rzz = −rz2 .

We can now employ finite time evolutions T 46(t) = exp(t G46) as in (A.9) which gener-
ate rotations in the (y2, z2) and (zy, zz) planes, both by an angle −t. Such a time evolution
leaves rx2, rz1, rzx, corresponding to the upper left triangle in figure 4 invariant. In par-
ticular, we can start with a Bloch vector rz1 = ry2 = rzy = +1 and all other ri = 0.
This Bloch vector solves (A.12) and is compatible with constructing the bipartite ques-
tion Qzy = Qz1 ↔ Qy2 via the XNOR connective ↔. Applying T 46(t) = exp(t G46) for
all t ∈ [0, 2π] to this vector generates all configurations for which rz1 = +1 and simulta-
neously ry2 = +rzy and rzz = +rz2, while all other ri = 0 and thus preserving that all
of I(~r) = |~r|2= 3 bits is carried by the five questions in the upper right and the lower
triangle in figure 4. Similarly, by starting with the Bloch vector rz1 = ry2 = −1, rzy = +1
and all other ri = 0, which again solves (A.12) and is compatible with Qzy = Qz1 ↔ Qy2 ,
one can generate all configurations for which rz1 = −1 and simultaneously ry2 = −rzy and
rzz = −rz2 , while all other ri = 0 and thus preserving that all of I(~r) = |~r|2= 3 bits is
carried by the five questions in the upper right and the lower triangle in figure 4. Note,
firstly, that the two states rz1 = ry2 = rzy = +1 (all other ri = 0) and rz1 = ry2 = −1,
rzy = +1 (all other ri = 0) are connected by T (t = π) = exp(π G12) such that all the
states we just discussed are connected by time evolution and thus clearly satisfy (A.12).
Secondly, note that all of these Bloch vectors are consistent with building the bipartite
Qzz = Qz1 ↔ Qz2 using XNOR and, accordingly, with Qzy ↔ Qy2 = Qz1 = Qzz ↔ Qz2 .
Thirdly, note that we could have arrived at the same result by using the conservation
equation (P 2 · ~r) · G25 · ~r = 0 and T 25(t) which also leaves the questions in the upper left
triangle of figure 4 invariant.

One can repeat the analogous argument with G26 or G45, both of which leave the upper
right triangle in figure 4 invariant and solely rotate the information between the other two
triangles (while leaving rz1 invariant), to show that from rz1 = rz2 = rzz = 1 (all other
ri = 0) one can generate by time evolution all states with rz1 = +1 and simultaneously
rz2 = rzz and rx2 = rzx and all states with rz1 = −1 and simultaneously rz2 = −rzz
and rx2 = −rzx and all other ri = 0. Since rz1 = rz2 = rzz = 1 (all other ri = 0) is
connected by time evolution to the states of the previous paragraph all of these states
are likewise related through time evolution group elements to all states of the previous
paragraph. We again note that all of these states are consistent with constructing the
bipartite Qzx = Qz1 ↔ Qx2 with the XNOR from the individuals Qz1 , Qx2 and, accordingly,
with Qzx ↔ Qx2 = Qz1 = Qzz ↔ Qz2.

Next, we repeat the analogous argument with G24 or G56, both of which leave the lower
triangle in figure 4 invariant, to show that from rz1 = ry2 = rzy = +1 (all other ri = 0)
one can produce through time evolution group elements all states with rz1 = +1 and
simultaneously ry2 = rzy and rx2 = rzx and all states with rz1 = −1 and simultaneously
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ry2 = −rzy and rx2 = −rzx and all other ri = 0. All of these states are clearly connected via
time evolution group elements to all states of the previous two paragraphs and consistent
with Qzx ↔ Qx2 = Qz1 = Qzy ↔ Qy2 .

Combining the previous arguments, it is clear that by applying all possible products of
T 46, T 25, T 26, T 45, T 24, T 56 for all possible values of t ∈ [0, 2π] to the states of the previous
three paragraphs one generates all states with rz1 = +1 and simultaneously rx2 = rzx
and rzy = ry2 and rzz = rz2 and all states with rz1 = −1 and simultaneously rx2 = −rzx
and rzy = −ry2 and rzz = −rz2 and all other ri = 0 and I(~r) = |~r|2= 3 bits. It is
also clear that all these states satisfy (A.12) and that no other states can be produced by
combinations of T 46, T 25, T 26, T 45, T 24, T 56. But these are precisely all the states consistent
with Qz1 = Qzy ↔ Qy2 = Qzz ↔ Qz2 = Qzx ↔ Qx2 and αz1 = 1 bit and thus all the
states consistent with the correlation structure of figure 4. In conclusion, all of these states
are thus implied by (A.12), provided one follows the convention to only build up bipartite
questions with the XNOR connective from individual questions.

Had we instead started the above arguments with the state rz1 = −1, ry2 = rzy = +1
and all other ri = 0, corresponding to the XOR connective Qzy = ¬(Qz1 ↔ Qy2) and
solving (A.12), we would have produced through time evolution all states consistent with
Qz1 = ¬(Qzy ↔ Qy2) = ¬(Qzz ↔ Qz2) = ¬(Qzx ↔ Qx2) and αz1 = 1 bit. These
correspond to the correlation structure of figure 4, except that all correlation triangles in
it are replaced by anti-correlation triangles.

Clearly, one can repeat the same arguments for any question Qi and Bloch vectors with
αi = 1 bit, finding that all states compatible with αi = 1 bit and building bipartite
questions with the XNOR are connected via T ′

2 and likewise that all states compatible
with αi = 1 bit and building bipartite questions with the XOR are connected via T ′

2 .
Together with lemma 4 and the arguments of section 3.1.4 it follows that all 3 bit states

consistent with the correlation structure of figure 2 lie in T +
QT . Similarly, it follows that all

3 bit states consistent with the correlation structure corresponding to the convention of
constructing bipartite questions with the XOR from individuals lie in S−

QT .

A.3 Reconstructing TN and ΣN for N > 2

A.3.1 Deriving the ’swap generators’ for N > 2

All pairwise unitaries must be contained in TN and therefore require a representation on
R4N−1. Consider the gbit pair (1, 2). It is not difficult to convince oneself that the definition

(and requirement) of isolated evolution under T (12)
2 ⊂ TN from section 3.2.1 implies that

every T (12)(t) ∈ T (12)
2 must be of the block-diagonal form

T (12)(t) =





T̄ (12)(t) 0 0

0 T̃ (12)(t) 0
0 0 1(4N−2−1)×(4N−2−1)



 , (A.13)

where T̄ (12)(t) is the corresponding 15 × 15 T2-matrix of section 3.1.3 and T̃ (12)(t) is a
(4N − 1− 15− (4N−2 − 1))× (4N − 1− 15− (4N−2 − 1)) matrix which acts on the indices
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(µ1µ20 · · ·0) and (µ1µ2µ3 · · ·µN), respectively, of a Bloch vector ~r ∈ ΣN , where (µ1µ2) 6=
(00) and (µ3 · · ·µN) 6= (0 · · ·0). Therefore, the generators of T (12)

2 must be of the following
block-diagonal form:

G(12) =





Ḡ(12) 0 0
0 g(12) 0
0 0 0(4N−2−1)×(4N−2−1)



 , (A.14)

where Ḡ(12) are (linear combinations of) the two-qubit information swap generators (A.5,
A.7) and g(12) are the generators of T̃ (12). The latter clearly also have to form a representa-
tion of psu(4) in order for the G(12) to generate a (4N −1)× (4N −1) matrix representation
of psu(4) such that g(12) must be anti-symmetric too. Note that this resulting psu(4) repre-
sentation will thus be reducible. The analogous block-diagonal form holds for the pairwise
unitaries and their generators of all other gbit pairs.

We shall now prove equation (3.14). We shall do this in three steps, each given by a

lemma. Note that the indices of the matrix T̃
(12)
(µ1···µN )(ν1···νN ) are always such that (µ1µ2) 6=

(00) and (µ3 · · ·µN) 6= (0 · · ·0) (and similarly for the ν indices). However, we can trivially
extend T̃ (12) to an (4N − 1) × (4N − 1) matrix by simply setting all new components
corresponding to all remaining index combinations to zero. In this case we can let the
indices µ, ν run over all possible values.

Lemma 6. T̃
(12)
(µ1µ2µ3···µN )(ν1ν2ν3···νN ) = M(µ1µ2)(ν1ν2)(µ3, . . . , µN) δµ3ν3 · · · δµN νN . Here the fac-

tor M(µ1µ2)(ν1ν2)(µ3, . . . , µN) is a 16 × 16 matrix which might depend on the values of the
indices (µ3 · · ·µN), and M(00)(ν1ν2)(µ3, . . . , µN) = 0 = M(µ1µ2)(00)(µ3, . . . , µN).

Proof. We shall show that the matrix components T̃
(12)
(µ1···µN )(ν1···νN ) (for simplicity we drop

here the argument t) vanish whenever µ3 6= ν3. By symmetry in the qubit labels, it then
follows more generally that T̃ (12) vanishes unless µ3 = ν3, . . . , µN = νN . (Clearly, the proof
below can also be performed for the fourth, fifth and higher indices.) Throughout this
proof we use that two questions Qµ1···µN

and Qν1···νN are complementary iff their indices
differ in an odd number of non-zero indices [1].

Consider now T̃
(12)
(µ1···µN )(ν1···νN ) with the indices (µ1 · · ·µN) and (ν1 · · · νN) fixed and

µ3 6= ν3. We shall henceforth also assume that (µ1µ2) 6= (00) 6= (ν1ν2) and, likewise,
(µ3 · · ·µN) 6= (0, · · ·0) 6= (ν3 · · · νN ) for otherwise this component of T̃ (12) is trivially zero.
These two index sets will correspond to two questions Qµ1···µN

, Qν1···νN . We shall now choose
a further question Q00ν′3···ν′N such that it is complementary to Qµ1···µN

and compatible with
Qν1···νN . At the end of the proof we shall show that this is always possible.

Since Qν1···νN , Q00ν′3···ν′N are compatible, whenever O knows the answer to the two with
certainty, he will also know with certainty the answer to their correlation Qν1ν2ν̃3···ν̃N =
Qν1ν2ν3···νN ↔ Q00ν′3···ν′N , where (ν̃3 · · · ν̃N) depend on (ν3 · · · νN) and (ν ′3 · · · ν ′N). Since
(ν3 · · · νN) 6= (0 · · ·0) it also holds that (ν̃3 · · · ν̃N) 6= (0 · · ·0) [1], however, the precise
values of the ν̃i will not matter. There exists a 3 bit state in which only these three
questions are answered with certainty, while for all other Bloch vector components ri = 0.
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Namely, after asking only Qν1···νN , Q00ν′3···ν′N to a system S in the state of no information,
O will have certain information about these two questions and their correlation, however,
will not know anything about any further question in the informationally complete set.
We shall work with such 3 bit states henceforth.

Thanks to the form of (A.13), the component r00ν′3···ν′N = ±1 of the Bloch vector ~r

corresponding to such a state is left invariant under the time evolution ~r ′ := T (12) · ~r, i.e.
r′00ν′3···ν′N

= r00ν′3···ν′N = ±1. The complementarity inequalities (2.1) therefore imply that

0 = r′µ1···µN
=
∑

βi

T̃
(12)
(µ1···µN )(β1···βN )rβ1···βN

since Q00ν′3···ν′N was chosen complementary to Qµ1···µN
. Given that r00ν′3···ν′N = ±1 is left

invariant and thus only the rν1···νN , rν1ν2ν̃3···ν̃N ∈ {−1,+1} can contribute (recall that all
other ri = 0), the previous equation reduces to:31

0 = r′µ1µ2µ3···µN
= T̃

(12)
(µ1···µN )(ν1···νN )rν1···νN + T̃

(12)
(µ1···µN )(ν1ν2ν̃3···ν̃N )rν1ν2ν̃3···ν̃N (A.15)

(no further summation over νi or ν̃j). Consider now the two specific configurations32

(a) rν1ν2ν3···νN = rν1ν2ν̃3···ν̃N = 1 and (b) rν1ν2ν3···νN = 1, rν1ν2ν̃3···ν̃N = −1. (A.15) must

hold true for both (a) and (b) which is only possible if T̃
(12)
(µ1µ2µ3···µN )(ν1ν2ν3···νN ) = 0 =

T̃
(12)
(µ1µ2µ3···µN )(ν̃1ν̃2ν̃3···ν̃N ).

In this argument it was crucial that the invariant Q00ν′3···ν′N was complementary to
Qµ1···µN

and compatible with Qν1···νN . Clearly, no such Q00ν′3···ν′N with this property could
exist if we had (µ3 · · ·µN) = (ν3 · · · νN ). Hence, all that remains to be checked is whether
we can always find a Q00ν′3···ν′N with this property if µ3 6= ν3. By considering all the possible
cases this can easily be shown to be true. For ease of notation, let us denote the relevant
question as Q∗ := Q00ν′3···ν′N . First, for N = 3 we must have µ3, ν3 6= 0 in order for T̃ (12) not
to vanish and we can choose Q∗ = Q00ν3 . For N > 3, we choose the question Q∗ according
to the two cases where the indices (µ4 · · ·µN) and (ν4 · · · νN) differ in either an odd or even
amount of non-zero indices cases (we remind the reader that µ3 6= ν3).

• Odd number of differing non-zero indices such that Q000µ4···µN
and Q000ν4···νN are

complementary: take Q∗ = Q000ν4···νN .

• Even number of differing non-zero indices such that Q000µ4···µN
and Q000ν4···νN are

compatible:

– µ3 6= 0: take Q∗ = Q00ν3ν4···νN if ν3 6= 0 or Q∗ = Q00ν′3ν4···νN , where any ν ′3 6= µ3

suffices, if ν3 = 0.

– µ3 = 0 (and thus ν3 6= 0) and without loss of generality we assume that µ4 6= 0
since there must be a non-zero index among µ4, . . . , µN : (i) if ν4 6= 0, take

31We note that T̃
(12)
(µ1···µN )(ν1ν2ν̃3···ν̃N ) is not necessarily zero since (ν1ν2) 6= (00) and (ν̃3 · · · ν̃N ) 6= (0 · · · 0).

32Both are allowed since Qν1ν2ν3···νN , Qν1ν2ν̃3···ν̃N are pairwise independent [1].
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Q∗ = Q00ν′3ν
′

4ν5···νN with ν ′4 6= µ4, and also (ν3ν4) and (ν ′3ν
′
4) differ in an even

amount of non-zero indices33, (ii) if ν4 = 0 take Q∗ = Q000ν′4ν5···νN , where any
ν ′4 6= µ4 suffices.

We thus conclude that T̃
(12)
(µ1µ2µ3···µN )(ν1ν2ν3···νN ) vanishes unless (µ3 · · ·µN) ≡ (ν3 · · ·νN ) and

thus T̃
(12)
(µ1µ2µ3···µN )(ν1ν2ν3···νN ) ∼ δµ3ν3 · · · δµNνN . The factor multiplying the delta’s might

depend on either the indices ν3, . . . , νN or µ3, . . . , µN which are fixed to be equal.

It follows from lemma 6 that the block-matrix in the generators (A.14) is of the form

g
(12)
(µ1µ2µ3···µN )(ν1ν2ν3···νN ) = G̃(µ1µ2)(ν1ν2)(µ3, . . . , µN) δµ3ν3 · · · δµNνN (A.16)

with G̃(00)(ν1ν2)(µ3, . . . , µN) = 0 = G̃(µ1µ2)(00)(µ3, . . . , µN). Note that

g
(12)
(µ1···µN )(ν′1···ν′N ) g

(12)
(ν′1···ν′N )(ν1···νN ) = G̃(µ1µ2)(ν′1ν

′

2)
(µ3, . . . , µN) δµ3ν

′

3
· · · δµN ν′

N
×

G̃(ν′1ν
′

2)(ν1ν2)
(ν ′3 · · · ν ′N) δν′3ν3 · · · δν′NνN

= G̃(µ1µ2)(ν′1ν
′

2)
(µ3, . . . , µN) G̃(ν′1ν

′

2)(ν1ν2)
(µ3, . . . , µN) δµ3ν3 · · · δµN νN

and similarly for the higher powers of g(12) and therefore M(t) = exp(t G̃) for M given in
lemma 6. We are now interested in the representation of the pentagon swap generators
corresponding to (A.5, A.7) on R

4N−1

GPent
(12)
a ,Pent

(12)
b =





GPenta,Pentb 0 0

0 gPent
(12)
a ,Pent

(12)
b 0

0 0 0(4N−2−1)×(4N−2−1)



 , (A.17)

where GPenta,Pentb is one of the 15 two-qubit swap generators in (A.5, A.7) and by (A.16)

g
Pent

(12)
a ,Pent

(12)
b

(µ1µ2µ3···µN )(ν1ν2ν3···νN ) = G̃Penta,Pentb
(µ1µ2)(ν1ν2)

(µ3, . . . , µN) δµ3ν3 · · · δµNνN . (A.18)

Lemma 7. G̃Penta,Pentb
(µ1µ2)(ν1ν2)

(µ3, . . . , µN) = 0 in (A.18) if Qµ1µ2 or Qν1ν2 is a question whose

Bloch vector component is preserved under the two-qubit evolutions generated by the GPenta,Pentb.

Proof. It is instructive to consider a specific example, say, GPent1,Pent2 which, as seen in
figure 3, preserves rx1, rx2, rxx, ryy, rzz, ryz, rzy.

Next, notice that Qx100···, Q0x20···, Qxx0···0, Q00µ3···µN
for (µ3 · · ·µN) 6= (0, · · ·0) are pair-

wise compatible since the indices of the questions disagree in none of the non-zero in-
dices [1]. In fact, by theorem 3.1 in [1] (‘Specker’s principle’), they must also be mutually
compatible such that there must exist a state in which the answers to all of these questions
are known with certainty to O. For example, rx100···0 = r0x20···0 = rxx0···0 = r00µ3···µN

= +1

33This comes down to the question if, given any two questions Q0µ4
and Qν3ν4 where ν3, ν4 6= 0, there is

a third question which is complementary to Q0µ4
and compatible with Qν3ν4 . This is always possible [1].
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and therefore, due to the XNOR properties, also rx10µ3···µN
= r0x2µ3···µN

= rxxµ3···µN
= +1

and all other ri = 0 must exist. This is a 7 bits state. By construction, TPent
(12)
1 ,Pent

(12)
2 (t) =

exp(t GPent
(12)
1 ,Pent

(12)
2 ) leaves the components rx100···0 = r0x20···0 = rxx0···0 = r00µ3···µN

=

+1 invariant. Consequently, TPent
(12)
1 ,Pent

(12)
2 (t) must also leave rx10µ3···µN

= r0x2µ3···µN
=

rxxµ3···µN
= +1 invariant since these components are implied by rx100···0 = r0x20···0 =

rxx0···0 = r00µ3···µN
= +1. Furthermore, since time evolution cannot change the total infor-

mation, also ri = 0 for all other components must be preserved. That is, TPent
(12)
1 ,Pent

(12)
2 (t)

must leave this state invariant for all t. The above arguments and their conclusion are
independent of the signs of the non-zero Bloch vector components. In other words,
the time evolution must leave for example the following two states also invariant34: (1)
rx100···0 = r00µ3···µN

= +1, r0x20···0 = −1 and (2) rx100···0 = −1, r0x20···0 = r00µ3···µN
= +1.

This is only possible if

MPent1,Pent2
(x10)(x10)

((µ3, . . . , µN); t) = MPent1,Pent2
(0x2)(0x2)

((µ3, . . . , µN); t) = MPent1,Pent2
(xx)(xx) ((µ3, . . . , µN); t) = 1

and

MPent1,Pent2
(µ1µ2)(x10)

((µ3, . . . , µN); t) ≡MPent1,Pent2
(µ1µ2)(0x2)

((µ3, . . . , µN); t) ≡MPent1,Pent2
(µ1µ2)(xx)

((µ3, . . . , µN); t) ≡ 0

for all t and whenever (µ1µ2) is neither of (x10), (0x2), (xx) respectively. But this is only
possible if G̃Pent1,Pent2

(µ1µ2)(x10)
(µ3, . . . , µN) ≡ G̃Pent1,Pent2

(µ1µ2)(0x2)
(µ3, . . . , µN) ≡ G̃Pent1,Pent2

(µ1µ2)(xx)
(µ3, . . . , µN) ≡ 0

for all µ1, µ2.
By means of an analogous state one can show similarly that G̃Pent1,Pent2

(µ1µ2)(yy)
(µ3, . . . , µN) ≡

G̃Pent1,Pent2
(µ1µ2)(zz)

(µ3, . . . , µN) ≡ G̃Pent1,Pent2
(µ1µ2)(yz)

(µ3, . . . , µN) ≡ G̃Pent1,Pent2
(µ1µ2)(zy)

(µ3, . . . , µN) ≡ 0 for all
µ1, µ2.

One argues in complete analogy for all other G̃Penta,Pentb. Using the anti-symmetry of
G̃ one finds the claimed result.

We have thus shown that G̃Penta,Pentb
(µ1µ2)(ν1ν2)

(µ3, . . . , µN) could only be non-zero if both ques-
tions Qµ1µ2 , Qν1ν2 are among the eight questions whose information content is swapped
under the swaps corresponding to GPenta,Pentb. We shall now strengthen this result further.

Lemma 8. G̃Penta,Pentb
(µ1µ2)(ν1ν2)

(µ3, . . . , µN) ≡ GPenta,Pentb
(µ1µ2)(ν1ν2)

for all (µ3 · · ·µN), where GPenta,Pentb
(µ1µ2)(ν1ν2)

is one of the 15 two-qubit swap generators (A.5, A.7), and we define GPenta,Pentb
(00)(ν1ν2)

:= 0 =:

GPenta,Pentb
(µ1µ2)(00)

.

Proof. For concreteness, consider, again, G̃Pent1,Pent2 .
(a) We firstly argue that G̃Pent1,Pent2

(µ1µ2)(ν1ν2)
(µ3, . . . , µN) = 0 if GPent1,Pent2

(µ1µ2)(ν1ν2)
= 0. To this end,

consider a state with rxy0···0 = rzx0···0 = rzxµ3···µN
= +1 for (µ3 · · ·µN) 6= (0 · · ·0). Such a

state must exist since Qxy0···0, Qzx0···0, Qzxµ3···µN
are compatible and pairwise independent.

34As before, the XNOR properties dictate the sign of the other non-zero Bloch components as (1)
rx10µ3···µN

= 1, r0x2µ3···µN
= rxxµ3···µN

= rxx0···0 = −1 and (2) rx10µ3···µN
= rxxµ3···µN

= rxx0···0 =
−1, r0x2µ3···µN

= 1. The remaining components are ri = 0.
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(Recall that two questions are compatible iff they disagree in an even number (including
zero) of non-zero indices [1].) By theorem 3.1 in [1] (‘Specker’s principle’), these are also
mutually compatible such that a state must exist in which the answers to these questions
are fully known to O. Furthermore, since by figure 2 Qxy ↔ Qzx = ¬Qyz we must also have
ryz = ryzµ3···µN

= −1 and, similarly, r00µ3···µN
= rxyµ3···µN

= +1. For all other components,
we may have ri = 0.

Consider now TPent
(12)
1 ,Pent

(12)
2 (t) = exp(t GPent

(12)
1 ,Pent

(12)
2 ) acting on this state. By con-

struction, ryz = ryzµ3···µN
= −1 and r00µ3···µN

= +1 are left invariant (the first two since
Qyz is contained in neither of Pent1,Pent2 and thanks to lemma 7). Furthermore, it fol-

lows from appendix A.2 that TPent
(12)
1 ,Pent

(12)
2 (t) preserves the pentagon identities (3.3) at

the two-qubit level. Given that TPent
(12)
1 ,Pent

(12)
2 (t) transfers information within the pairs

Qxy0···0, Q0z20···0 and Qzx0···0, Qy100···0 (see figure 3) and given the state above, it is clear that

r20z20···0(t) + r2zx0···0(t) = 1 (A.19)

must thus hold for all t ∈ R under TPent
(12)
1 ,Pent

(12)
2 (t) acting on our initial state.

Next, we note that Q0z20···0, Qzx0···0, Qyxµ3···µN
form a mutually complementary set.

Hence, by (2.1), it must always hold r20z20···0(t) + r2zx0···0(t) + ryxµ3···µN
(t) ≤ 1 and thanks to

(A.19) therefore also ryxµ3···µN
(t) = 0 for all t ∈ R. Given the behaviour of our state under

TPent
(12)
1 ,Pent

(12)
2 (t), by lemma 6 we must therefore have

ryxµ3···µN
(t) = MPent1,Pent2

(yx)(zx) ((µ3, . . . , µN); t) rzxµ3···µN
+MPent1,Pent2

(yx)(xy) ((µ3, . . . , µN); t) rxyµ3···µN

= MPent1,Pent2
(yx)(zx) ((µ3, . . . , µN); t) +MPent1,Pent2

(yx)(xy) ((µ3, . . . , µN); t)
!

= 0, ∀ t ∈ R.

Repeating the same steps with the initial state rxy0···0 = rzxµ3···µN
= ryz0···0 = ryzµ3···µN

=
+1, r00µ3···µN

= rxyµ3···µN
= −1 (and all other ri = 0), one concludes that also

MPent1,Pent2
(yx)(zx) ((µ3, . . . , µN); t)−MPent1,Pent2

(yx)(xy) ((µ3, . . . , µN); t)
!

= 0, ∀ t ∈ R,

such that

MPent1,Pent2
(yx)(zx) ((µ3, . . . , µN); t) = MPent1,Pent2

(yx)(xy) ((µ3, . . . , µN); t)
!

= 0, ∀ t ∈ R.

But this can only be true if also

G̃Pent1,Pent2
(yx)(zx) (µ3, . . . , µN) = G̃Pent1,Pent2

(yx)(xy) (µ3, . . . , µN) = 0.

These components also vanish for GPent1,Pent2 at the two-qubit level (A.5). By complete
analogy one shows that also for all other cases G̃Pent1,Pent2

(µ1µ2)(ν1ν2)
(µ3, . . . , µN) = 0 if GPent1,Pent2

(µ1µ2)(ν1ν2)
=

0.
(b) Secondly, we now show G̃Pent1,Pent2

(µ1µ2)(ν1ν2)
(µ3, . . . , µN) ≡ GPent1,Pent2

(µ1µ2)(ν1ν2)
. For this purpose, con-

sider again the state above. Under (a) we have just shown that G̃Pent1,Pent2
(µ1µ2)(ν1ν2)

(µ3, . . . , µN) 6=
0 is only possible if GPent1,Pent2

(µ1µ2)(ν1ν2)
6= 0. This means that MPent1,Pent2((µ3, . . . , µN); t) =
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exp(t G̃Pent1,Pent2) could at most transfer information within the pairs (Qy10µ3···µN
, Qzxµ3···µN

),
(Qxyµ3···µN

, Q0z2µ3···µN
), (Qz10µ3···µN

, Qyxµ3···µN
) and (Qxzµ3···µN

, Q0y2µ3···µN
) for (µ3 · · ·µN) 6=

(0 · · ·0). But since the total information must be preserved this implies that

r2xyµ3···µN
(t) + r20z2µ3···µN

(t) = 1, ∀ t ∈ R, (A.20)

must hold for ~r(t) = TPent
(12)
1 ,Pent

(12)
2 (t)~r(0), where ~r(0) is our initial state above. Similarly,

from the pentagon equalities (3.3) it follows for the time evolution of this state that also

r2xy0···0(t) + r20z20···0(t) = 1, ∀ t ∈ R. (A.21)

From the complementarity inequalities (2.1) it must also hold

r2xy0···0(t) + r20z2µ3···µN
(t) ≤ 1, r20z20···0(t) + r2xyµ3···µN

(t) ≤ 1, ∀ t ∈ R.

From adding up (A.20, A.21) it, in fact, follows, that these inequalities must be saturated:

r2xy0···0(t) + r20z2µ3···µN
(t) = 1, r20z20···0(t) + r2xyµ3···µN

(t) = 1, ∀ t ∈ R.

This implies that for the time evolution of our initial state,

(

r0z20···0(t)
rxy0···0(t)

)

=

(

s1 r0z2µ3···µN
(t)

s2 rxyµ3···µN
(t)

)

, ∀ t ∈ R,

where s1, s2 are two signs to be determined. From the state at t = 0, however, we know
that s2 = +1. Furthermore, we noted above that r00µ3···µN

= +1 is invariant under

TPent
(12)
1 ,Pent

(12)
2 (t). But this implies that whenever r0z20···0(t) = ±1, we must also have

r0z2µ3···µN
= ±1 since Q0z2µ3···µN

= Q0z20···0 ↔ Q00µ3···µN
. This entails also s1 = +1 and

therefore
(

r0z20···0(t)
rxy0···0(t)

)

=

(

r0z2µ3···µN
(t)

rxyµ3···µN
(t)

)

, ∀ t ∈ R.

This is only possible if, indeed, G̃Pent1,Pent2
(xy)(0z2)

(µ3, . . . , µN) ≡ GPent1,Pent2
(xy)(0z2)

for all values of the
indices µ3, . . . , µN . By completely analogous reasoning, it follows for all other components
that G̃Pent1,Pent2

(µ1µ2)(ν1ν2)
(µ3, . . . , µN) ≡ GPent1,Pent2

(µ1µ2)(ν1ν2)
. This implies that G̃Pent1,Pent2

(µ1µ2)(ν1ν2)
(µ3, . . . , µN)

only depends on its indices (µ1µ2) and (ν1ν2) and thus it can be interpreted as a proper
16× 16 matrix.

Finally, using similar states and arguments, one shows that, in generality the above
also holds for the other pair of pentagon indices, G̃Penta,Pentb

(µ1µ2)(ν1ν2)
(µ3, . . . , µN) ≡ GPenta,Pentb

(µ1µ2)(ν1ν2)
,

for all a, b = 1, . . . , 6.

Lemmas 6–8, together with (A.17, A.18), thus indeed give the desired result (3.14). It

is also clear that (3.14) generate a (reducible) representation of T (12)
2 ≃ PSU(4) on R4N−1.
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A.3.2 Quantum theory generators of pairwise unitaries for N > 2 qubits in
the adjoint representation

Here we shall argue that in the adjoint representation, the fundamental generators of the
PSU(4) subgroup of PSU(2N) that involves all time evolutions of the subsystem made up
of qubits 1 and 2 are of the following form:

G
(ω1ω20···0)
(µ1···µN )(ν1···νN ) : = f

(ω1ω20···0)
(µ1···µN )(ν1···νN ) =

1

2N
tr[[σω1ω20···0, σµ1···µN

] σν1···νN ]

= f
(ω1ω2)
(µ1µ2)(ν1ν2)

δµ3ν3 · · · δµN νN , (A.22)

where f
(ω1ω2)
(µ1µ2)(ν1ν2)

are the generators of PSU(4) in the adjoint representation corresponding

to the 4 × 4 Pauli operators as given in (A.8). The above generalizes trivially to the
generators of the PSU(4) time evolution subgroup of the subsystem of any pair of qubits
i and j. The Pauli operators are σµ1···µN

= (σµ1 ⊗ · · · ⊗ σµN
) and satisfy tr[σµ1···µN

·
σν1···νN ] = 2Nδµ1ν1 · · · δµNνN . Working out the trace in (A.22) and using the tensor property
tr[A⊗ B] = tr[A]tr[B] results in:

1

2N
tr[(σω1 · σµ1 · σν1)⊗ (σω2 · σµ2 · σν2)⊗ (σµ3 · σν3)⊗ · · · ⊗ (σµN

· σνN )

−(σµ1 · σω1 · σν1)⊗ (σµ2 · σω2 · σν2)⊗ (σµ3 · σν3)⊗ · · · ⊗ (σµN
· σνN )]

=
1

2N
tr[(σω1 · σµ1 · σν1)⊗ (σω2 · σµ2 · σν2)− (σµ1 · σω1 · σν1)⊗ (σµ2 · σω2 · σν2)]

×tr[σµ3 · σν3 ] · · · tr[σµN
· σνN ]

=
1

2N
(4f

(ω1ω2)
(µ1µ2)(ν1ν2)

)(2δµ3ν3) · · · (2δµNνN ) = f
(ω1ω2)
(µ1µ2)(ν1ν2)

δµ3ν3 · · · δµN νN .

We noted before in appendix A.2.1 that the two-qubit adjoint generators (G(ω1ω2))(µ1µ2)(ν1ν2)

:= f
(ω1ω2)
(µ1µ2)(ν1ν2)

of quantum theory coincide with the swap generators (A.5, A.7) of the re-
construction. Using the correspondence Qµ1µ2 ←→ σµ1µ2 := σµ1 ⊗ σµ2 with σ0 = 1, the
ordering of coincidence was such that G(ω1ω2) ≡ ±GPenta,Pentb where Qω1ω2 is the unique
question in Penta ∩ Pentb left invariant by the swap.35

But this immediately implies that also (A.22) coincide with the reconstructed T (12)
2 =

PSU(4) generators (3.14) (see also appendix A.3.1). Namely, the ordering of coincidence is
such that, firstly, Qµ1µ20···0 corresponds to σµ1µ20···0 := σµ1⊗σµ2⊗1⊗· · ·⊗1 and, secondly,

GPent
(1,2)
a ,Pent

(1,2)
b coincides with the adjoint representation of σµ1µ20···0 corresponding to the

unique question Qµ1µ20···0 in Pent(12)a ∩ Pent
(12)
b .

A.3.3 Evolving to product states for N > 2 in the reconstruction

Also for N > 2 all candidate pure states can be evolved to a product form.

35In appendix A.2.1 we still used the distinct but equivalent index notation with i, j labeling the ques-
tions. However, the equivalence is immediate by identifying i := ω1ω2.
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Lemma 9. Using the time evolution group TN ≃ PSU(2N), any N gbit pure state ~r can be
transformed to a state with information distribution αz1 = · · · = αz1···zN = 1 bit and all
remaining questions in the informationally complete set QMN

carrying zero bits.

Proof. Consider the hermitian traceless matrix χ :=
∑

µi
rµ1···µN

σµ1 ⊗ · · · ⊗ σµN
, where

rµ1···µN
are the Bloch vector components relative to our question basis. In section 3.2

and appendices A.3.1 and A.3.2, it was shown that the representation of TN = PSU(2N),
written in the Bloch vector question basis, is exactly the adjoint representation of SU(2N)
relative to a basis of Pauli operators, which are themselves the generators of the funda-
mental representation of SU(2N). The ordering of coincidence of the respective generators
corresponds precisely to the pairing between rµ1···µN

and σµ1···µN
:= σµ1 ⊗ · · · ⊗ σµN

in χ.
χ thus transforms as χ → U χU † with U ∈ SU(2N) in the fundamental representation
whenever ~r → T · ~r with T ∈ TN . Since χ is hermitian it is possible to diagonalize it
with some matrix U ∈ SU(2N), i.e., such that χ′ =

∑

µi
r′µ1···µN

σµ1···µN
is diagonal and

~r ′ = T · ~r with T ∈ TN . The Pauli operators ~σ form a basis of all hermitian matri-
ces and therefore only those r′µ1···µN

which multiply the diagonal σµ1···µN
’s will be non-

zero and the other components of ~r must be zero. There are exactly 2N − 1 of such
σµ1···µN

’s, namely exactly the ones where only σz or 1 appear in the tensor products [52],
i.e. σz1 = σz ⊗ 1 ⊗ · · · ⊗ 1, σz2 = 1 ⊗ σz ⊗ 1 ⊗ · · · ⊗ 1, · · · , σz1···zN = σz ⊗ · · · ⊗ σz and
therefore only the 2N − 1 components r′z1 , . . . , r

′
z1···zN are non-zero. If ~r was a pure state,

then |~r|2= 2N − 1 bits and also |~r ′|2=
∑

µi
(r′µ1···µN

)2 = 2N − 1 bits because TN pre-

serves the Bloch vector length. There are now two possibilities: (1) less than 2N − 1 of
the (r′z1 , . . . , r

′
z1···zN ) are non-zero. This is only possible if at least one of them has |r′i|> 1

and thus α′
i > 1 bit which is illegal such that in this case the original ~r could not36 have

been a legal pure state. (2) Exactly 2N − 1 of the (r′z1 , . . . , r
′
z1···zN ) are non-zero. Since

α′
i = (ri)

2 ≤ 1 bit, it follows that precisely α′
i = (r′i)

2 = 1 bit for i = z1, . . . , z1 · · · zN .
Hence, every legal pure state can be time evolved to a state with information distribution
αz1 = · · · = αz1···zN = 1 bit.

A.3.4 PSU(2N) preserves all complementarity inequalities

In section 3.2.2, we concluded that the set of states ΣN implied by the principles (and back-
ground assumptions) is precisely the set of (pure and mixed) N -qubit quantum states. We
shall now check for consistency that all states in ΣN (and thus all quantum states) indeed
satisfy the complementarity inequalities (2.1).37 To this end, we might as well perform
the check directly in quantum theory. In particular, we recall that in the correspondence
Qµ1···µN

←→ σµ1···µN
the Bloch vector description relative to our question basis and the

quantum description relative to the Pauli operator basis fully coincide. Thus, in order to

36By construction, the time evolution group must map legal states to legal states.
37Principles 1 and 3 are trivially satisfied because all pure Bloch vectors, which are generated by the

length conserving group action of TN on ~rz := ~δz1+· · ·+~δz1···zN , have a length of 2N−1 bits (corresponding
to N independent bits) and the mixed state vectors are of length smaller than 2N − 1 bits, since they
are convex combinations of pure state vectors.
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show that all states in ΣN satisfy all complementarity inequalities (2.1), we may show that
the quantum states satisfy these equalities relative to the Pauli operator basis.

Using our knowledge of quantum theory, we may henceforth effortlessly switch between
the Bloch and hermitian representation by defining for any ~r ∈ ΣN the density matrix
ρ := (1+~r ·~σ)/2N := (1+

∑

rµ1···µN
σµ1⊗· · ·⊗σµN

)/2N , for which the following statements
will hold:

• For any state ~r ∈ ΣN , ρ transforms as ρ → UρU † with U ∈ SU(2N), whenever
~r → T · ~r for some T ∈ TN ≃ PSU(2N).

• The density matrix ρ is positive-semidefinite and the quantum probability function
tr[ρ.(1 + σi)/2] ∈ [0, 1] for any Pauli operator σi.

• For any pair of states ~r, ~r ′ ∈ ΣN with corresponding density matrices ρ, ρ′ respec-
tively, the quantum transition probability tr[ρ.ρ′] ∈ [0, 1].

We begin with a lemma restricting the Bloch vector components of states featuring
information solely in a single set of non-commuting Pauli operators:

Lemma 10. 38 Suppose we have a collection of n traceless, 2N×2N hermitian and unitary
matrices {σi}ni=1 that anti-commute:

σ†
i = σi, σ2

i = 1, σiσj = −σjσi (i 6= j).

The operator

S = 1 +
n
∑

i=1

riσi ≥ 0

is positive-semidefinite if and only if |r|2:=
∑n

i=1 r
2
i ≤ 1.

Proof. Consider the traceless and hermitian matrix M := S − 1 =
∑

i riσi. Then

M2 =
∑

ij

rirjσiσj =
∑

i

r2i σ
2
i +
∑

i<j

rirjσiσj+
∑

i>j

rirjσiσj = |r|21+
∑

i<j

rirjσiσj−
∑

i>j

rirjσjσi.

Exchanging the names of the variables in the last sum, i ↔ j, shows that both sums are
actually equal, and we get

M2 = |r|21.
It follows that every eigenvalue of the Hermitian matrix M must be either +|r| or −|r|. In
fact, since M is traceless, it must have both +|r| or −|r| as eigenvalues. The eigenvalues of
the matrix S are therefore 1± |r| and S is positive-semidefinite if and only if |r|≤ 1.

38The authors are indebted to Markus Müller for the proof of this lemma.
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A set of hermitian and traceless Pauli operators {σ
µ
(1)
1
⊗· · ·⊗σ

µ
(1)
N

, . . . , σ
µ
(n)
1
⊗· · ·⊗σ

µ
(n)
N

}
which, under Qµ1···µN

←→ σµ1···µN
, correspond to a set of mutually complementary ques-

tions39 {Q
µ
(1)
1 ···µ(1)

N

, . . . , Q
µ
(n)
1 ···µ(n)

N

} will satisfy the conditions in the above lemma. The

reason is that the N = 1 qubit 2× 2 Pauli operators anti-commute themselves and there-
fore any pair of 2N × 2N Pauli operators P1 = σµ1 ⊗ · · · ⊗ σµN

, P2 = σµ′

1
⊗ · · · ⊗ σµ′

N
,

which differ in an uneven amount of non-zero indices must anti-commute as40 P1. · P2 =
(σµ1 · σµ′

1
)⊗ · · · ⊗ (σµn

· σµ′

n
)⊗ · · · = (−1)n(σµ′

1
· σµ1)⊗ · · · ⊗ (σµ′

n
· σµn

)⊗ · · · = −P2 · P1.
Therefore, all Bloch vectors with a length of exactly 1 bit whose only non-zero com-
ponents r

µ
(1)
1 ···µ(1)

N

, . . . , r
µ
(n)
1 ···µ(n)

N

correspond to a set of mutually complementary questions

{Q
µ
(1)
1 ···µ(1)

N

, . . . , Q
µ
(n)
1 ···µ(n)

N

} (including maximal sets) will constitute a valid quantum state

because its corresponding density matrix ρ = (1 +
∑

rµ1···µN
σµ1 ⊗ · · · ⊗ σµN

)/2N will be
positive semi-definite as follows from the lemma above. (The same is true, of course, if the
length of the vector would be less than 1 bit).

Note that this lemma does not immediately imply the same for arbitrary quantum states
which can also have non-zero Bloch vector components outside of just one non-commuting
Pauli operator set. We shall, however, establish this generalization next.

Lemma 11. Every quantum state satisfies the complementarity inequalities (2.1) in the
correspondence Qµ1···µN

←→ σµ1···µN
. Equivalently, every state in ΣN satisfies (2.1).

Proof. Suppose there was a state ~r featuring more than 1 bit of information in a set of mu-
tually complementary questions {Q

µ
(1)
1 ···µ(1)

N

, . . . , Q
µ
(n)
1 ···µ(n)

N

}. This implies that the length

of the Bloch vector components corresponding to those complementary questions is larger
than 1 bit, i.e. rc :=

√

∑n

i=1 r
2

µ
(i)
1 ···µ(i)

N

> 1. Lemma 10 entails that all Bloch vectors whose

only non-zero components are labeled by these indices, {(µ(1)
1 · · ·µ

(1)
N ), . . . , (µ

(n)
1 · · ·µ

(n)
N )},

and that are exactly of length 1 bit are legal quantum states and thus also legal states in
ΣN . Hence, we may define the legal Bloch vector ~r ′ = −

∑n

i=1 rµ(i)
1 ···µ(i)

N

~δ
µ
(i)
1 ···µ(i)

N

/rc ∈ ΣN

of length 1 bit, which corresponds to a legal quantum state. The transition probability
tr[ρ · ρ′] = tr[(1 + ~r · ~σ) · (1 + ~r ′ · ~σ)]/4N = (1 + ~r · ~r ′)/2N = (1 − rc)/2N < 0, however,
is negative for this pair of states and therefore ~r cannot have been a legal quantum state.
Thus, it can neither be contained in ΣN .

B The question set

As argued in the main text and in [1], for N = 1 qubit the question set Q1 is isomorphic to
the set of pure states CP

1. In the following we show that the two requirements in section
3.3 similarly imply that the question set QN for N > 1 qubits is again isomorphic to the

39We remind the reader that the questions Qµ1···µN
and Qµ′

1
···µ′

N
are complementary if and only if they

have exactly an uneven amount of non-zero indices in which they differ.
40Without loss of generality we assume that the first uneven n indices are non-zero and different between

the two Pauli operators.
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set of pure states CP
2N−1. We start by proving that the set of Pauli operators on C2N is

isomorphic to CP
2N−1.

B.1 Geometry of the set of Pauli operators

We prove two geometric properties of the set of Pauli operators.

Lemma 12. PSU(2N) acts transitively on the Pauli operators and these account for all
traceless hermitian operators on C2N with eigenvalues equal to ±1.

Proof. By definition, any Pauli operator P is hermitian and traceless. Therefore P can be
represented as P = ~n ·~σ for some ~n ∈ R4N−1, since the matrices ~σ in (3.17) form a basis of
hermitian and traceless matrices. Any hermitian matrix is diagonalizable by some matrix
U ∈ SU(2N) and thus we can write P = ~n · ~σ = UDU † where D is a diagonal matrix
with the eigenvalues of P along its diagonal. Since P is a Pauli operator, the diagonal
matrix D will contain equal amounts of plus and minus ones along its diagonal. Given
any diagonal matrix D of the form above, there always exists an orthogonal permutation
matrix Pσ which will permute the ±1’s on the diagonal of D to the ± configuration found
for the matrix σz1 := σz ⊗ 1 · · · ⊗ 1, i.e. D = Pσ · σz1 · P t

σ. If Pσ happens to be an odd
permutation matrix, we may consider the even permutation Pσ · Pσ0 ∈ SU(2N) instead
with determinant 1, where Pσ0 is any 2-cycle permutation which permutes two rows (and
the corresponding columns) of σz1 that both contain +1 and thus that leaves σz1 invariant.
Therefore, without loss of generality we have D = Pσ · σz1 · P t

σ for some Pσ ∈ SU(2N)
and thus P = ~n · ~σ = (UPσ)σz1(UPσ)† with UPσ ∈ SU(2N). We conclude that all Pauli
operators are related by conjugation with unitaries to the diagonal Pauli operator σz1 .

Lemma 13. The set of Pauli operators is isomorphic to the set of pure quantum states
CP2N−1.

Proof. We may use the fact that the matrices ~σ are exactly the fundamental generators of
PSU(2N) and therefore, by an appropriate adjoint transformation T ∈ TN on the vector

~n, we get (T · ~n) · ~σ = (UPσ)† · (~n · ~σ) · (UPσ) = σz1 and thus T · ~n = ~δz1 because
the ~σ matrices are linearly independent. We have thus shown that the vector ~n which
parametrizes the Pauli operator P is connected via the time evolution group to ~δz1 and the

set of Pauli operators is therefore isomorphic to41 TN · ~δz1. Note now that the unit vector
~δz1 ∈ R4N−1 is related by an SO(4N−1) rotationO to the vector (~δz1+· · ·+~δz1···zN )/

√
2N − 1.

The group action of TN on ~δz1 therefore results in TN · ~δz1 = Ot(O · TN · Ot)O · ~δz1 =

Ot(O · TN · Ot)(~δz1 + · · · + ~δz1···zN )/
√

2N − 1 ≃ CP
2N−1. We used first that equivalent

representations lead to isomorphic orbits, secondly that because of transitivity of the pure
state space under the action of TN , the orbit of the pure state ~r = (~δz1 + · · · + ~δz1···zN )

equals CP
2N−1, and lastly that (Ot/

√
2N − 1) is an invertible matrix. We conclude that

the set of Pauli operators is isomorphic to CP
2N−1 and parametrized by TN · ~δz1 .

41We denote the orbit of some vector ~q ∈ R4N−1 under the time evolution group action as TN · ~q :=
{T · ~q | T ∈ TN} for short.
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B.2 Structure of QN

Lemma 14. Requirements 1 and 2 imply that the set of vectors ~n parametrizing the Pauli
operators ~n ·~σ coincides with the set of all question vectors ~q. Therefore, QN is isomorphic
to the set of Pauli operators and thereby to the set of pure states such that QN ≃ CP2N−1.
In particular, QN , in its 1 bit vector representation, inherits a transitive action of the
time evolution group TN = PSU(2N) from ΣN .

Proof. By construction the question vectors correspond to legal quantum states, which
themselves evolve in the adjoint representation of PSU(2N). Therefore, we may form a
hermitian operator by contracting the question vector components with the Pauli operators
~q · ~σ := qµ1···µN

σµ1 ⊗ · · · ⊗ σµN
in the same ordering as for the state vectors. Hence, for

every U ∈ SU(2N) we have U · (~q · ~σ) ·U † ≡ (T · ~q) · ~σ for T ∈ TN and thus an action of TN
on QN inherited from the states.

We may equivalently reformulate requirements 1 and 2 in terms of the operator ~q · ~σ
corresponding to a question Q ∈ QN :

(a) Requirement 1 implies

tr[(~q · ~σ)2] = 2N |~q|2= 2N .

(b) Requirement 2 implies 0 ≤ y(Q|~r) = (1 + ~q · ~r)/2 ≤ 1 which is equivalent to

0 ≤ tr[ρ(1 + ~q · ~σ)]/2 ≤ 1 ⇒ − 1 ≤ tr[ρ(~q · ~σ)] ≤ 1,

where ρ = (1 + ~r · ~σ)/2N is the density matrix corresponding to ~r.

All hermitian operators are diagonalizable and thus there must exist a T ∈ TN which
diagonalizes ((T ·~q)·~σ) = U ·(~q·~σ)·U † = D = diag(D1, D2, . . . , D2N ), with diagonal elements
Di. Note that if ~q · ~σ satisfies (a) and (b) above, then so will the operator D, since the
first constraint is left invariant and the second is related to a valid time evolved state
T t · ~r. (a) implies tr[D2] =

∑2N

i=1D
2
i = 2N . By taking now the diagonal density matrices

ρ1 = diag(1, 0, . . . , 0), ρ2 = diag(0, 1, . . . , 0), . . . , ρ2N = diag(0, . . . , 0, 1), corresponding to
the pure states42 (rz1 = 1, rz2 = 1, . . . , rzN = 1), (rz1 = −1, rz2 = 1, . . . , rzN = 1), . . . , (rz1 =
−1, rz2 = −1, . . . , rzN = −1) respectively, (b) becomes −1 ≤ tr[ρiD] = Di ≤ 1. These
constraints can only be satisfied if D2

i = 1 for every index i and therefore Di = ±1.
Together with tr[D] = 0, we have that D is a Pauli operator as follows from the proof
of lemma 12. Since according to lemma 12 TN acts transitively on the set of all Pauli
operators, we get directly that TN also acts transitively on QN and that the set of hermitian
operators ~q ·~σ corresponding to all questions Q ∈ QN , forms a subset of the Pauli operators.
Conversely, every Pauli operator ~n · ~σ is of the form T · ~δz1 for some T ∈ TN and satisfies
(a) and (b). From requirement 2 in section 3.3.1 it then follows that the vectors ~n which
parametrize the Pauli operators correspond to valid questions Q ∈ QN .

42The other Bloch components are fixed by the correlation and complementarity structure.
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Therefore, the set of question vectors coincides with the set of vectors that parametrize
the Pauli operators ~n · ~σ, under the identification ~n = ~q. We have shown in lemma 13
that these vectors are all connected to ~δz1 by time evolution and they form a set that is

isomorphic to TN · ~qz1 ≃ CP
2N−1. Accordingly, we obtain an explicit isomorphism between

the set of Pauli operators and the question set QN by contracting each question vector ~q
(corresponding to some Q ∈ QN ) with the matrices ~σ in (3.17). We conclude that TN acts
transitively on QN and that QN is isomorphic to the set of Pauli operators and to the set
of pure states and therefore also QN ≃ CP

2N−1.

B.3 (Non-)uniqueness of pure state decompositions

In section 3.3.5 we quoted the following result:

Lemma 15. The decomposition of a pure state vector ~rpure = ~q1 + · · ·+ ~q2N−1 in terms of
question vectors ~qi for Qi ∈ QN is unique for N = 1, 2 and non-unique for N ≥ 3.

Proof. The transitivity of the TN group action on the set of pure states and QN entails
that such a decomposition of any pure state is unique if and only if it is unique for the

pure state ~(δz1 + ~δz2 + · · · + ~δz1···zN ). The ‘only if’ direction is trivial, so let us assume

now that the decomposition of ~δz1 + · · ·~δz1···zN was unique. There is a T ∈ TN such that
~δz1 + · · ·~δz1···zN = T · ~̃rpure = (T · ~̃q1) + · · ·+ (T · ~̃q2N−1). Since (T · ~̃q1), . . . , (T · ~̃q2N−1) are

valid question vectors, they must be uniquely equal (up to permutations) to ~δz1, . . . ,
~δz1···zN

by assumption. Thus, ~̃q1, . . . , ~̃q2N−1 are uniquely equal to T−1 ·~δz1 , . . . , T−1 ·~δz1···zN and the
decomposition of ~̃rpure is thus unique. Therefore, without loss of generality we will consider

henceforth the pure state ~rpure = (~δz1 + ~δz2 + · · ·+ ~δz1···zN ).
Suppose now that there was a second, decomposition of ~rpure in terms of a question set

~qi, i = 1, . . . 2N − 1. Since any ~qi must be answered with ‘yes’ in ~rpure, the Born rule (3.16)

implies y(~qi|~rpure) = 1 ⇔ ~qi · (~δz1 + ~δz2 + · · ·+ ~δz1···zN ) = 1, i = 1, . . . , 2N − 1. The triangle
inequalities then imply

∑

j∈{z1,...,z1···zN}
(~qi · ~δj)2 ≥





∑

j∈{z1,...,z1···zN}
~qi · ~δj





2

= 1.

As each question ~qi must be of length 1 bit and the 4N −1 question vectors ~δx1, . . . ,
~δz1···zN

of an informationally complete set are orthonormal, it also follows that

1 =
∑

j∈{x1,...,z1···zN}
(~qi · ~δj)2 ≥

∑

j∈{z1,...,z1···zN}
(~qi · ~δj)2,

and therefore
∑

j∈{z1,...,z1···zN}
(~qi · ~δj)2 = 1.
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Hence, the questions ~qi lie in the span of ~δz1 , . . . ,
~δz1···zN , i.e. ~qi =

∑

j∈{z1,...,z1···zN} (~qi ·~δj)~δj.
Let us now consider the hermitian matrix ~rpure · ~σ =

∑

i ~qi · ~σ =
∑

j∈{z1,...,z1···zN}
~δj · ~σ.

Every individual hermitian matrix ~qi · ~σ appearing in the sum must be diagonal because ~qi
lies in the span of the questions ~δz1 , . . . ,

~δz1···zN which, when contracted with ~σ, yield the
diagonal Pauli operators σz1 ⊗ 1 ⊗ · · · ⊗ 1, . . . , σz1 ⊗ · · · ⊗ σzN Moreover, ~qi · ~σ must be a
Pauli operator since ~qi is a legal question vector. Therefore ~qi · ~σ is a diagonal matrix with

2N−1 plus ones and 2N−1 minus ones along the diagonal and there are exactly

(

2N

2N−1

)

of

such diagonal Pauli operators. The decomposition of the pure state ~rpure is now unique if
and only if the decomposition of the matrix ~rpure · ~σ in terms of diagonal Pauli operators
is unique.

For N = 1 this decomposition is trivially unique.
For N = 2 there are precisely six diagonal Pauli operators; these are exactly the three

operators σz1⊗1,1⊗σz2 and σz1⊗σz2 , as well as the operators formed by multiplying them
by −1. The Pauli operators form a basis of traceless hermitian matrices and therefore the
matrices ~qi · ~σ must be exactly the three Pauli operators σz1 ⊗ 1,1⊗ σz2 , σz1 ⊗ σz2 and we
conclude that the decomposition for N = 2 is also unique.

For N > 2 the decomposition is, however, no longer unique. Consider for example the
simplest case of N = 3. Let us conjugate the hermitian matrix P · (~rpure · ~σ) · P t = P ·
diag(7,−1, . . . ,−1)·P t = diag(7,−1, . . . ,−1) with a permutation matrix P which permutes
two pairs of rows and columns, 2↔ 3, 4↔ 5, and therefore leaves ~rpure · ~σ invariant. The
permutation is even such that P ∈ SU(8) and P thus defines an element in the isotropy
subgroup associated to ~rpure. However, we note that the conjugation with P will not leave

the matrices (~δz1 · ~σ) = σz1 ⊗ 1 ⊗ 1 = diag(1, 1, 1, 1,−1,−1,−1,−1), . . . , (~δz1z2z3 · ~σ) =
σz1 ⊗ σz2 ⊗ σz3 = diag(1,−1,−1, 1,−1, 1, 1,−1) invariant43. A simple check shows that
the conjugation with P results in seven new Pauli operators, which all correspond to
legal but different question vectors than the questions ~δz1 , . . . ,

~δz1···rz3 appearing in the
original decomposition. P is thus not contained in the isotropy subgroup associated to
~δz1 , . . . ,

~δz1z2z3 and the seven new Pauli operators define a distinct decomposition of the
pure state.

One may convince oneself that P · (~δz1 ·~σ) ·P t = diag(1, 1, 1,−1, 1,−1,−1,−1), in fact,
represents the question Q = (Qz1 ∧ Qz2) ∨ (Qz1 ∧ Qz3) ∨ (Qz2 ∧ Qz3). Similarly, the other

Pauli operators P · (~δj · ~σ) ·P t will also correspond to legal questions. Note that whenever
Q gives ’yes’, the probability that the question Qz1 is also answered with ‘yes’ cannot be
1/2 as 3 out of 4 states representing Q = ‘yes’ also feature Qz1 = ‘yes’, and similarly for
the questions Qz2 and Qz3 . This question Q is therefore not fully pairwise independent of

either of the questions ~δz1 , . . . ,
~δz1z2z3 .

Since P ∈ SU(8) we have P · (~δj · ~σ) · P t = ((T · ~δj) · ~σ) for some T ∈ T3. The seven

questions (T · ~δz1), . . . , (T · ~δz1z2z3) are independent and compatible because so are the ~δj .

43The diagonal elements here correspond to choosing the ordering of the diagonal of the density matrix
(1 + ~r · ~σ)/8 in terms of z ’up’ or ’down’ of the three qubits as |+ + + >, |− + + >, |+− + >, |− − + >
, |++− >, |−+− >, |+−− >, |− − − >.
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Accordingly, a system of three qubits, in the pure state ~rpure, also answers ’yes’ to these 7
questions because of the Born rule. In other words, even though having full information of
either of the questions ~δj individually is not the same as having full information of either

of the T · ~δj individually, knowing the answer to all seven questions ~δz1, . . . ,
~δz1···rz3 at the

same time is equivalent to knowing the answer to T · ~δz1 , . . . , T · ~δz1z2z3 simultaneously.
The same conclusion of non-uniqueness of the pure state decomposition in terms of

question vectors holds for all N ≥ 3 because the 2(2N − 1) diagonal Pauli operators given

by σz1 , . . . , σz1···zN and their negatives is a strict subset of the

(

2N

2N−1

)

diagonal Pauli

operators for N ≥ 3.
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