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Integration by parts identities in integer numbers of dimensions.

A criterion for decoupling systems of differential equations
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Abstract

Integration by parts identities (IBPs) can be used to express large numbers of apparently different
d-dimensional Feynman Integrals in terms of a small subset of so-called master integrals (MIs). Using
the IBPs one can moreover show that the MIs fulfil linear systems of coupled differential equations in the
external invariants. With the increase in number of loops and external legs, one is left in general with
an increasing number of MIs and consequently also with an increasing number of coupled differential
equations, which can turn out to be very difficult to solve. In this paper we show how studying the
IBPs in fixed integer numbers of dimension d = n with n ∈ N one can extract the information useful
to determine a new basis of MIs, whose differential equations decouple as d → n and can therefore be
more easily solved as Laurent expansion in (d− n).

Key words: Feynman integrals, Master integrals, Schouten identities, Differential Equations

1
e-mail: lorenzo.tancredi@kit.edu



1 Introduction

Dimensionally regularised [1–3] Feynman integrals fulfil different identities, among which the most notable
ones are the so called integration by parts identities (IBPs) [4, 5]. Given a family of Feynman integrals,
the IBPs can be used to write down a large system of linear equations with rational coefficients and which
contain the Feynman integrals of that family as unknown. By solving algebraically the system a large
number of apparently different Feynman integrals can be expressed in terms of a much smaller basis of
independent integrals dubbed master integrals (MIs). In realistic application the number of such equations
can grow very fast, requiring the use of computer algebra in order to handle the complexity of the resulting
expressions. There are different public and private implementations which allow to perform the reduction
to MIs in a completely automated way [6–9] based on the so-called Laporta algorithm [10,11].

The IBPs can be used to prove that dimensionally regularised Feynman integrals fulfil linear systems of
first order differential equations in the external invariants [12–16]. Considering a Feynman graph which is
reduced to N independent MIs, by direct use of the IBPs one can derive a system of N coupled linear first
order differential equations for the latter, which can be rephrased as and N -th order differential equation
for any of the MIs. Supplemented with N independent boundary conditions, the system of differential
equations contains all information needed for a numerical or analytical calculations of the MIs. Indeed,
in the general case, the analytical solution of an N -th order differential equation is a very non trivial
mathematical problem.

It has been observed that, in many cases of practical interest, a substantial simplification of the problem
occurs when studying the behaviour of the system of differential equations as the space-time dimension
parameter d approaches 4, which is also the physically relevant case. Usually we are indeed not interested
in an exact solution for the MIs as functions of d, but instead in the coefficients of their Laurent expansion
for d ≈ 4. In [17,18], and in many subsequent applications of the differential equation method, it was shown
that it is often possible to choose a basis of MIs such that the differential equations take a simpler triangular
form in the limit d → 4. If this is possible, the problem of integrating the system of differential equations
simplifies substantially, reducing de facto, at every order in (d − 4), to N subsequent integrations by
quadrature. Experience showed that, whenever such a form is achievable, the differential equations can be
integrated in terms of a particular class of special functions, the multiple polylogarithms (MPLs) [17,19,20].
The latter have been studied extensively by both mathematicians and physicists and routines for their
fast and precise numerical evaluation are available since some time [21–23]. Disclosing their algebraic
properties allowed furthermore the development of very powerful tools for the analytical manipulations of
these functions [24–26].

More recently it has been shown [27,28] that in many of these cases a basis of MIs can be found, such that
the system of differential equations takes a particularly simple form, commonly referred to as canonical

form. The system is said to be in canonical form if the regularisation parameter d can be completely
factorised from the kinematics, appearing as an explicit (d− 4) factor in front of the matrix of the system.
In addition, the coefficients of the matrix must be total-differentials of logarithms of functions of the external
invariants (i.e. they are said to be in d-log form). A canonical basis is particularly convenient as it allows
a straightforward integration as series expansion in (d − 4) and, due to the d-log form of the coefficients,
it integrates directly to MPLs of uniform transcendental weight. Criteria for the construction of candidate
canonical integrals have been presented in [28] and developed in detail, for example, in [29]. In the special
cases in which the differential equations depend only linearly on the dimensions d, the Magnus algorithm
can be used to perform a rotation of the system to a canonical form [30]. For a recent application of the
algorithm see [31]. A completely different approach based on Moser algorithm [32] has been developed for
the univariate case in [33] and discussed also independently in [34]. Another interesting approach is based
on the properties of higher order differential equations fulfilled by the individual master integrals [35]. In
spite of all this impressive progress, a fully automated algorithm, working also in the multivariate case,
is still missing. It has nevertheless become clear that, if one can find a basis of MIs whose differential
equations become triangular as d → 4, it is often (but not always) relatively easy to bring it in canonical
form by removing the undesired terms in the differential equations [36].

Indeed, different examples are known where neither finding a canonical basis nor a triangular one is
possible. In all these cases the master integrals cannot be integrated in terms of simple multiple poly-
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logarithms only [37–40]. It becomes therefore a very interesting problem that of finding a set of criteria
to determine whether, given a Feynman graph, there exists a basis of MIs whose system of differential
equations becomes triangular in the limit for d → 4. This would provide a way to easily classify all possible
diagrams where this is not possible and that would therefore be expected to evaluate to more complicated
classes of function. Aim of this paper is to show that a large amount of information about the possibility
of achieving such decoupling can be extracted by studying the IBPs for fixed even numbers of dimensions,
i.e. in the limit d → 2n, where n is any integer number. Tarasov-Lee shifting identities [41, 42] allow, in
fact, to directly relate the structure of the differential equations in any even number of dimensions with
the physical case d = 4. Indeed, since Feynman integrals are usually divergent at d = 2n, this limiting
procedure must be carried out as a Laurent series in (d− 2n).

The rest of the paper is organised as follows. In Section 2 we review the use of integration by parts
identities for the reduction to master integrals and we summarise the main results of the differential equa-
tions method. In Section 3 we outline the central idea of the paper. We show in particular what kind
of information can be extracted by solving the IBPs as Laurent series for d → 2n and how to use it to
simplify the system of differential equations. In Section 4 we then apply these ideas explicitly to many
different examples of increasing complexity. Some comments on the method are given in Section 4.7, where
we try as well to point out some relevant open issues. Finally we conclude in Section 5. In Appendix A we
compare our method with the Schouten identities introduced in [39], while in Appendix B we show how to
shift a system of differential equations of an even number of dimensions.

2 Integration by Parts identities and Differential Equations

Let us consider an l-loop scalar Feynman integral depending on P independent external momenta pi

I(d; a1, ..., aτ , b1, ..., bσ) =

∫ l
∏

j=1

ddkj
(2π)2

Sb1
1 ... Sbσ

σ

Da1

1 ... Daτ

τ
, (2.1)

where ki are the loop momenta, Di = q2i −m2
i are the propagators and Si = kj · pl are irreducible scalar

products. In view of the discussion below, we will usually denote the integrals of a topology as in (2.1),
keeping explicitly only the dependence on the dimensions d and on the powers of denominators and scalar
products. In dimensional regularisation, for every integral of the form (2.1) there always exists a value of
the space-time dimensions d, such that the integral is convergent2. Necessary condition for the convergence
of an integral is the integrand be zero at the boundaries. This condition can be mathematically rephrased
as

∫ l
∏

j=1

ddkj
(2π)2

∂

∂kµn

(

vµm
Sb1
1 ... Sbσ

σ

Da1

1 ... Daτ

τ

)

= 0 , (2.2)

where the vµm are any of the external or internal momenta vµm = {k1, ..., kl; p1, ..., pP } . Such an identity is
called an integration by part identity or IBP. It is clear that in this way l(l+P −1) IBPs can be established
for each integrand. Upon explicitly evaluating the derivatives and contracting with the momenta vµm, new
integrals belonging to the same topology (i.e. integrals with the same set of denominators) are generated.
In particular, each IBP identity can relate integrals with (s − 1), s and (s+ 1) powers of scalar products,
and (t + r) or (t + r + 1) powers of propagators. Notice that, by contracting with vµm, new reducible
scalar products can be generated, which could then simplify some of the denominators producing integrals
belonging to any of the (t− 1) sub-topologies of the original graph.

It has been shown [10,11,16] that the system of IBPs, which appears in general to be over-constrained,
can instead be solved allowing to express most of the integrals as linear combinations of a small subset of
basic integrals, dubbed master integrals (MIs). Indeed, as for any algebraic basis, the choice is not unique
and, by suitable changing the basis, one can substantially simplify the calculation of the integrals, as we
will discuss later in this paper.

2All scaleless integrals in dimensional regularisation are zero for consistency
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Let us consider now a Feynman graph (or a topology) characterised by a set of propagators Di and
irreducible scalar products Si. All integrals will depend on the space-time dimensions d and on the external
invariants xij = pi · pj , where pi are as usual the external momenta. Let us assume, for definiteness, that
by solving the system of IBPs3 all integrals for the given graph can be expressed in terms of a basis of
N independent MIs Ii(d;xij) with i = 1, ..., N , which are of the same form of (2.1). Differentiating with
respect to any of the external invariants xij amounts to differentiating with respect to linear combinations
of the external momenta pµi [14]. Therefore, by acting with these differential operators directly on the
integrands of (2.1), one produces linear combinations of integrals belonging to the same Feynman graph
and to its sub-topologies. The latter can again be reduced to MIs, generating in this way a system of N
linear first order differential equations with rational coefficients in any of the invariants xij . Suppressing the
dependence on the sub-topologies, which can be considered as a known inhomogeneous term in a bottom-up
approach, the homogeneous part of the system can always be written as

∂

∂xij





I1(d;xij)
...

IN (d;xij)



 =





c11(d;xij) ... c1N (d;xij)
... ... ...

cN1(d;xij) ... cNN(d;xij)









I1(d;xij)
...

IN (d;xij)



 (2.3)

where the coefficients cij(d; p
2) are simple rational functions of the dimensions d and of the external invari-

ants xij . We can rewrite the system in matrix form as

∂

∂xij

~I(d;xij) = A(d;xij) ~I(d;xij) , (2.4)

where we introduced the vector of master integrals ~I(d;xij) and the matrix of the coefficients A(d;xij).
The system (2.3) is, in the general case, coupled and can therefore be rephrased as an N -th order

differential equation for any of the MIs Ii(d;xij). In most practical applications we are interested in
determining the MIs as Laurent expansion for d ≈ 4

Ii(d;xij) =

∞
∑

α=−a

I
(α)
i (4;xij) (d− 4)α . (2.5)

By expanding both left- and right-hand-side of (2.3) one is left with a chained system of N differential
equations where, at any order α, the previous orders can only appear as inhomogeneous terms.

2.1 An optimal basis of master integrals

It has been shown by Tarasov and Lee [41, 42] that the value of a Feynman integral in d space-time
dimensions can be directly related to that of the same integral in d−2 or d+2 space-time dimensions. This
implies that, if all MIs of a given graph are known as Laurent expansion in any even number of dimensions,
d = 2n,

Ii(d;xij) =

∞
∑

α=−b

I
(α)
i (2n;xij) (d− 2n)α , (2.6)

then the coefficients of their series expansions in d = 4, I
(α)
i (4;xij) in (2.5), can be obtained as linear

combinations of the I
(α)
i (2n;xij). For more details see for example [37,39] and the discussion in Appendix B.

Indeed, changing the basis of MIs changes the form of the matrix A(d;xij) in equation (2.4). An
interesting problem is therefore how to define an optimal basis of MIs in order to simplify as much as
possible the system (2.3). Since we are interested in computing the MIs as Laurent expansion in (d−4) (or,
in general, in (d− 2n)), an obvious simplification would occur if we could decouple some of the differential

3Note that, in order to have a complete reduction, one must also consider all possible symmetry relations among the
integrals due to shifts of the loop momenta.
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equations, at least in the considered limit. In particular, given a system of N coupled equations, one
could think of classifying the complexity of the latter by determining the minimum number of differential
equations that cannot be decoupled in the limit d → 4 (or more generally d → 2n).

At this point it is useful clarify more precisely what we mean with decoupling in this context. Let us
consider a 2× 2 coupled system of differential equations4

∂

∂x
~I(d;x) = A(d;x) ~I(d;x) , (2.7)

where ~I(d;x) = (I1(d;x), I2(d;x)) is the 2-vector of unknown functions, A(d, x) is a 2 × 2 matrix, d are
the space-time dimensions and x is a variable the functions depend on5. Assume now for simplicity that
the functions I1(d;x), I2(d;x) are finite in the limit d → 4 and that the matrix A(d;x) does not contain
any explicit poles in 1/(d − 4). Assume finally that, in the limit d → 4, the matrix A(d;x) has non-zero

non-diagonal entries, and therefore that the system is coupled in the limit d → 4. Of course, by expanding
the entries of A(d;x) in (d− 4) we can write our system as

∂

∂x
~I(d;x) = A(0)(4;x) ~I(d;x) + (d− 4)A(1)(4;x) ~I(d;x) +O

(

(d− 4)2
)

. (2.8)

It is now clear that if, by any means, we can find two independent solutions to the 2× 2 system

∂

∂x
~f(x) = A(0)(4;x) ~f(x) (2.9)

say (v1(x), v2(x)) and (w1(x), w2(x)), then we can define the new vector ~J (d;x) through the rotation

~J (d;x) = G(x) ~I(d;x) , with G(x) =

(

v1(x) w1(x)
v2(x) w2(x)

)

(2.10)

such that the differential equations satisfied by ~J (d;x) assume the form

∂

∂x
~J (d;x) = (d− 4)G−1(x)A(1)(4;x)G(x) ~I(d;x) +O

(

(d− 4)2
)

, (2.11)

i.e. they become trivial in the limit d → 4. The matrix G(x) can be of course arbitrarily complicated, as it
contains the solutions of a second order differential equation. In this case we would have of course achieved
a decoupling, but at the price of having to solve a coupled system of differential equations, which is in the
general case not possible.

On the other hand, what we are really interested in is to determine whether a basis of MIs exists such
that some of the non-diagonal terms of the matrix A(d;x) become zero in the limit d → 4, and such that
this basis can still be reached from our starting basis only through IBPs (i.e. without having to solve a
coupled system of differential equations!). What this means in practice is that, if such a basis existed, then
the rotation matrix G would assume a very simple form, namely it would contain only rational functions
of the external invariants xij (and of the dimensions d). This new basis would therefore fulfil a system of
differential equations where some (or all) of the MIs decouple in the limit d → 4, and still it would be a
system of linear differential equations with rational coefficients only. In this respect we note that, for all
known cases of MIs which can be integrated in terms of multiple polylogarithms, a change of basis in the
sense described above can be found and the system of differential equations can be put in triangular form
as d → 4

∂

∂xij

~J (d;xij) = T (4;xij) ~J (d;xij) +O(d− 4) (2.12)

where T (4;xij) is a triangular matrix and does not depend on the dimensions d. From the point of view
of the classification outlined above this corresponds to the easiest case, where all equations decouple in the

4Again, we neglect the inhomogeneous terms everywhere.
5In the case of Feynman integrals x represents a generic Mandelstam variable.
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limit d → 4 and, effectively, the problem reduces to many independent integrations by quadrature. Finding
a basis in this form is often a first step towards a canonical basis in the sense introduced in [28]. We want
to stress here that of course all these considerations apply in the very same way for any integer number of
dimensions d → n (even or odd).

Unfortunately a change of basis of this kind cannot always be found. Several cases are known where the
system cannot be completely triangularised and instead at least two differential equations remain coupled.
In these cases MPLs turn out not to be enough for describing the solution and the class of functions must
be enlarged to include also elliptic generalisations of the latter [43]. It is unclear whether this will be the
end of the story, since cases where 3 or more coupled equations survive are relatively easy to find, as we
will show in the following. What still appears to be missing is a criterion to determine, given a Feynman
graph, what is the minimum number of equations which cannot be decoupled. Together with simplifying
as much as possible the problem at hand, this could also give a hint to which class of functions are required
for describing the solution.

3 Reading the IBPs in fixed numbers of dimensions

In order to find a possible working criterion to determine the minimum number of coupled differential
equations we should go back to think how the differential equations are derived. We saw that differentiating
a master integral with respect to the external invariants produces new integrals belonging to the same
Feynman graph. By using the IBPs one can then reduce these integrals to MIs, ending up with a system
of differential equations. If we start with N master integrals we will obtain in general a coupled system of
N linear differential equations. The fact that the N differential equations are coupled can be seen, in this
respect, as due to the linear independence of the N master integrals in d dimensions.

As we already discussed, for any physical application we are interested in computing Feynman integrals
as Laurent series in (d − 4) or, more generally, in (d − 2n) with n ∈ N. Of course, different integrals
have different degrees of divergence, i.e. their Laurent expansion starts at different orders in (d − 2n).
For any value of the dimensions, nevertheless, the maximal divergence can be computed in dimensional
regularisation and depends only on the topology of the graph under consideration (i.e. on the number of
loops, of external legs etc.). We can therefore imagine to first generate the IBPs in d dimensions and then
expand them as a Laurent series in (d − 2n), obtaining in this way a chained set of systems of IBPs, one
for every order in (d− 2n). It is clear that, by construction, at every order in (d− 2n), the homogeneous
part of each system will be identical, while the inhomogeneous part will contain the previous orders of the
expansion (and the sub-topologies, that we will neglect throughout). If we limit ourselves to the first order
of the expansion, i.e. the one corresponding to the highest pole in (d − 2n), the system of equations that
we are left with is equivalent to the original system of IBPs where d is fixed to be d = 2n, and corresponds
to the sole homogenous system.

Now, it is very well known that upon fixing the number of space-time dimensions in the IBPs to an
integer value it may happen that some of the equations degenerate and, in particular, that some of the
integrals that used to be linearly independent for generic values of d, become linearly dependent from each
other. From the point of view of the differential equations satisfied by the master integrals, if some of the
integrals were to become linearly dependent in the limit d → 2n, one would expect that those masters
should not bring any new information in that limit and it should therefore be possible to decouple them
from the system of differential equations as d → 2n. Let us try to state this point more precisely. As
exemplification we consider a topology that is reduced to 2 master integrals which we call I1(d;x) and
I2(d;x), where d are the dimensions and x is a generic Mandelstam variable. Neglecting the sub-topologies
the system of differential equations that they satisfy can be written as







∂
∂ x

I1(d;x) = c11(d;x) I1(d;x) + c12(d;x) I2(d;x)

∂
∂ x

I2(d;x) = c21(d;x) I1(d;x) + c22(d;x) I2(d;x)
(3.1)

where the cij(d;x) are rational functions. Let us now follow the argument above and generate the IBPs
fixing d = 2n. Let us assume that, by solving this simplified system, one of the two master integrals

5



becomes linearly dependent from the other one and the new IBPs produce the relation

I2(2n;x) = b(x) I1(2n;x) , (3.2)

where b(x) is a rational function of the Mandelstam variables6. Equation (3.2) implies that in d = 2n
one of the two master integrals becomes linearly dependent in the sense of the IBPs. According to the
argument above we would therefore expect to be able to decouple the two differential equations in this
limit. In order to see this it is useful to ask ourselves how such a relation can emerge from the original
d-dimensional IBPs. Let us imagine that upon solving the IBPs for generic d, we can find a d-dimensional
relation expressing a given integral of the graph under consideration, say K(d;x), as a linear combination
of the two masters and such that

K(d, x) =
1

d− 2n
(b1(d;x) I1(d;x) + b2(d;x) I2(d;x)) , (3.3)

with b1(x)/b2(x) = b(x) and limd→2n bi(d;x) = bi(x), for i = 1, 2. It is clear that, if this is the case, the
IBPs which would generate this identity for generic d, would instead generate (3.2) once d is fixed to be
d = 2n. These relations are precisely what we are looking for. To refer to the latter we will often use
throughout the paper the notation

b1(d;x) I1(d;x) + b2(d;x) I2(d;x) = O(d− 2n), (3.4)

or equivalently
b1(x) I1(d;x) + b2(x) I2(d;x) = O(d− 2n), (3.5)

where it should be understood that, in general, this does not mean that the combination above is really of
order O(d − 2n), but simply that it becomes zero upon setting d = 2n in the IBPs. Note that, of course,
using the bi(x) instead of the bi(d;x) can only produce corrections of order O(d − 2n) due to (3.3). We
will see many examples of these relations in the sections below.

Naively, the fact that only one integral is linearly independent for d = 2n would require that the integral
itself should satisfy a first order differential equation as d → 2n. Finding a basis of master integrals for
which this first order equation emerges is equivalent to finding a basis which decouples the system (3.1).
To this aim let us perform the following rotation of the master integral basis

J1(d;x) = b1(x) I1(d;x) + b2(x) I2(d;x) , J2(d;x) = I2(d;x) . (3.6)

The system (3.1) under this rotation becomes

∂

∂ x
J1(d;x) =

(

c11(d;x) +
b2(x)c21(d;x) + b′1(x)

b1(x)

)

J1(d;x)

+

(

b1(x)c12(d;x) + b2(x) (c22(d;x)− c11(d;x)) + b′2(x) −
b2(x) [b2(x)c21(d;x) + b′1(x)]

b1(x)

)

J2(d;x)

∂

∂ x
J2(d;x) =

(

c22(d;x) −
b2(x)

b1(x)
c21(d;x)

)

J2(d;x) +
c21(d;x)

b1(x)
J1(d;x) . (3.7)

Equations (3.7) do not look particularly illuminating at first glance. We claim nevertheless that these
equations are precisely what we were looking for. The basis J1(d;x),J2(d;x) defined in (3.6), in fact, has
been chosen in order to exploit the linear dependence of the two master integrals in the limit d → 2n. In this
limit the IBPs tell us that J1(d;x) is by construction suppressed by a factor (d−2n) and therefore decouples
from the problem. We expect therefore that the differential equation for the latter should decouple in this
limit or, in other words, that
(

b1(x)c12(d;x) + b2(x) (c22(d;x)− c11(d;x)) + b′2(x) −
b2(x) [b2(x)c21(d;x) + b′1(x)]

b1(x)

)

∝ O(d−2n) . (3.8)

6To be precise we should recall that, since the master integrals can be divergent, this relation cannot be seen, in general,
as a real relation between the two masters.
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If this is true then upon expanding the system of differential equations as Laurent series in (d − 2n) one
can, at every oder, first solve the differential equation for J1(d;x) by quadrature, and then use this as an
input for the second equation. A rigorous mathematical proof of equation (3.8) is outside the scope of this
paper and we will limit ourselves to show explicitly how this works in practice with several examples of
different complexity.

The considerations above can be easily generalised to N master integrals I1,..., IN . In this case one
starts with a system of N coupled differential equations. By solving the IBPs for d = 2n one can then
verify how many of the master integrals become linearly dependent in this limit. Assuming that N −M
integrals remain independent, this means that M relations like (3.3) can be found, say

K1(d;x) =
1

d− 2n
(b11(d;x)I1(d;x) + ...+ b1M (d;x)IM (d;x)) ,

...

KM (d;x)=
1

d− 2n
(bM1(d;x)I1(d;x) + ...+ bMM (d;x)IM (d;x)) , (3.9)

and the bij(d;x) are as always rational functions of the dimensions and of the Mandelstam variables7. As
for the previous example we will often write these relations as

b11(d;x)I1(d;x) + ...+ b1M (d;x)IM (d;x) = O(d − 2n) ,

...

bM1(d;x)I1(d;x) + ...+ bMM (d;x)IM (d;x) = O(d − 2n) , (3.10)

where once more we imply that these combinations become zero upon setting d = 2n in the IBPs. As
before we define bij(x) = limd→2n bij(d;x) and, following the same reasoning, we can then try to rotate
the basis of master integrals to

J1(d;x) = b11(x)I1(d;x) + ...+ b1M (x)IM (d;x) ,

..

JM (d;x) = bM1(x)I1(d;x) + ...+ bMM (x)IM (d;x) ,

JM+1(d;x) = IM+1(d;x) ,

..

JN (d;x) = IN (d;x) . (3.11)

Under the rotation (3.11), we expect the M integrals J1(d;x), ..., JM (d;x) to decouple from the remaining
independent integrals in the limit d → 2n, as in (3.7). One must be cautious here on what is intended
by decoupling. According to the arguments above, upon the change of basis (3.11), we expect the system
of differential equations to split into two blocks in the limit d → 2n, one M × M and the other (N −
M) × (N − M). This would correspond, order by order in (d − 2n), to an M -th plus an (N − M)-th
order differential equation, unless for some other reason internally the two blocks of differential equations
further decouple in this limit. On the other hand, for the Feynman graphs that we considered so far (see
for example Sections 4.3 and 4.6), even a stronger claim can be made. In these cases the rotation (3.11) not
only splits the system into two blocks, as described above, but it also produces an explicit (d− 2n) in front
of the whole M ×M block originated from relations (3.10). This explicit overall factor allows to effectively
reduce the problem to the solution of one single (N −M)-th differential equation, plus M integrations by
quadrature. The reason for this behaviour is still partly unclear and deserves further study.

Summarising, the discussion above brings us to the following conclusion. Given a topology with N
master integrals which fulfil a set of N coupled differential equations in d space-time dimensions, the study
of the IBPs in fixed numbers of dimensions, say d = 2n, provides a tool to determine how many master
integrals can be decoupled from the differential equations as d → 2n. Of course, the arguments given above

7For this to be true the relations (3.9) must be linearly independent in the limit d → 2n.
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are partly oversimplified and we have not provided here any rigorous mathematical proof. The structure
of the differential equations can be in general very involved and, instead of embarking on complicated
mathematical arguments, we prefer to show explicitly how this ideas can be simply applied to different
cases of increasing complexity. In the next section we will start off considering simple examples where,
by fixing the number of dimensions to an even integer value, only one master integral remains linearly
independent and therefore the problem can be reduced to the solution of one linear differential equation.
We will then move to more interesting cases where, even in fixed numbers of dimensions, more than one
master integral remain linearly independent and one cannot avoid the problem of solving higher order
differential equations which give rise to more complicated mathematical structures.

4 Explicit examples

In the previous section we outlined the main ideas behind this paper. We have discussed that the IBPs
might degenerate in the limit of fixed (even) integer numbers of dimensions d → 2n, such that some of
the master integrals become effectively linearly dependent from each other. While this is a very well know
fact, we argued that this degeneracy, if present, can be used in order to simplify the system of differential
equations satisfied by the master integrals. In this section we will present many explicit examples of this
very simple idea. We will start studying the two-loop sunrise graph with one massive and two massless
propagators, Section 4.1, and a two-loop triangle with three off-shell legs, Section 4.2. In both examples
there are only two master integrals and by studying the IBPs in fixed even numbers of dimensions, one
relation can be found, allowing to decouple the differential equations in that limit. We will then consider
the case of the two-loop massive sunrise, Section 4.3, and of a non-planar two-loop triangle, Section 4.4.
In both cases not all equations can be decoupled, and a minimal bulk of two differential equations remains
coupled, giving rise to elliptic functions. We will then study the case of a two-loop massive triangle with
three master integrals, Section 4.5. Here, similarly to the non-planar two-loop triangle, there are three
master integrals. In this case, nevertheless, the differential equations can be completely decoupled and
the solution can be written in terms of MPLs. Finally, as a last example, we will move to the three-loop
massive banana graph 4.6. In this case, we will study different possible mass-arrangements of increasing
complexity, showing how the number of master integrals changes consequently, and how our method allows
to determine easily which subset of master integrals can be immediately decoupled from the differential
equations.

4.1 The two-loop sunrise with one massive propagator

Let us start off by considering the case of the two-loop sunrise with one massive and two massless propa-
gators. We define the following set of integrals belonging to its Feynman graph

I(d;n1, n2, n3, n4, n5) = ✲✫✪
✬✩

m

p2

=

∫

D
dkDdl

(k · p)n4(l · p)n5

(k2)
n1 (l2)

n2 ((k − l+ p)2 −m2)
n3

, (4.1)

where p2 = s is the momentum transfer. The integration measure is defined as

D
dk = C(d)

ddk

(2π)d
, (4.2)

and the explicit form of the function C(d) is not relevant for the considerations below. Note that this
Feynman graph does not contain any sub-topology. We keep explicit only the dependence on the space-
time dimensions d and on the powers of the denominators and scalar products, which will be important
for what follows. Performing a usual reduction through IBPs one finds two independent MIs, which can be
chosen as

I1(d; s) = I(d; 1, 1, 1, 0, 0) , I2(d; s) = I(d; 1, 1, 2, 0, 0) . (4.3)
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Using the methods outlined in the previous sections we can now derive the differential equations fulfilled
by I1 and I2 in the momentum squared s. This step can be performed automatically using, for example,
Reduze 2 [9], and we end up with the following 2× 2 linear system

dI1
ds

=
(d− 3)

s
I1 −

m2

s
I2 ,

dI2
ds

=
(d− 3)(3d− 8)

2m2

(

1

s
−

1

s−m2

)

I1 +

(

2(d− 3)

s−m2
−

(3d− 8)

2 s

)

I2 . (4.4)

As one can immediately see, the equations are coupled for any even value of the dimensions d8.
It is well known that these integrals can be computed as a series expansion in d → 4 in terms of HPLs

only, see for example [44]. Let us then try and use the ideas outlined in Section 3 in order to decouple the
differential equations in the limit d → 4. First of all note that, in the limit d → 4, both master integrals
are UV divergent and in particular they both develop a double pole

I1(d; s) =
1

(d− 4)2
I
(−2)
1 (4; s) +

1

(d− 4)
I
(−1)
1 (4; s) +O(1) (4.5)

I2(d; s) =
1

(d− 4)2
I
(−2)
2 (4; s) +

1

(d− 4)
I
(−1)
2 (4; s) +O(1) . (4.6)

Moreover it is easy to show that any integral of the form (4.1) can at most develop a double pole in
(d− 4). Equipped of these consideration, let us now produce the IBPs for this Feynman graph as described
above but, instead of solving them keeping the full dependence from the parameter d, we can set d = 4.9

As we discussed in detail in the previous section, this is equivalent to expanding the IBPs in Laurent series,
and considering the first of the chained systems of equations obtained, namely the one corresponding to
the double pole in (d − 4). Following the arguments of the previous section, we would expect to find a
degeneracy of the two master integrals in d = 4, which should then allow us to decouple the two differential
equations. As expected the two masters (4.3) become linearly dependent

I
(−2)
2 (4; s) =

1

m2
I
(−2)
1 (4; s) . (4.7)

In the notation of Section 3 we can write this relation as

I1(d; s) −m2 I2(d; s) = O(d − 4) , (4.8)

recalling that this does not mean that this linear combination is of order O(d − 4), but that it becomes
zero if we fix d = 4 in the IBPs.

In this particular case, since the Feynman graph under consideration does not have any sub-topologies,
equation (4.7) can be seen as a real relation between the highest poles of the two master integrals. This
relation, which is naturally derived from the IBPs only, can be easily verified by computing the highest
poles of the two master integrals. A very simple exercise gives

I1(d; s) =
1

(d− 4)2

(

m2

2

)

+O

(

1

(d− 4)

)

I2(d; s) =
1

(d− 4)2

(

1

2

)

+O

(

1

(d− 4)

)

, (4.9)

in agreement with eq. (4.7). The overall normalisation of (4.9) is of course arbitrary and it has to do with
the choice for the integration measure (4.2). Let us now try and exploit this relation in order to simplify
the system of differential equations (4.4). We perform the change of basis from the “standard” MIs I1(d; s),
I2(d; s), to the new MIs defined as

J1(d; s) = I1(d; s)−m2 I2(d; s) , J2(d; s) = I1(d; s) . (4.10)

8On the other hand, the equations become triangular as d → 3.
9The possibility of solving IBPs for fixed values of d is already implemented in the development version of Reduze 2.
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Note that in this case the first of the two masters in (4.10) has only a single pole in (d−4) due to exactness
of relation (4.7). As second master integral we can choose any of the two and here we performed simply
a random choice picking I1(d; s). Choosing I2(d; s) would indeed bring to equivalent results. Deriving the
differential equations for the new basis we find

dJ1

d s
=

[

2

s−m2
−

1

s
+ (d− 4)

(

2

s−m2
−

3

2 s

)]

J1

+ (d− 4)

[

3

2(s−m2)
−

1

s
+

3

2
(d− 4)

(

1

s−m2
−

1

s

)]

J2

dJ2

d s
=

1

s
J1 +

(d− 4)

s
J2 . (4.11)

Equations (4.11) confirm the discussion in Section 3 and can therefore be seen as of the main result of this
paper. Let us have a closer look at these two equations and compare them to (4.4). We note immediately
that the equations are not in canonical form. On the other hand, the matrix of the system does become
triangular in the limit of d → 4, and in particular the master J2 appears in the the differential equation
for the integral J1 multiplied by an explicit factor (d− 4), as predicted in (3.8). For any practical purposes
this is enough, since it means that one can expand the differential equations as Laurent series in (d − 4)
and, order by order, first solve the differential equation for J1 by simple quadrature, and then use this
result as input for the differential equation for J2, which can in turn be solved by quadrature. Needless to
say, this procedure can in principle be iterated up to any order in (d− 4).

A comment is in order. In this simple example the relation found by studying the IBPs in d = 4 can be
interpreted as an actual relation between the double poles of the two master integrals. Very often the first
poles of randomly chosen MIs are either constants or very simple rational functions. One might therefore
naively think that, by evaluating explicitly the poles of a given set of MIs, one could simply look for simple
relations among the latter. Such relations would indeed contain only simple rational functions. It is well
known, though, that in several cases the poles of a master integrals can be represented entirely through
its sub-topologies. If this is the case, a relation between the poles of the masters would be useless, as it
would not bring any new information as far as the master integrals are concerned. In order to achieve
a decoupling one must therefore use a relation which is contained in the IBPs and as such represents an
effective degeneracy of the master integrals in the limit d → 2n, with n ∈ N.

4.1.1 Simplification of the differential equations in d = 2

It is interesting to see what happens by repeating the same analysis for the graph (4.1) in d = 2 instead
of d = 4. Again, an easy analysis of the two master integrals (4.3) shows that they both develop a double
pole in d = 2, which in this case is of IR origin

I1(d; s) =
1

(d− 2)2
I
(−2)
1 (2; s) +

1

(d− 2)
I
(−1)
1 (2; s) +O(1) (4.12)

I2(d; s) =
1

(d− 2)2
I
(−2)
2 (2; s) +

1

(d− 2)
I
(−1)
2 (2; s) +O(1) . (4.13)

As before, one can easily see that also in this case all integrals of the form (4.1) can develop at most a
double pole in (d − 2). We can proceed and generate the IBPs for generic d and then expand them as
Laurent series, this time in (d − 2), starting from 1/(d − 2)2. We are then left with a series of chained
systems of IBPs, each for a different order in (d− 2). As in the previous case, we can now focus on solving
the first system, corresponding to the double pole. This again is equivalent to considering the original
system of IBPs and simply fixing d = 2. Upon doing this one immediately sees that once more the two
MIs become linearly dependent

I
(−2)
2 (2; s) =

1

s−m2
I
(−2)
1 (2; s) . (4.14)

Proceeding as above, we can choose as new basis of MIs

J1(d; s) = I1(d; s)− (s−m2)I2(d; s) , J2(d; s) = I1(d; s) . (4.15)
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Deriving the differential equations for J1 and J2 one finds immediately

dJ1

ds
= (d− 2)

[

2

s−m2
−

3

2 s

]

J1 + (d− 2)

[

3(d− 2)

2 s
−

2

s−m2

]

J2

dJ2

ds
=

[

1

s−m2
−

1

s

]

J1 +

[

(d− 2)

s
−

1

s−m2

]

J2 . (4.16)

Again, as expected from our analysis in d = 4, we see that differential equation for J1 decouples from the
one for J2 in the limit d → 2, respecting the same pattern described in equation (3.8). Once more for every
practical purposes this is enough to reduce the solution of the system of differential equations to iterated
integrations by quadrature.

4.2 A two-loop triangle with three legs off-shell

Let us consider now a massless two-loop three-point function with three legs off-shell. The problem has
been widely studied in the literature, mainly in the context of vector boson pair production [45–48], and it
is well known that this Feynman graph can be reduced to two independent MIs, which can be integrated
in terms of MPLs only. We define the Feynman graph as follows

I(d;n1,n2, n3, n4, n5, n6, n7) = ✲

✲

✲

�
�

❅
❅

q
p1

p2

=

∫

D
dkDdl

(l · l)
n5 (k · p2)

n6 (l · p2)
n7

(k2)
n1 ((k − l)2)

n2 ((l − p1)2)
n3 ((k − p1 − p2)2)

n4
, (4.17)

where p21 = m2
1, p

2
2 = m2

2 and q2 = (p1 + p2)
2 = s.

We used Reduze 2 in order to reduce this graph to two independent MIs

I1(d; s,m
2
1,m

2
2) = I(d; 1, 1, 1, 1, 0, 0, 0) , I2(d; s,m

2
1,m

2
2) = I(d; 2, 1, 1, 1, 0, 0, 0) . (4.18)

We can then proceed and derive the differential equations for these two MIs. As always we neglect the
sub-topologies throughout. In this particular case the latter are simple two-loop corrections to massless
two point functions which have been known analytically for a very long time.

The homogeneous part of the differential equations in the momentum transfer s reads

P (s,m2
1,m

2
2)

d I1
d s

=
(d− 4)(m2

1 −m2
2)

2 +
(

(3d− 8)m2
1 − 3(d− 4)m2

2

)

s+ 2(d− 4)s2

2s
I1 + 2 sm2

1 I2

(4.19)

P (s,m2
1,m

2
2)

d I2
d s

=
(10− 3 d)

(

(d− 3)(m2
1 −m2

2) + (2d− 7) s
)

2s
I1

+
(d− 6)(m2

1 −m2
2)

2 +
(

(22− 5d)m2
1 + (d+ 2)m2

2

)

s− 2(d− 2) s2

2s
I2 (4.20)

where we defined the polynomial

P (s,m2
1,m2) = m2

1 + (s−m2
2)

2 − 2m2
1(s+m2

2) . (4.21)

The equations are coupled in the limit d → 4. Again, as for the sunrise studied in Section 4.1, the
integrals can develop at most a double pole in (d− 4). Instead of performing a complete Laurent expansion
of the IBPs, we generate them and then fix explicitly d = 4 before solving them. This is enough to check
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whether the two MIs degenerate in this limit. By solving the IBPs one finds that this is precisely the case
and the following relation is extracted

I1(d; s,m
2
1,m

2
2) + s I2(d; s,m

2
1,m

2
2) = O(d− 4) , (4.22)

where again we used the notation introduced above, indicating that the combination (4.22) becomes zero
if we fix d = 4 in the IBPs. Of course, also in this case, if we had expanded the IBPs as Laurent series
starting from the double pole, relation (4.22) could have been interpreted as a relation between the double
poles of the two master integrals

I
(−2)
1 (4; s,m2

1,m
2
2) + s I

(−2)
2 (d; s,m2

1,m
2
2) = 0 . (4.23)

Note, nevertheless, that this time the relation is not exact, differently from (4.7), since the sub-topologies
might in general contribute modifying (4.22). Eq (4.22) is anyway sufficient to decouple the homogeneous
part of the differential equations. We proceed as above and define the new basis

J1(d; s,m
2
1,m

2
2) = I1(d; s,m

2
1,m

2
2) + s I2(d; s,m

2
1,m

2
2) , J2(d; s,m

2
1,m

2
2) = I1(d; s,m

2
1,m

2
2) . (4.24)

Deriving the differential equations satisfied by (4.24) we find

P (s,m2
1,m

2
2)

dJ1

d s
=

(d− 4)(m2
1 −m2

2)
2 +

(

(22− 5d)m2
1 + (d− 2)m2

2

)

s− 2(d− 3)s2

2s
J1

−
(d− 4)

(

3(d− 5)m2
1 + (11− 3d)m2

2 − 3(7− 2d)s
)

2
J2

P (s,m2
1,m

2
2)

dJ2

d s
= 2m2

1 J1 +
(d− 4)(s+m2

1 −m2
2)(2 s+m2

1 −m2
2)

2 s
J2 . (4.25)

Again, as expected, we see that the differential equation for J1 contains an explicit factor (d − 4)
multiplying the second integral J2. The result is consistent with the general structure described in Section 3.
Once more we want to stress that, as expected, in this case all MIs can be integrated in terms of MPLs
only.

4.3 The two-loop massive sunrise

In the previous sections we considered two simple examples of 2 × 2 systems where the two equations
could be decoupled in the limit d → 4, such that the problem could always be reduced to integrations by
quadrature. As we already discussed this is not always possible and the first known case where at least two
differential equations remain coupled is the two-loop massive sunrise. The two-loop massive sunrise graph
is defined as follows

I(d;n1, n2, n3, n4, n5) = ✲✫✪
✬✩m1

m2

m3

p

=

∫

D
dkDdl

(k · p)n4(l · p)n5

(k2 −m2
1)

n1 (l2 −m2
2)

n2 ((k − l + p)2 −m2
3)

n3
. (4.26)

This integral has been studied widely in the literature and in particular a lot of attention has been devoted
to the differential equations that it fulfils. In the general case where all three masses assume different
values, a normal reduction through IBPs shows that all integrals can be expressed as linear combinations
of 4 independent MIs, which can be chosen to be

I1(d; s) = I(d; 1, 1, 1, 0, 0) , I2(d; s) = I(d; 2, 1, 1, 0, 0) ,

I3(d; s) = I(d; 1, 2, 1, 0, 0) , I4(d; s) = I(d; 1, 1, 2, 0, 0) . (4.27)
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In [15] it was shown that these integrals fulfil a coupled system of 4 linear first order differential equations
in d dimensions. The system remains coupled in the limits d → 2n, where n ∈ N. It was lately shown
in [49], using algebraic geometry methods (and as such a priori orthogonal to the IBPs) that the scalar
integral I1(d; s) satisfies a second-order Picard-Fuchs differential equation in d = 2. This suggested the
possibility of finding a proper change of basis of MIs, in the sense of the IBPs, such that two of the four
differential equations satisfied by the latter would decouple in the limit d → 2. Since the four MIs in (4.27)
are finite in d = 2, it appeared natural to try and obtain the decoupling of the differential equations by
finding new relations among the MIs, valid strictly only for d = 2. Such relations can be found using the
so-called Schouten Identities introduced in [39]. In that reference the Schouten identities are introduced
and the case of the two-loop sunrise with different masses is worked out in detail. It is shown that, as
expected, in d = 2 only two master integrals are linearly independent. This allowed to recover the second
order differential equation found in reference [49] in a completely independent manner. In this section we
will show that those results can be even more easily re-obtained using the methods described in this paper,
and namely by solving the IBPs for the massive sunrise in d = 2. The Schouten identities can be imagined
as a tool for extracting this piece of information from the IBPs and are, in this respect, equivalent to the
study of the IBPs in fixed number of dimensions. We will show another example of this equivalence in
Appendix A.

Since the algebra in this case is rather heavy due to the large number of scales, we will only report the
result of the solution of the IBPs in d = 2, referring to [39] for their use to simplify the system of differential
equations. As already discussed above, solving the system with d = 2 is in general easier and, as expected,
two of the four MIs degenerate, leaving only two linearly independent MIs. By choosing as MIs I1(2; s)
and I2(2; s), we find the following additional relations (as everywhere else we neglect the sub-topologies for
simplicity)

m2
2 P (s,m2

1,m
2
2,m

2
3) I3(2; s) = (m2

1 −m2
2)(m

2
1 +m2

2 −m2
3 − s) I1(2; s)

+m2
1

(

m4
1 − 3m4

2 + 2m2
1(m

2
2 −m2

3 − s) + (m2
3 − s)2 + 2m2

2(m
2
3 + s)

)

I2(2; s)

m2
3 P (s,m2

1,m
2
2,m

2
3) I4(2; s) = (m2

1 −m2
3)(m

2
1 −m2

2 +m2
3 − s)I1(2; s)

+m2
1

(

m4
1 +m4

2 − 3m4
3 + 2m2

2(m
2
3 − s) + 2m2

3s+ s2 − 2m2
1(m

2
2 −m2

3 + s)
)

I2(2; s) , (4.28)

where we defined the polynomial

P (s,m2
1,m

2
2,m

2
3) = (−3m4

1 +m4
2 + (m2

3 − s)2 − 2m2
2(m

2
3 + s) + 2m2

1(m
2
2 +m2

3 + s)).

As we discussed in Section 3, we expect such relations to come by d-dimensional IBPs with an overall
factor 1/(d− 2). Indeed by studying the reduction to MIs in d dimensions it is easy to find the following
two relations

O(d− 2) =
1

3

{

[

(d− 3)(2m2
1 −m2

2 −m2
3)− (d− 2)s

]

I1(d; s) + 2m2
1(s−m2

1)I2(d; s)

+m2
2(−3m2

1 +m2
2 + 3m2

3 − s)I3(d; s) +m2
3(−3m2

1 + 3m2
2 +m2

3 − s) I4(d; s)
}

O(d− 2) =
1

3

{

[

(d− 3)(m2
1 − 2m2

2 +m2
3)− (d− 2)s

]

I1(d; s) − 2m2
2(s−m2

2)I3(d; s)

+m2
1(−m2

1 + 3m2
2 − 3m2

3 + s)I2(d; s) +m2
3(−3m2

1 + 3m2
2 −m2

3 + s) I4(d; s)
}

. (4.29)

Relations (4.29) can be compared with the corresponding formulas (3.14) and (3.15) of [39]. It is easy to
see that they are identical in the limit d → 2, the only difference being the absence of the terms coming
from the sub-topologies, which we are neglecting here. These two relations (and in particular their limiting
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value as d → 2) can be used, as described in Section 3, in order to decouple two of the four differential
equations of the two-loop massive sunrise graph, by choosing as new basis of master integrals

J1(d; s) = I1(d; s) , J2(d; s) = I2(d; s)

J3(d; s) = −(2m2
1 −m2

2 −m2
3) I1(d; s) + 2m2

1(s−m2
1)I2(d; s)

+m2
2(−3m2

1 +m2
2 + 3m2

3 − s)I3(d; s) +m2
3(−3m2

1 + 3m2
2 +m2

3 − s) I4(d; s)

J4(d; s) = −(m2
1 − 2m2

2 +m2
3) I1(d; s) − 2m2

2(s−m2
2)I3(d; s)

+m2
1(−m2

1 + 3m2
2 − 3m2

3 + s)I2(d; s) +m2
3(−3m2

1 + 3m2
2 −m2

3 + s) I4(d; s) . (4.30)

We do not give the explicit form of the differential equations, referring to [39] for further details. In
comparing, note that the basis presented here differs from the one in [39] by the absence of sub-topologies
and by orders O(d−2). Furthermore we want to stress, in relation to the discussion in Section 3, that using
this basis produces an overall factor (d−2) in front of the two differential equations for J3(d;x) and J4(d;x).
This implies that one has, at every order in (d − 2), only one second order differential equation (needed
to solve the block of J1(d;x) and J2(d;x)), plus two integrations by quadrature (required to determine
J3(d;x) and J4(d;x)).

4.4 A two-loop non-planar crossed vertex

As a further application, let us consider a two-loop non-planar crossed vertex with two massive propagators.
This graph is topologically completely unrelated to the two-loop sunrise and was studied thoroughly in [50].
There it was shown that it can be reduced to three MIs, which would therefore be expected to satisfy a
system of three coupled differential equations. In [50] a basis of MIs was found such that one of the three
differential equations decouples from the other two in the limit d → 4. This reduced effectively the problem
to that of solving, for every order in (d − 4), a second order differential equation, plus an integration by
quadrature for the third MI. In this section we would like to study this Feynman graph with our method
and show that the decoupling found in [50] comes as well from a degeneracy of the master integrals in d = 4
which can be read off directly from the IBPs. Following [50] we define the Feynman graph as follows

I(d;n1, n2, n3, n4, n5, n6, n7) =
m

m

✁
✁

✁
✁

❆❆

❆❆
✲

✲

✲

�
�

❅
❅

q
p1

p2

=

∫

D
dkDdl

( k · p2)
n7

(k2 −m2)n1(l2 −m2)n2 ((k − p1)2)
n3 ((l − p2)2)

n4 ((k − l − p1)2)
n5 ((k − l + p2)2)

n6
,

(4.31)

with p21 = p22 = 0 and (p1 + p2)
2 = s. It is easy to verify that this topology can be reduced to 3 MIs, for

example

I1(d; s) = I(d; 1, 1, 1, 1, 1, 1, 0) , I2(d; s) = I(d; 2, 1, 1, 1, 1, 1, 0) , I3(d; s) = I(d; 1, 1, 2, 1, 1, 1, 0) . (4.32)

Let us derive the differential equations in the momentum transfer s, neglecting as everywhere else all
sub-topologies. We get
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d I1
d s

=
(d− 6)

s
I1 −

2m2

s
I2 ,

d I2
d s

=
(d− 5)(2d− 9)(s− 4m2)

s(s−m2)(s+ 8m2)
I1 +

14(d− 4)m4 − (5d− 13)m2s− 2s2

s(s−m2)(s+ 8m2)
I2

+
2 (d− 4)m2

s(s+ 8m2)
I3 ,

d I3
d s

=
2(d− 5)(2d− 9)(s+ 2m2)

s(s−m2)(s+ 8m2)
I1 +

2m2
(

(24− 5d)m2 + (21− 4d)s
)

s(s−m2)(s+ 8m2)
I2

−
2(3d− 8)m2 + (d− 3)s

s(s+ 8m2)
I3 . (4.33)

Looking at these equations we see immediately that I3 is already decoupled from the other two in the
limit d → 4. This means that, with this randomly chosen basis, the problem is reduced to that of solving,
at every order in (d − 4), a coupled system for I1 and I2. With the explicit solution for the latter, one
can then obtain I3 integrating its differential equation by quadrature. It would be then interesting to
know whether this decoupling is also due to a degeneracy of the MIs in d = 4. Moreover it would be even
more interesting to verify whether a new basis could be found, for which the differential equations become
completely triangular as d → 4, reducing even further the complexity of the problem.

Following the recipe described above, we can try and solve the IBPs for this Feynman graph for d = 4.
A word of caution is required here. The three MIs selected above have Laurent expansions in (d− 4) which
start at different orders, in particular one can easily find (for example using sector decomposition [51]) that
the first two masters are finite, while the third develops a cubic pole

I1(d → 4; s) = O(1) , I2(d → 4; s) = O(1) , I3(d → 4; s) = O

(

1

(d− 4)3

)

. (4.34)

Nevertheless this poses no practical obstacle to the applicability of the method presented in this paper.
As we already discussed in general, by expanding the system of IBPs in Laurent series around d = 4, we
will get, at every order in (d − 4), an independent system of differential equations whose homogeneous
part (i.e. the one containing the order of the MIs under consideration) has always the same form, while
the non-homogenous part will of course change and, in particular, depend on the previous orders of the
expansion (and on the sub-topologies, which we neglect). What we are interested in is, indeed, only the
homogeneous part of this system. Fixing d = 4 is therefore enough in order to determine whether, for any
order of the expansion, the MIs become linearly dependent. Upon doing this we find only one relation
between the three masters which reads

I1(d; s) + (5m2 + s)I2(d; s) + 3m2 I3(d; s) = O(d− 4) , (4.35)

where, as always, we mean that this combination becomes zero when we set d = 4 in the IBPs.
Equivalently, one can also proceed in a more formal way, expanding all IBPs in Laurent series starting

from the triple pole up to the finite piece, and supplementing the piece of information on the highest poles
of the MIs (4.34). Upon doing this, one obtains four chained systems of IBPs (one for every oder in (d−4)),
which can be solved bottom-up starting from the one corresponding to the highest pole. Since the first
two masters are finite, the first three systems give no information on the latter, while the fourth system
(corresponding to the finite piece of the MIs) produces the relation

I
(0)
1 (4; s) + (5m2 + s)I

(0)
2 (4; s) + 3m2 I

(0)
3 (4; s) +

2

m2
I(−1)(4; 1, 1, 1, 1, 1, 1, 1) = 0 . . (4.36)

Indeed relations (4.35) and (4.36) are identical up to the presence of the previous order in the expansion
of the integral I(d; 1, 1, 1, 1, 1, 1, 1). If we had solved the IBPs in d dimensions, this integral would have
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been of course expressed in terms of the three masters (4.33). Solving the system in d = 4 instead does not
allow to express this integral in terms of the other three, but this comes with no surprise and can be very
well understood in terms of the degeneracy of the system of IBPs in this limit.

By studying explicitly the integral I(d; 1, 1, 1, 1, 1, 1, 1) it is easy to see that it is also finite in d = 4,
namely

I(d → 4; 1, 1, 1, 1, 1, 1, 1) = O(1) , −→ I(−1)(4; 1, 1, 1, 1, 1, 1, 1) = 0 .

With this piece of information one recovers again relation (4.35), which was found by simply solving the
system of IBPs in d = 4. Since only one relation has been found, which moreover involves all three masters
I1, I2, and I3, we have no way to decouple more than one MIs from the system. What we mean here
is that, since in system (4.33) only the differential equations for I1 and I2 are coupled, if we had found
one relation but involving only I1 and I2, we could have used it to decouple this block of the system. An
example of this is given in Section 4.5. This is not the case and we therefore expect the minimal number
of coupled integrals in d = 4 to be two, giving rise to a second order differential equation, as for the case
of the two-loop massive sunrise, see Section 4.3.

As an exercise, we can try to change basis also in this case exploiting the piece of information found
in (4.35). We expect to end up with a new system of differential equations, where nevertheless again two
out of three equations are coupled as d → 4 (and as such practically equivalent to (4.33)), showing that
the system can not be further simplified. Let us introduce the new basis

J1(d; s) = I1(d; s) , J2(d; s) = I2(d; s) , J3(d; s) = I1(d; s) + (5m2 + s)I2(d; s) + 3m2 I3(d; s) . (4.37)

Deriving the differential equations and neglecting all sub-topologies we get

dJ1

d s
=

(d− 6)

s
J1 −

2m2

s
J2 ,

dJ2

d s
=

2(d− 4)(s−m2) + 3(d− 5)(2d− 9)(s− 4m2)

3s(s−m2)(s+ 8m2)
J1

+
52(d− 4)m4 − (23d− 71)m2 s− 2(d− 1)s2

3 s(s−m2)(s+ 8m2)
J2 +

2 (d− 4)m2

s(s+ 8m2)
J3 ,

dJ3

d s
=

(d− 4)(6d− 29)

9m2s
J1 +

(d− 4)(s− 10m2)

9m2s
J2 −

(d− 1)J3

3 s
(4.38)

which is again a system of three differential equation, two of which remain coupled in the limit d → 4, giving
rise to a second order differential equation for one of the two coupled masters.10 We note that the new
system (4.38), compared with the previous one (4.33), has a slightly different structure. As for the previous
cases that we analysed, once we switch to the new basis defined through the IBPs degeneracy (4.35), the
differential equation for the new master J3 develops an explicit factor (d − 4) in front of the other two
masters J1 and J2, as predicted in equation (3.8).

4.5 A two-loop massive triangle with three master integrals

Before moving to a three-loop example, let us try and see what happens in a case similar to the one
studied above, i.e. a Feynman graph reduced to three master integrals, but where the system of differential
equations can be completely triangularised as d → 4. Let us consider the following two-loop massive
triangle

10In [50] is was shown that the homogeneous part of the second order differential equation satisfied by the scalar Master
integral I1(d; s) is equivalent to that of the two-loop massive sunrise with equal masses.
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I(d;n1,n2, n3, n4, n5, n6, n7) = ✲

✲

✲

�
�

❅
❅

P
p1

p2

=

∫

D
dkDdl

(k · p1)
n5 (l · p1)

n6 (l · q)
n7

(l2 −m2)n1 ((k − l)2)n2 ((k − p1)2 −m2)n3 ((k − p1 − p2)2 −m2)n4
, (4.39)

with two legs off-shell, namely P 2 = (p1 + p2) = s, p21 = 0, p22 = q2. This graph has been studied in the
context of the QCD corrections to H → Zγ in [52, 53]. Similarly to our previous example it is reduced
to three master integrals, such that we are dealing with a system of three differential equations. We start
from a randomly chosen basis of master integrals

I1(d; s, q
2) = I(d; 1, 1,1, 1, 0, 0, 0) , I2(d; s, q

2) = I(d; 1, 1, 2, 1, 0, 0, 0)

I3(d; s, q
2) = I(d; 1, 1, 1, 2, 0, 0, 0) . (4.40)

The masters depend on three variables s, q2 and m2, and therefore on two independent ratios. For simplicity
we will consider only the differential equations in s, while all considerations done here work identically for
the differential equations in the other variables. In order to simplify as much as possible the formulas we
write explicitly only the order zero of the homogeneous differential equations in (d − 4), which is also the
bulk which we need to simplify. The equations read

∂

∂s
I1(d; s) =

1

(q2 − s)
I1(d; s) +

2m2

s
I2(d; s) +

s q2 − 2m2(s+ q2)

s(q2 − s)
I3(d; s) +O(d− 4)

∂

∂s
I2(d; s) =

m2

s(q2 − s)−m2q2
I2(d; s) +

q2s−m2(2q2 + s)

(q2 − s)(s(q2 − s)−m2q2)
I3(d; s) +O(d− 4)

∂

∂s
I3(d; s) =

m2(q2 − s)

s (s(q2 − s)−m2q2)
I2(d; s) +

m2(s2 + s q2 − q4)

s(q2 − s)(s(q2 − s)−m2q2)
I3(d; s) +O(d− 4) , (4.41)

where the dependence from q2 is left as implicit in the master integrals for ease of notation. One can
immediately see that only two of the differential equations are coupled. One should in principle first solve
the 2× 2 coupled system for I2(d; s) and I3(d; s), and then, with the latter as an input, one could attempt
to solve the differential equation for I1(d; s) by quadrature.

Let us try now and study the IBPs in the limit d → 4. By solving them as discussed in the previous
sections one sees that the master integrals I2(d; s), I3(d; s) become linearly dependent in this limit and one
finds the relation

(q2 − s)(s− 2m2)I2(d; s) +
[

s(s+ 2m2)− 2 q2 (s−m2)
]

I3(d; s) = O(d − 4) . (4.42)

As for the case of the non-planar triangle studied in Section 4.4, we find only one relation, while we
have three master integrals. One of the three masters nevertheless is already decoupled, and moreover
relation (4.42) involves only I2(d; s, q

2) and I3(d; s, q
2), which are precisely the two coupled integrals. We

expect therefore this to be enough to decouple the system. We define the new basis

J1(d; s) = I1(d; s) , J2(d; s) = I2(d; s)

J3(d; s) =
(q2 − s)(s− 2m2)

m4
I2(d; s) +

s(s+ 2m2)− 2 q2 (s−m2)

m4
I3(d; s) , (4.43)

where the 1/m4 has beed added for dimensional reasons. Deriving the differential equations for this new
basis, and keeping again only the first order in (d− 4) we find
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∂

∂s
J1(d; s) =

1

q2 − s
J1(s; d) +

s(q2 − 4m2)

2 q2(s−m2)− s(s+m2)
J2(d; s)

+
(2m2(q2 + s)− s q2)m4

s(q2 − s)(2q2(s−m2)− s(s+m2))
J3(d; s) +O(d− 4)

∂

∂s
J2(d; s) =

q2(2m4 + (s− 2m2)s)

(q2(s−m2)− s2)(2 q2(s−m2)− s(s+ 2m2))
J2(d; s)

+
(sm2 − q2(s−m2))m4

(q2 − s)(q2(s−m2)− s2)(2 q2(s−m2)− s(s+ 2m2))
J3(d; s) +O(d− 4)

∂

∂s
J3(d; s) =

q2 − 2s

s(q2 − s)
J3(d; s) +O(d − 4) . (4.44)

As expected the system of differential equations becomes triangular and, in particular, the equation
for the new integral J3(d; s), defined through relation (4.42), decouples from J2(d; s), following the usual
pattern of equation (3.8). One can then proceed, order by order in (d− 4), integrating by quadrature first
the differential equation for J3(d; s), then the one for J2(d; s) and finally the one for J1(d; s). As a last
comment we want to stress that, if we had considered the system in ∂/∂q2, the same change of basis (4.43)
would have indeed been sufficient to triangularise that one as well.

4.6 The three-loop massive banana graph

As last example let us consider a more complicated three-loop graph. We choose the three-loop massive
banana graph, which is the natural three-loop generalisation of the two-loop massive sunrise. In the most
general case this Feynman graph depends on the momentum squared p2 = s and on four different masses
m1, m2, m3 and m4

I4(d;n1, n2, n3, n4,n5, n6, n7, n8, n9) = ✲✫✪
✬✩

p

=

∫

D
dk1 D

dk2 D
dk3

(k1 · p)
n5(k2 · p)

n6(k3 · p)
n7(k1 · k2)

n8(k1 · k3)
n9

(k21 −m2
1)

n1(k22 −m2
2)

n2(k23 −m2
3)

n3((k1 + k2 + k3 − p)2 −m2
4)

n4

,

(4.45)

where the subscript 4 indicates that the four masses are all different. In the two-loop case there are 4 MIs
when the 3 masses have all different values, which in turn degenerate to 2 MIs in the case of equal masses.
On the other hand we saw that, irrespective of the explicit values of the internal masses, one is always left
with only two independent MIs in d = 2 (4.28). This allowed us to decouple two of the four MIs from
the differential equations in the limit d → 2 and prove that the scalar amplitude satisfies a second order
differential equation in the this limit.

It would therefore be interesting to verify whether a similar behaviour can also be seen in the three-loop
banana graph. Since in the general case with four different masses the algebra becomes very cumbersome,
we will consider different cases of increasing complexity, namely increasing at every step the number of
different internal masses and check how manyMIs are found in d dimensions and howmany can be decoupled
in the limit d → 2.

4.6.1 The equal-mass case

Let us start considering the equal-mass case. We use the following notation

I1(d;n1, n2, n3, n4, n5, n6, n7, n8, n9) = I4(d;n1, n2, n3, n4, n5, n6, n7, n8, n9)
∣

∣

∣

m4=m3=m2=m1=m
,
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where the subscript “1” indicates now that all masses have the same value. Running a reduction to MIs
with a code of choice it is easy to check that there are 3 independent MIs in d dimensions which can be
chosen to be

I1(d; s) = I1(d; 1, 1, 1,1, 0, 0, 0, 0, 0) , I2(d; s) = I1(d; 2, 1, 1, 1, 0, 0, 0, 0, 0) ,

I3(d; s) = I1(d; 3, 1, 1, 1, 0, 0, 0, 0, 0) . (4.46)

The differential equations in the momentum transfer for these three MIs read

dI1
d s

=
3d− 8

2 s
I1 −

4m2

s
I2

dI2
d s

=
(3d− 8)(2d− 5)

8 sm2
I1 +

(d− 4) s− 8(2d− 5)m2

8 sm2
I2 −

1

2
I3

dI3
d s

=
(2d− 5)(3d− 8)

(

16(11d− 37)m4 + 4(32− 9d)m2 s+ (d− 4) s2
)

32m2 s (s− 4m2)(s− 16m2)
I1

−

[

64 (440 + (47d− 289)d)m6 − 16 (668 + d(62d− 409))m4s+ 16(d− 4)(4d− 13)m2s2 − (d− 4)2s3
]

32m2 s (s− 4m2)(s− 16m2)
I2

+

[

1024(d− 4)m8 + 192(27− 8d)m6s+ 96(2d− 7)m4s2 − 4(d− 4)m2s3
]

32m2 s (s− 4m2)(s− 16m2)
I3 (4.47)

and we can easily check that, in spite of the fact that I3 does not appear in the first equation, the
system is still coupled as d → 2. Trying to solve the system of IBPs in d = 2 shows no further degeneracy
and therefore we conclude that the system cannot be further simplified with our method. Having a system
of three coupled first order equation means that we can rephrase it as a third-order differential equation
for any of the three masters, and in particular for the scalar amplitude I1(d; s). The fact that the scalar
amplitude fulfils a third-order differential equation is in agreement with the findings in [49]. Deriving the
third-order differential equation satisfied by I1(d; s) we find

D
(3)
d I1(d; s) = 0 , (4.48)

where the d-dimensional third order differential operator D
(3)
d reads

D
(3)
d =

d3

d s3
+

3
(

64m4 + 10(d− 5)m2s− (d− 4)s2
)

s(s− 4m2)(s− 16m2)

d2

d s2

+
(d− 4)(11d− 36)s2 − 64(d− 4)dm4 − 4 (216 + d(7d− 88))m2 s

4 s2(s− 4m2)(s− 16m2)

d

d s

+
(3− d)(3d− 8)

(

2(d+ 2)m2 + (d− 4)s
)

4 s2 (s− 4m2)(s− 16m2)
, (4.49)

and all sub-topologies are neglected as always. In the limit d → 2 the differential operator simplifies to

D
(3)
2 =

d3

d s3
+

6
(

s2 − 15m2s+ 32m4
)

s(s− 4m2)(s− 16m2)

d2

d s2
+

(

7s2 − 68m2s+ 64m4
)

s2(s− 4m2)(s− 16m2)

d

d s
+

1

s2 (s− 16m2)
, (4.50)

which is in agreement with [49].

4.6.2 The case of two different masses

Let us move now to a slightly more general case and let the masses take two different values. There are
two possible arrangements, which we call IA2 and IB2 , defined as follows

IA2 (d;n1, n2, n3, n4, n5, n6, n7, n8, n9) = I4(d;n1, n2, n3, n4, n5, n6, n7, n8, n9)
∣

∣

∣

m3=m2=m1=ma,m4=mb

,
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IB2 (d;n1, n2, n3, n4, n5, n6, n7, n8, n9) = I4(d;n1, n2, n3, n4, n5, n6, n7, n8, n9)
∣

∣

∣

m2=m1=ma,m4=m3=mb

.

The two configurations are intrinsically different and it makes sense to look at the two cases separately.

A) In configuration A a reduction to MIs for generic d gives 5 independent MIs which can be chosen as

IA
1 (d; s) = IA2 (d; 1, 1, 1,1, 0, 0, 0, 0, 0) , IA

2 (d; s) = IA2 (d; 2, 1, 1, 1, 0, 0, 0, 0, 0) ,

IA
3 (d; s) = IA2 (d; 1, 1, 1,2, 0, 0, 0, 0, 0) IA

4 (d; s) = IA2 (d; 3, 1, 1, 1, 0, 0, 0, 0, 0) ,

IA
5 (d; s) = IA2 (d; 2, 2, 1, 1, 0, 0, 0, 0, 0) . (4.51)

B) In configuration B we find instead 6 independent MIs for generic d

IB
1 (d; s) = IB2 (d; 1, 1, 1,1, 0, 0, 0, 0, 0) , IB

2 (d; s) = IB2 (d; 2, 1, 1, 1, 0, 0, 0, 0, 0) ,

IB
3 (d; s) = IB2 (d; 1, 1, 2,1, 0, 0, 0, 0, 0) , IB

4 (d; s) = IB2 (d; 3, 1, 1, 1, 0, 0, 0, 0, 0) ,

IB
5 (d; s) = IB2 (d; 2, 2, 1,1, 0, 0, 0, 0, 0) , IB

6 (d; s) = IB2 (d; 2, 1, 2, 1, 0, 0, 0, 0, 0) . (4.52)

A natural question at this point would be how many MIs degenerate in the two cases in the limit d → 2,
and therefore what is the order of the differential equation satisfied by the scalar amplitudes IA

1 (d; s) and
IB
2 (d; s) respectively. A naive expectation, based on the two-loop sunrise, would be to see in cases A and

B, 2 and 3 MIs decouple respectively, such that the problem would reduce to the solution of a third-order
differential equation, as in the equal-mass case. Unfortunately this naive expectation is not satisfied and
we find that, by solving the IBPs in d = 2, in both cases four MIs remain independent, corresponding in
principle to a fourth-order differential equation for the scalar amplitude in both mass-configurations. On
the other hand, it is interesting to see that in both configurations, in spite of the different number of MIs
in d dimensions, the problem can be reduced to an equation of the same order (i.e. four) in d = 2.

Neglecting the sub-topologies we find in configuration A the following relation which allows to express
the fifth master integral in terms of the previous four

m2
a(s− 5m2

a +m2
b)I

A
5 (2; s) =

3m2
a +m2

b − s

12m2
a

IA
1 (2; s) +

51m4
a + (m2

b − s)2 − 6m2
a(m

2
b + 2s)

12m2
a

IA
2 (2; s)

+
m2

b(m
2
b − s)

6m2
a

IA
3 (2; s) +

21m4
a + (m2

b − s)2 − 6m2
a(m

2
b + s)

6
IA
4 (2; s) . (4.53)

In configuration B, instead, there are two different relations, which can be used to two express IB
5 and

IB
6 in terms of the other four MIs in d = 2. We do not report the explicit solution of the IBPs in d = 2

which looks rather cumbersome. As for the case of the two-loop sunrise, these identities are originated
from d-dimensional IBPs which degenerate in the limit d → 2 due to an overall factor 1/(d− 2). There are
many of these relations, but only two of them are linearly independent in the limit d → 2, and they read
(keeping only the first order in (d− 2))

O(d− 2) =
[

2(m2
a +m2

b)− s
]

I1(d; s) +
[

4m2
a(5m

2
a + 4m2

b)− 4 (2m2
a +m2

b)s+ s2
]

I2(d; s)

+ 4m2
b(2m

2
a +m2

b − s) I3(d; s) + 2m2
a

[

4(m2
a +m2

b)(2m
2
a − s) + s2

]

I4(d; s)

+ 4m4
a

[

2(m2
a +m2

b)− s
]

I5(d; s) + 8m2
am

2
b(4m

2
a − s) I6(d; s) , (4.54)

O(d − 2) = (−2m2
a + 6m2

b − 3s) I1(d; s) +
[

−20m4
a + 8m2

a(7m
2
b − 2 s) + 3 s(s− 4m2

b)
]

I2(d; s)

+ 12m2
b(m

2
b − s) I3(d; s) + 2m2

a

[

−8m2
a(m

2
a − 3m2

b)− 4(m2
a + 3m2

b) s+ 3s2
]

I4(d; s)

− 4m4
a(2m

2
a − 6m2

b + s) I5(d; s) + 32m2
am

2
b(m

2
b − s) I6(d; s) . (4.55)

We stress again that relations (4.53), (4.54) and (4.55) are not exact since all sub-topologies have been
neglected throughout. These relations can be nevertheless used in order to derive new systems of differential

20



equations where, for both A and B configurations, only 4 equations remain coupled in the limit d → 2. For
example, in the case of configuration A we can take as new basis

J A
1 (d; s) = IA

1 (d; s) , JA
2 (d; s) = IA

2 (d; s) , JA
3 (d; s) = IA

3 (d; s) , J A
4 (d; s) = IA

4 (d; s) ,

plus the new master defined as

J A
5 (d; s) = m2

a(s− 5m2
a +m2

b)I
A
5 (2; s)−

3m2
a +m2

b − s

12m2
a

IA
1 (2; s)

−
51m4

a + (m2
b − s)2 − 6m2

a(m
2
b + 2s)

12m2
a

IA
2 (2; s)

−
m2

b(m
2
b − s)

6m2
a

IA
3 (2; s)−

21m4
a + (m2

b − s)2 − 6m2
a(m

2
b + s)

6
IA
4 (2; s) . (4.56)

Upon doing this one finds that the differential equation for the new master JA
5 assumes the form

dJ5

d s
= (d− 2) [c51(d; s)J1 + c52(d; s)J2 + c53(d; s)J1 + c54(d; s)J2] + c55(d; s)J5 , (4.57)

where the functions cij(d; s) are rational functions for the dimension d, the momentum s and the two
masses, and are finite as d → 2. This insures, thanks to the overall coefficients (d− 2), that the differential
equation for J5 decouples completely from the other four, as expected.

As far as configuration B is concerned, in order to achieve the complete decoupling of two out of the
six equations, we can take as basis

JB
1 (d; s) = IB

1 (d; s) , JB
2 (d; s) = IB

2 (d; s) , JB
3 (d; s) = IB

3 (d; s) , J B
4 (d; s) = IB

4 (d; s) , (4.58)

together with

J B
5 (d; s) =

[

2(m2
a +m2

b)− s
]

I1(d; s) +
[

4m2
a(5m

2
a + 4m2

b)− 4 (2m2
a +m2

b)s+ s2
]

I2(d; s)

+ 4m2
b(2m

2
a +m2

b − s) I3(d; s) + 2m2
a

[

4(m2
a +m2

b)(2m
2
a − s) + s2

]

I4(d; s)

+ 4m4
a

[

2(m2
a +m2

b)− s
]

I5(d; s) + 8m2
am

2
b(4m

2
a − s) I6(d; s) (4.59)

JB
6 (d; s) = (−2m2

a + 6m2
b − 3s) I1(d; s) +

[

−20m4
a + 8m2

a(7m
2
b − 2 s) + 3 s(s− 4m2

b)
]

I2(d; s)

+ 12m2
b(m

2
b − s) I3(d; s) + 2m2

a

[

−8m2
a(m

2
a − 3m2

b)− 4(m2
a + 3m2

b) s+ 3s2
]

I4(d; s)

− 4m4
a(2m

2
a − 6m2

b + s) I5(d; s) + 32m2
am

2
b(m

2
b − s) I6(d; s) . (4.60)

Using these basis one obtains a new system of differential equations, where the two equations for JB
5 and

J B
6 develop an explicit overall factor (d− 2), such that, at every oder in the Laurent expansion, they can

be solved trivially by quadrature. Order by order, once the result for the latter is known, one is left with a
system of four coupled differential equations for the remaining master integrals. For compactness we prefer
not to give here explicitly the systems of differential equations.

4.6.3 The case of three different masses

Generalising even further we can check what happens if three out of the four masses are allowed to take
different values. In this case there is of course only one possibility, which we choose to be

I3(d;n1, n2, n3, n4, n5, n6, n7, n8, n9) = I4(d;n1, n2, n3, n4, n5, n6, n7, n8, n9)
∣

∣

∣

m4=m3

.

We start, as always, performing a reduction for generic d. The complexity increases and we find 8
independent MIs

I1(d; s) = I3(d; 1, 1, 1,1, 0, 0, 0, 0, 0) , I2(d; s) = I3(d; 2, 1, 1, 1, 0, 0, 0, 0, 0) ,

I3(d; s) = I3(d; 1, 2, 1,1, 0, 0, 0, 0, 0) , I4(d; s) = I3(d; 1, 1, 2, 1, 0, 0, 0, 0, 0) ,

I5(d; s) = I3(d; 3, 1, 1,1, 0, 0, 0, 0, 0) , I6(d; s) = I3(d; 2, 2, 1, 1, 0, 0, 0, 0, 0) ,

I7(d; s) = I3(d; 2, 1, 2,1, 0, 0, 0, 0, 0) , I8(d; s) = I3(d; 1, 2, 2, 1, 0, 0, 0, 0, 0) . (4.61)
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We can then consider the system of IBPs for d = 2. It is easy to check that in this case 3 MIs
degenerate, and therefore only 5 MIs remain linearly independent. We do not report here the equivalent
of relations (4.53) (4.54) and (4.55), since they are considerable more lengthy, but one can easily work out
the reduction in d = 2 and find that, for example, I6(2; s), I7(2; s) and I8(2; s) can be written as linear
combinations of the I1(2; s),...,I5(2; s). Using the methods described above, 3 out of the 8 differential
equations for this particular mass configuration can be decoupled in the limit d → 2, and one can in
principle derive a fifth-order differential equation for any of the MIs, and in particular for the scalar
amplitude I1(d; s).

4.6.4 The general case of four different masses

Last but not least, we move to considering the most general configuration with four different masses. In
this case the complexity increases even further and solving the IBPs in d dimensions brings to a reduction
in terms of 11 different MIs

I1(d; s) = I4(d; 1, 1, 1,1, 0, 0, 0, 0, 0) , I2(d; s) = I4(d; 2, 1, 1, 1, 0, 0, 0, 0, 0) ,

I3(d; s) = I4(d; 1, 2, 1,1, 0, 0, 0, 0, 0) , I4(d; s) = I4(d; 1, 1, 2, 1, 0, 0, 0, 0, 0) ,

I5(d; s) = I4(d; 1, 1, 1,2, 0, 0, 0, 0, 0) , I6(d; s) = I4(d; 3, 1, 1, 1, 0, 0, 0, 0, 0)

I7(d; s) = I4(d; 2, 2, 1,1, 0, 0, 0, 0, 0) , I8(d; s) = I4(d; 2, 1, 2, 1, 0, 0, 0, 0, 0)

I9(d; s) = I4(d; 2, 1, 1,2, 0, 0, 0, 0, 0) , I10(d; s) = I4(d; 1, 2, 2, 1, 0, 0, 0, 0, 0)

I11(d; s) = I4(d; 1, 2, 1, 2, 0, 0, 0, 0, 0) . (4.62)

The number of independent master integrals is obviously very large and, if all differential equations for the
11 MIs were to be coupled, this would imply an 11-th order differential equation for any of the masters
and in particular for the scalar amplitude I1(d; s). It is therefore very interesting in this case to know
how many MIs can be decoupled using the methods described above. Again it is enough to repeat the
reduction to MIs, but fixing this time d = 2, and we immediately find that 5 out of the 11 MIs become
linearly dependent and can be expressed in terms of the other 6. Which MIs survive depends of course on
the internal algorithm for the solution of the IBPs. In our case we find as independent MIs

I1(2; s) = I4(2; 1, 1, 1,1, 0, 0, 0, 0, 0) , I2(2; s) = I4(2; 2, 1, 1, 1, 0, 0, 0, 0, 0) ,

I3(2; s) = I4(2; 1, 2, 1,1, 0, 0, 0, 0, 0) , I4(2; s) = I4(2; 1, 1, 2, 1, 0, 0, 0, 0, 0) ,

I5(2; s) = I4(2; 1, 1, 1,2, 0, 0, 0, 0, 0) , I6(2; s) = I4(2; 3, 1, 1, 1, 0, 0, 0, 0, 0) . (4.63)

This implies that, the new basis of 11 d dimensional MIs defined following the recipe given above, fulfills a
system of 11 differential equations, 5 of which decouple from the system as d → 2. In this way we expect
that a sixth-order differential equation for the scalar amplitude can be derived in d = 2.

4.7 Comments and open questions

Before moving on to the conclusions we would like to bring attention to some issues that might have gone
unnoticed and which nevertheless leave room to very interesting open questions. In the previous sections
we have worked out different applications of the ideas outlined in Section 3. We have seen explicitly that
studying the IBPs in d = 2 or d = 4 can provide, for different Feynman graphs, identities useful to decouple
the system of differential equations they fulfil. However in this discussion there is a point that we have
avoided mentioning on purpose. Let us imagine to have to deal with a Feynman graph with three master
integrals I1, I2 and I3, which fulfil a system of three coupled differential equations in the limit d → 4,
and let us suppose to apply the methods described above in order to try and decouple the system. We can
imagine that by solving the IBPs in d = 4 only one relation can be found. In this case we know that we
can use it in order to decouple one of the three integrals in the limit d → 4, leaving therefore a system of
two coupled equations, equivalent to a second order differential equation. Is this enough to say that there
must be no other way to fully decouple all three differential equations? The answer is, in general, of course
no. We have discussed already how the decoupling of the differential equations in any even integer number
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of dimensions is equivalent to the decoupling of the latter in d = 4. In Appendix B we show explicitly
how, if one can find a basis that decouples the differential equations in d = 2n, a corresponding basis can
be constructed which decouples them in d = 4. Assuming that this is true, let us then go back to the
problem of the three coupled master integrals. Let us imagine that studying the IBPs in d = 2 two linearly
independent relations are found among the three masters and that this allows to completely decouple the
system in d = 2. In this case we know that a corresponding basis would have to exists in d = 4 as well, and
we could find it with the methods described in Appendix B. On the other hand, if we had not found any
new relations in d = 2, we could still decide to try in d = 6, or in d = 8, 10, 12 etc... apparently without
an end. Who or what tells us when to stop and, therefore, when we can assert without any doubts that
not enough relations can be found, in any even number of dimension, to decouple completely the system?
This question is extremely interesting and we unfortunately do not have a conclusive answer to it. For sure
in all examples considered so far it has always been enough to study the differential equations in d = 2
and d = 4 only in order to find all needed relations to decouple the system. In those cases where not
all equations could be decoupled (see for example Sections 4.3, 4.4, 4.6) an attempt to consider different
numbers of dimensions would simply produce no new relations at all, suggesting that there is no way to
further simplify the problem, at least in this framework. Of course this does not constitute a mathematical
proof in any respect. If these considerations have not brought to a definite answer yet, they nevertheless
open the possibility for a different perspective in the way a system of differential equations for master
integrals should be studied. We usually tend to think that the only physically relevant results are obtained
when studying the system in the limit d → 4. A lot of useful information, though, can be extracted studying
the system as d → 2n and, sometimes, the relations found in this way appear to be independent and, in a
sense, complementary. Whether these relations are really independent and how to determine the maximum

amount of information that can be extracted by studying the IBPs in fixed integer numbers of dimensions
remain open questions for now. It seems however reasonable to think that a more global approach, which
allows to study the systems of differential equations in general for any even number of dimensions (and not
only in the limit d → 4) could bring a much deeper insight in the structure and properties of the latter.

5 Conclusions

The method of differential equations has proven to be one of the most effective and promising tools for
the evaluation of multi-loop and multi-scale Feynman integrals. The usual procedure consists in reducing
all Feynman integrals to a basis of master integrals through integration by parts identities, then derive
differential equations satisfied by the master integrals and finally try and solve them as Laurent expansion
in (d− 4). For many problems of physical interests the coefficients of the Laurent expansion of the master
integrals can be expressed in terms of a particular class of special functions called multiple polylogarithms.
It has been noted that, whenever this is possible, a basis of master integrals can be found such that their
differential equations become triangular in the limit d → 4, allowing a simple integration of the differential
equations by quadrature. It was moreover conjectured that in all such cases a canonical basis can be
found, turning the integration of the differential equations into a straightforward algebraic problem. If a
complete set of boundary conditions is also known, the problem can therefore be considered as completely
solved. On the other hand, different cases are known where such a simplification cannot be achieved and a
minimum number of differential equations remain coupled. Of course in all these cases also a canonical basis
(in the original sense introduced in [28]) cannot be found. Whenever this happens, it becomes of crucial
importance to be able to determine the minimum number of master integrals which cannot be decoupled
from the system. If two or more equations are coupled, in fact, no general technique exists to find a
solution and one must resort to different considerations in order to find a complete set of homogeneous
solutions, which can then be used in order to build up the inhomogeneous solution using Euler’s method of
the variation of the constants (see for example [37]). Of course, the larger the number of coupled equations
is, the more difficult it becomes finding a complete set of solutions. Reducing the order of the system of
differential equations is therefore essential from a practical point of view in order to be able to successfully
tackle the problem. The issue is nevertheless interesting also from a more general point of view. Master
integrals satisfying higher order differential equations, in fact, cannot usually be expressed in terms of
multiple polylogarithms only and a very intensive theoretical effort has been recently devoted to determine
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the properties of the new special functions required. The most famous example is the two-loop massive
sunrise graph. In this case two differential equations remain coupled and therefore the problem amounts to
solving a second-order differential equation. It has been recently shown that the solution of the latter can
be expressed in terms of a new generalisation of the multiple polylogarithms, called elliptic polylogarithms.
Many questions are nevertheless still to be answered. Are elliptic polylogarithms enough for describing
all Feynman integrals whose evaluation can be reduced to a second order differential equation? And what
about higher order equations?

A first step towards an answer to these questions seems therefore to be in a criterion to determine,
given a set of master integrals and the system of differential equations they fulfil, the minimum number
of differential equations coupled, and therefore the class of special functions required. In this paper we
presented a simple idea which proved to be very useful in this respect. We showed in particular that the
study of the IBPs for fixed integer values of the space-time dimensions, d = n, can provide the information
required for decoupling the differential equations in the limit d → n. Indeed our criterion is, in principle,
a sufficient but not a necessary one, in the sense that we did not prove that if no extra relation can be
found among the MIs when d = n, then no decoupling is possible for d → n. The criterion has moreover
proven to be extremely effective, inasmuch as it provided, in all cases that we considered, relations useful
for decoupling some of the differential equations and therefore substantially simplify the problem at hand.
It would indeed be extremely interesting to prove whether this criterion is not only a sufficient but also
a necessary criterion, checking, for example, whether the number of independent MIs of the three-loop
banana graph in d = 2 (see Section 4.6) can be further reduced by any order means, reducing in this way
also the maximum degree of the differential equation satisfied by the scalar amplitude. The criterion is
moreover extremely simple to apply, since it can be very easily implemented into any existing public or
private IBPs reduction code. In this respect, the possibility of pairing the study of IBPs in fixed numbers of
space-time dimensions together with the new concept of a (pseudo-)finite basis of MIs, recently introduced
in [54], looks particularly promising. The latter, in fact, could potentially provide a way to automatically
determine the highest poles developed by different Feynman integrals for different values of the space-time
dimensions.
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A Comparison with the Schouten Identities

In this Appendix we would like to show explicitly how the methods described in this paper are equivalent
to the Schouten Identities introduced in [39]. We will consider again the two-loop sunrise with one massive
and two massless propagators (see Section 4.1 for the definitions of the MIs) and try to derive relation (4.14)
using the Schouten Identities. The two-loop sunrise graph depends on three independent momenta, the
two loop momenta k, l and the external momentum p. With these three momenta we can build up a
d-dimensional Schouten polynomial which becomes zero as d → n with n ∈ N and n ≤ 2. Following [39] we
start off by considering the quantity

ǫ(k, l, p) = ǫµνρ k
µlνpρ (A.1)
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defined in d = 3 space-time dimensions. Indeed (A.1) is nothing by the Gram determinant of the three
vectors k, l, p. By squaring (A.1) in d = 3 we obtain a polynomial

P2(d; k, l, p) = (ǫµνρk
µlνpρ)2

= k2 l2 p2 − k2 (l · p)2 − p2 (k · l)2 − l2 (k · p)2 + 2(k · l) (k · p) (l · p) . (A.2)

The polynomial was obtained in d = 3 dimensions, but since it contains only scalar products of the three
momenta it can be easily analytically continued to d dimensions and regarded as a d dimensional polynomial.
By construction the polynomial is zero as d → 2

P2(d → 2; k, l, p) → 0 , i.e. P2(d → 2; k, l, p) = O(d− 2) .

Let us consider now the two master integrals defined in (4.3). As discussed already both masters develop
a double pole in (d− 2)

Ij(d; p
2) =

1

(d− 2)2
I
(−2)
j (2; p2) +

1

(d− 2)
I
(−1)
j (2; p2) + I

(0)
j (2; p2) + ... , with j = 1, 2 . (A.3)

We consider now the following quantities

Z(d;n1, n2, n3) =

∫

D
dkDdl

P2(d; k, l, p)

(k2)
n1 (l2)

n2 ((k − l + p)2 −m2)
n3

, (A.4)

which are of course linear combinations of integrals belonging the sunrise graph, equation (4.1). The
Schouten polynomial goes to zero as d → 2 and provides therefore an additional factor (d − 2) at the
numerator, which can be used in order to alleviate the total divergence of the integral. Assume now that,
using this piece of information, we can prove that the integral Z(d;n1, n2, n3), for a given choice of the
indices {n1, n2, n3}, can develop at most a single pole in (d− 2)

Z(d → 2;n1, n2, n3) ∝ O

(

1

d− 2

)

. (A.5)

If this is true then, for any values of the indices {n1, n2, n3}, we can consider the integral Z(d;n1, n2, n3)
as an integral of the sunrise family and use d-dimensional IBPs to reduce it to the two MIs

Z(d;n1, n2, n3) = Cn1n2n3

1 (d; p2) I1(d; p
2) + Cn1n2n3

2 (d; p2) I2(d; p
2) , (A.6)

where the Cn1n2n3

j (d; p2) are in general rational functions of p2 and d. Suppose now that the Cn1n2n3

j (d; p2)
do not develop any overall factor (d − 2) in the numerator. If this is the case, upon expanding in Laurent
series both l.h.s. and r.h.s. of (A.6) and using the fact that the l.h.s. has only a single pole, we can find
a relation between the double poles of the two MIs I1 and I2. To see how this works in practice, let us
study this example for some specific choices of the indices n1, n2, n3 and see how this piece of information
can be easily read out.

a) We start considering the easiest case n1 = n2 = n3 = 1, i.e. we study the integral

Z(d; 1, 1, 1)

∫

D
dkDdl

P2(d; k, l, p)

k2 l2 ((k − l + p)2 −m2)
.

Since I(d; 1, 1, 1, 0, 0) has a maximum pole 1/(d−2)2, we could naively expect that, due to the overall
(d − 2) factor carried by the Schouten polynomials, Z(d; 1, 1, 1) should develop at most a single
pole 1/(d − 2). This is in general of course not granted, since the polynomial at the numerator can
worsen the UV behaviour of the integral. This naive expectation can be nevertheless easily verified by
different means, for example using sector decomposition [51]. On the other hand, as already specified
above, the two MIs have both a double pole 1/(d − 2)2. Expressing Z(d; 1, 1, 1) in terms of I1 and
I2 one finds easily that the corresponding coefficients C111

1 (d; p2), C111
2 (d; p2) do not have any overall
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(d− 2) factor. Therefore we can expand both l.h.s and r.h.s. in Laurent series in (d− 2) and keeping
only the first orders we get

O

(

1

d− 2

)

=
1

(d− 2)2
(m2)2 p2

6

(

I
(−2)
1 (2; p2)− (p2 −m2)I

(−2)
2 (2; p2)

)

+O

(

1

d− 2

)

. (A.7)

Eq. (A.7) gives for consistency a relation between the double poles of the two MIs, i.e.

I
(−2)
1 (2; p2)− (p2 −m2)I

(−2)
2 (2; p2) = 0 ,

which is, as expected, identical to the relation obtained studying the IBPs in d = 2, Eq. (4.14).

b) As a second example, let us consider the case n1 = n3 = 2 , n2 = 1 (or equivalently n2 = n3 =
2 , n1 = 1 ). Also in this case I(d; 2, 1, 2, 0, 0) has a double pole in (d − 2) and we would naively
expect that Z(d; 2, 1, 2) should therefore develop again at most a single pole. This naive expectation
can be once more verified explicitly using, for example, sector decomposition. Expressing Z(d; 2, 1, 2)
as linear combination of MIs and expanding in (d− 2) we get

O

(

1

d− 2

)

= −
1

(d− 2)2
m2

12

(

I
(−2)
1 (p2)− (p2 −m2)I

(−2)
2 (p2)

)

+O

(

1

d− 2

)

(A.8)

which for consistency implies

I
(−2)
1 (2; p2)− (p2 −m2)I

(−2)
2 (2; p2) = 0 ,

in agreement with the previous case.

c) As last example we can check what happens for the combination of indices n1 = n2 = 2 , n3 = 1.
Again, repeating all considerations above, one finds that I(d; 2, 2, 1, 0, 0) has a double pole 1/(d− 2)2

and Z(d; 2, 2, 1) has instead only a single pole 1/(d − 2). Reducing Z(d; 2, 2, 1) and expanding in
(d− 2) we find

O

(

1

d− 2

)

=
1

(d− 2)2
m2

6

(

I
(−2)
1 (p2)− (p2 −m2)I

(−2)
2 (p2)

)

+O

(

1

d− 2

)

, (A.9)

which once more implies

I
(−2)
1 (2; p2)− (p2 −m2)I

(−2)
2 (2; p2) = 0 ,

again in agreement with our previous findings.

Using the Schouten Identities one recovers therefore the same relation found by studying the IBPs in
the limit d = 2. The relation can then be used, as shown in Section 4.1.1, in order to decouple the system
of differential equations for this two-loop sunrise graph. We want to stress here that, differently from
the direct study of the IBPs in d = n, Schouten identities can be derived only if a sufficient number of
independent momenta exist. In the case of the two-loop sunrise studied here there are three independent
momenta and we can therefore derive a Schouten identity in d = 2 only, but we have no mean to study
possible relations among the MIs in d = 4. On the other hand, by studying the IBPs in fixed number of
dimensions, one can easily try and look for relations in any number of dimensions, and in particular in
d = 4, see Section 4.1.

B Dimensional shift of systems of differential equations

In this paper we showed that by studying the IBPs for fixed numbers of space-time dimensions d = n,
one can in general find relations which allow to decouple some of the master integrals from the system of
differential equations, and simplifying therefore the solution of the latter. In physical applications we are
of course interested in the case d = 4. On the other hand we have already briefly discussed how, once
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the full set of MIs is known as Laurent expansion for d → 2n, with n ∈ N, by using Tarasov-Lee shift
identities [41, 42] one can reconstruct their Laurent expansion in any other even number of dimensions,
and in particular in d = 4. It is therefore clear that, if by any means one can find a basis of MIs whose
differential equations are in a convenient form as d → 2n (triangular form, canonical form, etc), then
there must exists a corresponding basis of MIs whose differential equations look identical under the formal
substitution (d− 2n) → (d− 4). In this Appendix we want to show how this is indeed true and that such
a basis can be obtained straightforwardly by a repeated use of Tarasov-Lee identities.

Let us start considering a topology with N MIs Mj(d;xij) where j = 1, ..., N and we made explicit the
dependence on the dimensions d and on the invariants of the problem xij = pi · pj. Let us assume that,
similarly to the case of the two-loop massive sunrise, Section 4.3, we are able to find a basis of MIs such
that the differential equations take a particularly convenient form in the limit d → 2. In particular, in order
to simplify the notation, let us assume that the differential equations are linear in d and can be written as

∂

∂xij

Mj(d;xij) = A0(2;xij)Mj(d;xij) + (d− 2)A1(2;xij)Mj(d;xij) (B.1)

where A0(2;xij) is an N×N triangular matrix, which does not depend on d, while A1(2;xij) does not need
to be triangular. If the system of differential equations is in this form, then by solving the homogeneous
system (whose solution is now easier since the matrix A0 is triangular)

∂

∂xn

Hj(d;xij) = A0(2;xij)Hj(d;xij) (B.2)

we can find a transformation that puts the system of equations in the form

∂

∂xn

M ′

j(d;xij) = (d− 2)B(xij)M
′

j(d;xij) (B.3)

where Bn(xij) is an N ×N matrix whose entries do not depend on d. Note that this does not ensure per

se that the system will be in canonical form, since the entries of the matrix Bn(xij) might not be in d-log
form, but could contain more complicated functions of the external invariants. This form is nevertheless
very convenient for the explicit integration of the equations as Lauren series in (d− 2).

In physical applications we are usually interested in the master integrals expanded in (d− 4), which are
the physical space-time dimensions. Indeed we might think of solving the system (B.3) as Laurent expansion
in (d − 2), and then transport back the results to (d − 4) using Tarasov-Lee identities. Nevertheless we
might also try and proceed differently and use Tarasov-Lee identities directly at the level of the differential
equations in order to determine a new basis of MIs whose differential equations are identical to (B.3) with
the formal replacement (d−2) → (d−4). Tarasov shifting relations indeed contain this piece of information.
By applying the Tarasov shifting operators on the N MIs Mj(d, xij) and reducing the result to the same
set of MIs, we find N relations for the N masters which read

M ′

j(d− 2, xij) =
∑

l

C
(j)
l (d;xij)M

′

l (d;xij) j = 1, ..., N (B.4)

where the C
(j)
l (d, kx) are rational functions of the dimensions d and of the invariants xij . Define now a

new set of N MIs Ij(d;xij) as

Ij(d;xij) =
∑

l

C
(j)
l (d;xij)M

′

l (d;xij) , j = 1, ..., N . (B.5)

Because of (B.3), sending d → d− 2, we find that

∂

∂xij

M ′

j(d− 2;xij) =
∂

∂xij

(

∑

l

C
(j)
l (d;xij)M

′

l (d;xij)

)

= (d− 4)Bn(xij)M
′

j(d− 2, xij) (B.6)
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which can rephrased in terms of the new MIs as

∂

∂xij

Ij(d;xij) = (d− 4)B(xij) Ij(d;xij), (B.7)

which is exactly what we were looking for, namely a system formally identical to (B.3) under the replacement
(d− 2) → (d− 4). While we showed this for a set of differential equations in a very special form (B.3), the
considerations explained above are of course valid for any system of differential equations. Given a set of
masters ~M = (M1, ...,MN) and their system of differential equations in matrix form

∂

∂xij

~M(d;xij) = A(d;xij) ~M(d;xij) , (B.8)

where no constraint is applied on the matrix A(d;xij), by using Tarasov relation we can define a new basis

~I(d;xij) = ~M(d− 2;xij) , (B.9)

which, by construction, fulfils a system of differential equations in the form

∂

∂xij

~I(d;xij) = A(d− 2;xij) ~I(d;xij) . (B.10)

Of course, using the Lee identities (or inverting the Tarasov identities above) one can work in the
opposite direction, shifting d → d+ 2. Defining the new basis of MIs as

~J (d;xij) = ~M(d+ 2, xij) , j = 1, ..., N (B.11)

and following the same argument we find immediately

∂

∂xn

~J (d;xij) = A(d+ 2;xij) ~J (d;xij) . (B.12)
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