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1 Introduction

An important feature of the perturbative treatment of any quantum field theory is the
evolution of couplings, fields and masses with the renormalization scale µ, which is usually
set to a characteristic energy scale of the physical process under consideration. This evo-
lution is described by the Renormalization Group (RG) functions, i. e. β-functions for the
couplings and anomalous dimensions for fields and masses.

The β-function for any coupling X is defined as

βX(X,X1, X2, . . .) = µ2 dX

dµ2 =
∞∑
n=1

1
(16π2)n β

(n)
X (1.1)

and the anomalous dimension of a field f as

γf2 = −µ2dlnZ−1
f

dµ2 =
∞∑
n=1

1
(16π2)n γ

f (n)
2 , (1.2)

where Zf is the field strength renormalization constant1 for the respective field. These
functions are power series in all couplings X,X1, X2, . . . of the theory. The β-functions and
the anomalous dimensions of masses are independent of all gauge parameters ξ whereas
the anomalous dimensions of the fields are not.

Recently the RG functions of the Standard Model (SM) were computed at three-loop
accuracy. In the MSscheme β-functions do not depend on masses [1], hence they can
be computed in the unbroken phase of the SM. For the gauge couplings gs, g2 and g1 of

1Note that we take the inverse of Zf in the definition of γf

2 . For an n-point vertex V or a mass m the
anomalous dimension is defined as γV

n = −µ2 dlnZV
dµ2 or γm = −µ2 dlnZm

dµ2 .
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the SUC(3), SUL(2) and UY (1) subgroups of the SM the results were first published in
[2, 3] and independently confirmed in [4]. For the top-Yukawa coupling yt, which is the
numerically largest Yukawa coupling by far, and the parameters of the Higgs potential λ
and m2 the β-functions were first computed in the gaugeless limit, i.e. g2, g1 → 0, along
with the anomalous dimensions of the fields involved [5]. Later βλ and βm2 were extended
to the full SM [6], confirmed by [7, 8], as well as βyt [9], where the β-functions for the
smaller Yukawa couplings were also added. The one- and two-loop β-functions for the
gauge couplings [10–21], Yukawa couplings [18, 20, 22, 23] and Higgs potential parameters
[18, 20, 21, 24] have been known for a long time as well as partial three-loop results [25–31].
At four-loop level only the QCD β-function, i.e. βgs(gs) or equivalently βαs(αs) = 2αsgs βgs
with αs = g2

s
4π is known [32, 33].

Especially the evolution of the quartic Higgs self-coupling has received a lot of interest
because of its close connection to the question of vacuum stability in the Standard Model.
It has been shown that the stability of the SM vacuum up to some large energy scale
Λ ∼ MPlanck is approximately equivalent to the requirement that the running coupling
λ(µ) > 0 for µ ≤ Λ [34–36]. The function βλ describing this evolution depends on all
SM couplings an especially the large couplings yt and gs have a strong influence. As the
evolution of all couplings is interdependent a precision calculation for the evolution of all -
at least of the five largest (gs, yt, g2, g1 and λ) - is well motivated. Many analyses of this
question have been performed [5, 37–49] during the last years.

In this paper we extend the QCD β-function to the gaugeless limit of the SM, i. e. we
include the dependence on the top-Yukawa coupling yt and the quartic Higgs self-coupling
λ. This can be seen as a first step to all three gauge coupling β-functions in the full SM.
To start with the gaugeless limit seems reasonable, first because at the energy-scales of our
experiments yt is the second largest coupling in the SM after gs, followed by g2, g1 and λ.
In order to renormalize fermion loops with four scalar legs we should also add counterterm
∝ Φ4 to the Lagrangian of our simplified model. This is exactly a contribution to the
renormalization of λ which makes it natural to include λ as well.

Secondly, the gaugeless limit of the SM provides an excellent opportunity to study the
proper treatment of γ5, which is introduced in the Yukawa-part of the Lagrangian. This
matrix is not well-defined in D = 4 − 2ε dimensions and hence constitutes a non-trivial
challenge.

The paper is structured as follows: In the following section the technical details, especially
the treatment of γ5, as well as the automation of the calculation are discussed. Then the
results are given and the relevance of the four-loop terms numerically determined at the
scale of the top quark mass.

Note: During the finishing process of this paper a similar calculation was published by
another group [50]. Their calculation was not performed with massive tadpole integrals
but rather with massless propagator-like integrals and in the Background field gauge. Both
results achieved with different methods agree but for one term which is numerically small.
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2 Details of the calculation

2.1 Gaugeless limit of the SM

The Lagrangian of the SM in the unbroken phase can be decomposed into

LSM = LSU(3)×SU(2)×U(1) + LYukawa + LΦ, (2.1)

where LSU(3)×SU(2)×U(1) contains the kinetic terms of the fermions and gauge bosons, their
interactions and the necessary gauge fixing and ghost terms. The Yukawa part LYukawa de-

scribes the coupling of the fermions to a scalar SU(2) doublet Φ =
(

Φ1
Φ2

)
which results in

fermion masses and the coupling of fermions to the Higgs boson after Spontaneous Symme-
try Breaking as well as the mixing of the quark generations. The scalar part LΦ contains the
kinetic term for the scalar field Φ, its potential and its coupling to the electroweak gauge
bosons through the covariant derivative. In the gaugeless limit we neglect two smaller
gauge couplings g2 and g1 (electroweak sector). We also approximate the small Yukawa
couplings, i. e. all but the top-Yukawa coupling yt, by zero and arrive at a simplified model
which includes QCD and top-Yukawa effects as well as the scalar potential:

L = LQCD + Lyt + LΦ (2.2)

with

LQCD = −1
4G

a
µνG

aµν − 1
2(1− ξ) (∂µAaµ)2 + ∂µc̄

a∂µca + gsf
abc ∂µc̄

aAb µcc

+
∑
q

{
i

2 q̄
←→
/∂ q + gsq̄ /A

a
T aq

}
, (2.3)

Lyt = −yt
{(
t̄PRt

)
Φ∗2 +

(
t̄PLt

)
Φ2 −

(
b̄PRt

)
Φ∗1 −

(
t̄PLb

)
Φ1
}
, (2.4)

LΦ = ∂µΦ†∂µΦ−m2Φ†Φ− λ
(
Φ†Φ

)2
. (2.5)

Here q runs over all quark flavours, the gluon field strength tensor is given by

Gaµν = ∂µA
a
ν − ∂νAaµ + gsf

abcAbµA
c
ν (2.6)

and fabc are the structure constants of the colour gauge group with the generators T a

which satisfy [
T a, T b

]
= ifabcT c. (2.7)

The Yukawa sector mixes left-handed (L) and right-handed (R) Weyl spinors which can
be projected out from Dirac spinors used in our Feynman rules by the application of the
projectors

PL = 1
2 (1− γ5) PR = 1

2 (1 + γ5) . (2.8)

The left- and right-handed parts of the quark fields and vertices participating in the Yukawa
interaction are renormalized differently.
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The Lagrangian (2.2) is renormalized with the counterterms

δLQCD = −1
4δZ

(2g)
3

(
∂µA

a
ν − ∂νAaµ

)2
− 1

2δZ
(3g)
1 gsf

abc
(
∂µA

a
ν − ∂νAaµ

)
AbµA

c
ν

− 1
4δZ

(4g)
1 g2

s

(
fabcAbµA

c
ν

)2
+ δZ

(2c)
3 ∂µc̄

a∂µca + δZ
(ccg)
1 gsf

abc ∂µc̄
aAb µcc (2.9)

+
∑
q

{
i

2 q̄
←→
/∂
[
δZ

(2q)
2,L PL + δZ

(2q)
2,R PR

]
q + gsq̄ /A

a
T a
[
δZ

(qqg)
1,L PL + δZ

(qqg)
1,R PR

]
q

}
,

δLY ukawa = −δZ(tbΦ)
1 yt

{(
t̄PRt

)
Φ∗2 +

(
t̄PLt

)
Φ2 −

(
b̄PRt

)
Φ∗1 −

(
t̄PLb

)
Φ1
}
, (2.10)

δLΦ = δZ
(2Φ)
2 ∂µΦ†∂µΦ−m2 δZΦ2Φ†Φ + δZ

(4Φ)
1

(
Φ†Φ

)2
. (2.11)

All these renormalization constants were computed at three-loop level in the course of the
calculations in [5]. The simplest way to derive the renormalization constant for the strong
gauge coupling gs is via

Zgs = Z
(ccg)
1

Z
(2c)
3

√
Z

(2g)
3

(2.12)

where we use the renormalization constants Z = 1 + δZ in the MS-scheme. All divergent
integrals are regularized in D = 4− 2ε space time dimensions.

2.2 Automation and calculation with massive tadpoles

The calculation begins with the generation of all necessary 1PI Feynman diagrams with
two external ghost or gluon legs for Z(2c)

3 or Z(2g)
3 and with two external ghost and one

external gluon leg for Z(ccg)
1 . This was done with the program QGRAF [51].

The C++ programs Q2E and EXP [52, 53] are then used to identify the topology of the
diagram. Later we will Taylor expand in the external momenta and use projectors on the
integrals in order to make them scalar. For example the ghost-gluon vertex corrections
are proportional to the outgoing ghost momentum qµ, where µ is the Lorentz index of the
gluon leg. Hence we expand to first order in q, use the projector qµ

q2 on the integral and
set q → 0 after that. This is allowed as MS renormalization constants do not depend on
external momenta. After having set all external momenta to zero we are left with tadpole
integrals. The fermion traces, the expansion in the external momenta and the insertion of
counterterms in one-loop, two-loop and three-loop diagrams was performed using FORM
[54, 55]. The colour factors were computed with the FORM package COLOR [56]. The
tadpole integrals up to three-loop order were computed with the FORM-based package
MATAD[57].

At four-loop level there are two independent tadpole topologies, see Fig. 1. 2 All scalar
products pi·j (i, j = 1, . . . , 10) can be written as linear combinations of the p2

i which can
be expressed in terms of the scalar propagators Di = 1

i
1

M2−p2
i
and the auxiliary Mass M2

2All Feynman diagrams in this paper have been drawn with the Latex package Axodraw [58].
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p1
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p5
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p3

p4
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p6 p7

p8
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planar topology: tad4lp non-planar topology: tad4lnp

Figure 1: Four-loop tadpole topologies: p1, p2, p3, p4 are independent loop momenta,
the others are linear combinations p5 = p4 − p1, p6 = p2 − p1, p7 = p3 − p2, p8 = p3 − p4,
p9 = p4 − p2 and p10 = p4 + p2 − p1 − p3.

(see below). Hence all four-loop integrals can be written in terms of functions

TAD4l(n1, . . . , n10) :=
∫

dDp1

∫
dDp2

∫
dDp3

∫
dDp4

10∏
i=1

Dni
i . (2.13)

The integrals (2.13) can be reduced to Master Intgrals (MI) using FIRE [59]. For the huge
number of integrals in such a calculation the C++ version of FIRE 5 [60] is necessary. All
MI needed for this computation can be found in [33]. The program FIESTA 3 [61] was
used to numerically cross check these MI and some unreduced integrals as a check for our
setup.

In order to compute the divergent part of the needed self-energies and vertex corrections we
use the same method as in our previous calculations [5, 6]. This method was suggested in
[62] and further developed in [63]. A step-by-step explanation of this method can be found
in [46]. An auxiliary mass parameterM2 is introduced in every propagator denominator. A
naive Taylor expansion in the external momenta is performed before applying the projector
to scalar integrals. After that all external momenta are set to zero which leaves us with
scalar tadpole integrals. Subdivergences ∝M2 are canceled by counterterms

M2

2 δZ
(2g)
M2 AaµA

aµ and M2

2 δZ
(2Φ)
M2 Φ†Φ. (2.14)

which are computed order by order in perturbation theory and inserted in lower loop
diagrams. Note that this method only yields the divergent part of the integrals correctly,
not the finite part.

2.3 Treatment of γ5

The most important issue of this calculation is the proper treatment of γ5 in dimensional
regularization. In D = 4 dimensions it can be defined as

γ5 = iγ0γ1γ2γ3 = i

4!εµνρσγ
µγνγργσ with ε0123 = 1 = −ε0123. (2.15)

– 5 –



γ5

µ1 µ2

µ3 µ4

k2 k1

· · ·

γ5

(a) (b)

Figure 2: γ5 on internal (a) and external (b) fermion lines

In most diagrams a naive treatment of γ5 is sufficient, i. e. we use {γ5, γ
µ} = 0 and γ2

5 = 1,
valid in D = 4 dimensions, until only one or no γ5 matrix remain on each fermion line, then
discard diagrams with at least one γ5. This is valid for fermion lines with less than four
Lorentz indices and momenta flowing into the fermion line. Fig. 2 shows the schematic cases
of γ5 appearing on internal and external fermion lines. We start with the case of internal
lines (see Fig. 2 (a)). In fact, for the calculation presented in this paper no external fermion
lines appear.

As we set all momenta external to the whole Feynman diagram to zero for the computation
of the UV divergent part of the diagram external momenta to a fermion line (k1, k2,. . .) are
loop momenta from other loops. Taking the trace over the closed fermion loop in D = 4
dimensions yields a result with terms proportional to εµ1µ2µ3µ4 and εµ1µ2αβ k

α
1 k

β
2 and so

on. In order for the ε-tensors not to vanish at least 4 free Lorentz structures are needed.
Else the diagram can be set to zero before we even employ dimensional regularization.

If we have only one internal fermion line with one γ5 on it and the final result is known
to be scalar (not pseudoscalar), as are the counterterms we want to compute here, we can
discard these terms as well. The only possibility for a non-naive contribution to the final
result can appear in the case of two (or more) fermion lines. Here the two ε-tensors can be
contracted and expressed in terms of the metric tensor

εµ1µ2µ3µ4εν1ν2ν3ν4 = −
∑
π

sgn(π)gµπ(1)
ν1 g

µπ(2)
ν2 g

µπ(3)
ν3 g

µπ(4)
ν4 , (2.16)

where the sum is taken over all permutations π of (1,2,3,4) and

sgn(π) =

+1 for π even
−1 for π odd

. (2.17)

The lhs of (2.16) is composed of intrinsically four-dimensional objects whereas the rhs can
be used in D = 4 − 2ε dimensions, introducing an uncertainty of O(ε). However, if the
integrals appearing in the calculation of the Feynman diagram in question have only 1

ε

poles the divergent part, which we are interested in here, is unaffected.

For completeness we want to make a short remark about external fermion lines, such as the
one shown in Fig. 2 (b), as well. Here we can anticommute the γ5 to the end of the fermion
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line and hence outside of all loops. But if we use a projector on the external fermion line in
order to make the integral scalar and this involves taking a trace over the fermion line we
have to treat it the same way as the internal ones. In the case of the three-loop β-function
for the Yukawa couplings a non-naive γ5 effect from the contraction of the ε-tensors from
an internal and an external fermion line was observed [5].

In the the calculations needed for the renormalization constants in (2.12) only one type of
diagram features two fermion lines with four external Lorentz indices or loop-momenta to
them, namely in the gluon propagator, when each external leg is attached to a different
fermion loop and the two fermion loops are connected by a gluon and two Φ-lines. A planar
example is shown in Fig. 3

µ1 µ2

ν1 ν2

l1

l2

PL

PR

PR

PL

Figure 3: Diagram giving a non-naive γ5-contribution to the gluon self-energy: each
fermion line has two indices µi and νi (i=1,2) and two momenta l1, l2, which can support a
εµiνiαβlαlβ term. The left- and right-handed projectors PL,R introduce γ5 into the diagram.

It was checked explicitly that only 1
ε poles appear in the integrals needed for these diagrams.

In fact, as an additional precaution we checked that at O(ε) completely antisymmetric and
completely symmetric structures composed of the metric and the eight indices appearing
in the ε tensors do not give contributions to the divergent part. This was implemented as

εµ1µ2µ3µ4εν1ν2ν3ν4 = −
∑
π

sgn(π)gµπ(1)
ν1 g

µπ(2)
ν2 g

µπ(3)
ν3 g

µπ(4)
ν4 (1 + ε · Cas)

+ ε · Cs∑
π

g
µπ(1)
ν1 g

µπ(2)
ν2 g

µπ(3)
ν3 g

µπ(4)
ν4 , (2.18)

where the labels Cas,s parametrize the uncertainty introduced through (2.16) being applied
in D = 4 − 2ε. As they drop out in the divergent term of our final result we are satisfied
that γ5 can be treated in this way. An alternative that was also checked is to use (2.16)
and an ε̃ instead of ε in the fermion traces and check that 1

εi
with i > 1 drop out in the

sum of all diagrams. After that we set ε̃ = ε.

3 Results

In this section we give the results for the four-loop β-function of the strong coupling gs in
the gaugeless limit of the SM. For a gerneric SU(Nc) gauge group the colour factors are
expressed through the quadratic Casimir operators CF and CA of the fundamental and the
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adjoint representation of the corresponding Lie algebra. The dimension of the fundamental
representation is called Nc. The adjoint representation has dimension ng and the trace TF
defined by TF δab = Tr

(
T aT b

)
with the group generators T a of the fundamental represen-

tation. In addition we need a few higher order invariants constructed from the symmetric
tensors

dabcdF = 1
6Tr

(
T aT bT cT d + T aT bT dT c + T aT cT bT d

+ T aT cT dT b + T aT dT bT c + T aT dT cT b
)
. (3.1)

from the generators of the fundamental representation and analogously dabcdA constructed
from the generators of the adjoint representation. The combinations needed and their
SU(Nc) values are

dabcdF dabcdF

ng
= N4

c − 6N2
c + 18

96N2
c

,
dabcdF dabcdA

ng
= Nc(N2

c + 6)
48 , (3.2)

dabcdA dabcdA

ng
= N2

c (N2
c + 36)
24 .

Furthermore for SU(Nc) we have

TF = 1
2 , CF = N2

c − 1
2Nc

, CA = Nc, ng = N2
c − 1. (3.3)

The number of active fermion flavours is denoted by nf (=6 in the SM).

β(4)
gs

gs
=g8

s

(
40
9
dabcdA dabcdA

ng
− 150653

972 C4
A −

256
9 nf

dabcdF dabcdA

ng
− 23nfTFC3

F

+2102
27 nfCATFC

2
F −

7073
486 nfC

2
ATFCF + 39143

162 nfC
3
ATF + 352

9 n2
f

dabcdF dabcdF

ng

−676
27 n

2
fT

2
FC

2
F −

8576
243 n

2
fCAT

2
FCF −

3965
81 n2

fC
2
AT

2
F −

616
243n

3
fT

3
FCF

−212
243n

3
fCAT

3
F −

352
3 ζ3

dabcdA dabcdA

ng
+ 22

9 ζ3C
4
A + 832

3 ζ3nf
dabcdF dabcdA

ng

−176
9 ζ3nfCATFC

2
F + 328

9 ζ3nfC
2
ATFCF −

68
3 ζ3nfC

3
ATF −

256
3 ζ3n

2
f

dabcdF dabcdF

ng

+352
9 ζ3n

2
fT

2
FC

2
F −

224
9 ζ3n

2
fCAT

2
FCF −

112
9 ζ3n

2
fC

2
AT

2
F

)
+ g6

s y
2
t

(
−3TFC2

F −
523
18 CATFCF −

985
9 C2

ATF + 322
9 nfT

2
FCF

+218
9 nfCAT

2
F + 72ζ3TFC

2
F + 36ζ3CATFCF

)
+ g4

s y
4
t

(
−3TFCF + 41

2 TFCFNc + 36CATF + 25CATFNc

−24ζ3TFCFNc + T 2
F

(100
3 − 16ζ3

))
+ g2

s y
6
t

(
−21

4 TF − 29TFNc −
3
2TFN

2
c − 6ζ3TF

)
− 30g2

s y
4
t λTF + 36TFg2

s y
2
t λ

2.

(3.4)

– 8 –



This is in agreement with [50] except for the term ∝ g4
s y

4
t T

2
F (blue) which is the only

one affected by non-naive γ5 contributions as explained above. The naive and non-naive
(i. e. stemming from the contraction of two ε-tensors) contributions are

g4
s y

4
t T

2
F

(100
3 − 16ζ3

)
= g4

s y
4
t T

2
F

 24︸︷︷︸
(naive)

+ 28
3︸︷︷︸

(non-naive)

− 48ζ3︸︷︷︸
(naive)

+ 32ζ3︸︷︷︸
(non-naive)

 . (3.5)

The lower loop results are

β(3)
gs

gs
= g6

s

(
−2857

108 C
3
A − nfTFC2

F + 205
18 nfCATFCF

+1415
54 nfC

2
ATF −

22
9 n

2
fT

2
FCF −

79
27n

2
fCAT

2
F

)
(3.6)

−g4
s y

2
t (3TFCF + 12CATF ) + g2

s y
4
t

(
+9

2TF + 7
2TFNc

)
,

β(2)
gs

gs
= g4

s

(
−17

3 C
2
A + 2nfTFCF + 10

3 nfCATF
)
− 2g2

s y
2
t , (3.7)

β(1)
gs

gs
= g2

s

(
−11

6 CA + 2
3nfTF

)
. (3.8)

in agreement with [5]. The pure QCD part of (3.4) agrees with [32, 33].

For convenience we also give the β-function for αs. We absorb the loop factor 1
16π2 into

as = g2
s

(4π)2 = αs
4π , at = y2

t

(4π)2 , aλ = λ

(4π)2 (3.9)

and define
βαs(as, at, aλ) =

∞∑
n=1

β(n)
αs

(as, at, aλ). (3.10)
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We find

β(4)
αs

αs
=a4

s

(
80
9
dabcdA dabcdA

ng
− 150653

486 C4
A −

512
9 nf

dabcdF dabcdA

ng
− 46nfTFC3

F

+4204
27 nfCATFC

2
F −

7073
243 nfC

2
ATFCF + 39143

81 nfC
3
ATF

+704
9 n2

f

dabcdF dabcdF

ng
− 1352

27 n2
fT

2
FC

2
F −

17152
243 n2

fCAT
2
FCF

−7930
81 n2

fC
2
AT

2
F −

1232
243 n

3
fT

3
FCF −

424
243n

3
fCAT

3
F −

704
3 ζ3

dabcdA dabcdA

ng

+44
9 ζ3C

4
A + 1664

3 ζ3nf
dabcdF dabcdA

ng
− 352

9 ζ3nfCATFC
2
FCF

+656
9 ζ3nfC

2
ATF −

136
3 ζ3nfC

3
ATF −

512
3 ζ3n

2
f

dabcdF dabcdF

ng
CF

+704
9 ζ3n

2
fT

2
FC

2
F −

448
9 ζ3n

2
fCAT

2
FCF −

224
9 ζ3n

2
fC

2
AT

2
F

)
+ ata

3
s

(
−6TFC2

F −
523
9 CATFCF −

1970
9 C2

ATF + 644
9 nfT

2
FCF

+436
9 nfCAT

2
F + 144ζ3TFC

2
F + 72ζ3CATFCF

)
+ a2

t a
2
s (−6TFCF + 41TFCFNc + 72CATF + 50CATFNc

−48ζ3TFCFNc + T 2
F

(200
3 − 32ζ3

))
+ a3

t as

(
−21

2 TF − 58TFNc − 3TFN2
c − 12ζ3TF

)
+ a2

t asaλ (−60TF ) + atasa
2
λ (+72TF ) ,

(3.11)

where

a2
t a

2
sT

2
F

(
+200

3 T 2
F − 32ζ3T

2
F

)
= a2

t a
2
sT

2
F

 48︸︷︷︸
(naive)

+ 56
3︸︷︷︸

(non-naive)

− 96ζ3︸︷︷︸
(naive)

+ 64ζ3︸︷︷︸
(non-naive)

 . (3.12)

and

β(3)
αs

αs
= +a3

s

(
−2857

54 C3
A − 2nfTFC2

F + 205
9 nfCATFCF

+1415
27 nfC

2
ATF −

44
9 n

2
fT

2
FCF −

158
27 n

2
fCAT

2
F

)
(3.13)

+ata2
s (−6TFCF − 24CATF ) + a2

t as (+9TF + 7TFNc) ,
β(2)
αs

αs
= +a2

s

(
−34

3 C
2
A + 4nfTFCF + 20

3 nfCATF
)

+ atas (−4TF ) , (3.14)

β(1)
αs

αs
= +as

(
−11

3 CA + 4
3nfTF

)
. (3.15)
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Now we want to give a numerical evaluation of the β-functions at the scale of the top mass
in order to get an idea of the size of the new terms. For Mt ≈ 173.34± 0.76 GeV [64],
MH ≈ 125.09± 0.24 GeV[65] and αs(MZ) = 0.1184± 0.0007 [66] we get the couplings in
the MS-scheme at this scale using two-loop matching relations [48]

gs(Mt) = 1.1666± 0.0035(exp),
yt(Mt) = 0.9369± 0.0046(exp)± 0.0005(theo), (3.16)
λ(Mt) = 0.1259± 0.0005(exp)± 0.0003(theo)

where the experimental uncertainty (exp) stems from Mt,MH and αs(MZ) and the theo-
retical one (theo) from the matching of on-shell to MS parameters (these are taken from
[48]). We find3

β(2)
gs

β
(1)
gs

= 3.20× 10−2︸ ︷︷ ︸
g4
s

+1.59× 10−3︸ ︷︷ ︸
g2
sy

2
t

, (3.17)

β(3)
gs

β
(1)
gs

= −3.45× 10−4︸ ︷︷ ︸
g6
s

+2.74× 10−4︸ ︷︷ ︸
g4
sy

2
t

−6.62× 10−5︸ ︷︷ ︸
g2
sy

4
t

, (3.18)

β(4)
gs

β
(1)
gs

= 2.26× 10−4︸ ︷︷ ︸
g8
s

+2.47× 10−5︸ ︷︷ ︸
g6
sy

2
t

−1.06× 10−5︸ ︷︷ ︸
g4
sy

4
t (naive)

−9.09× 10−7︸ ︷︷ ︸
g4
sy

4
t (non-naive)

(3.19)

+2.77× 10−6︸ ︷︷ ︸
g2
sy

6
t

+1.06× 10−7︸ ︷︷ ︸
g2
sy

4
t λ

−1.82× 10−8︸ ︷︷ ︸
g2
sy

2
t λ

2

(3.20)

We see that the top-Yukawa contributions have a sizable impact on the four-loop β-function
for the strong coupling. The part ∝ g6

s y
2
t increases it by ∼ 10% and the part ∝ g4

s y
4
t

decreases it by ∼ 5% at this scale compared to the pure QCD contribution ∝ g8
s . The

non-naive term gives a ∼ 0.4% contribution. Numerically the discrepancy with [50] is
therefore negligible in any phenomenological analysis. At some point it should be resolved
nevertheless.

4 Conclusions

We have presented an analytical result for the four-loop β-function of the strong coupling gs
in the gaugeless limit of the SM. This constitutes an important extension of the well-known
QCD result as top-Yukawa coupling is numerically the next important coupling after gs, at
least at the electroweak scale. Furthermore, this is an important step towards a complete
calculation of the four-loop β-functions of the gauge couplings in the full SM.

An important feature of this result is the non-naive γ5 contribution ∝ g4
s y

4
t . In the pure

gauge boson and fermion sector of the SM, given by LSU(3)×SU(2)×U(1), all non-naive con-
tributions cancel in the sum of all diagrams, making this part of the SM anomaly free.

3The labels under the braces indicate from which part of the β-function the contributions come.
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This has been explicitly checked during the calculation of the three-loop β-functions for
the gauge couplings in the SM [2, 3]. Here we see that with the inclusion of a scalar field
non-naive contributions may appear in higher orders and special care will have to be taken
when a attempting a complete calculation of four-loop β-functions in the SM.
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