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Abstract

We compute the decay rate of the Standard Model Higgs boson to bottom quarks
to order ααs. We apply the optical theorem and calculate the imaginary part of
three-loop corrections to the Higgs boson propagator using asymptotic expansions
in appropriately chosen mass ratios. The corrections of order ααs are of the same
order of magnitude as the O(α3

s) QCD corrections but have the opposite sign.
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1 Introduction

After the discovery of a Higgs boson in run I of the CERN Large Hadron Collider it is
one of the main tasks of run II to determine the properties of the new particle. Among
them is the coupling to other particles. This is predominantly done by determining Higgs
production cross sections and decay branching ratios, i.e. the ratio of the partial decay
width of the Higgs boson to the considered particles normalized to the total decay rate.
The latter is dominated by the partial decay rate to bottom quark, Γ(H → bb̄), which
hence influences all branching ratios. Thus, Γ(H → bb̄) should be available as precisely
as possible.

QCD corrections are known up to order α4
s (see, e.g., Refs. [1–7]) and first results of order

α5
s induced by virtual top quarks have been obtained in Ref. [8]. Good convergence of

the perturbative series is observed leading to a 0.1% contribution of the α4
s corrections

to Γ(H → bb̄). As far as electroweak corrections are concerned only one-loop corrections
are available which have been computed beginning of the nineties [9, 10]. At two- and
three-loop order only the leading M2

t corrections are available [11–14]. In this work we
compute QCD corrections to the full O(α) result and thus obtain all contributions of
order ααs to the partial decay rate of a Standard Model Higgs boson into bottom quarks.
Analog corrections to the decay rates of the Z and W bosons have been computed in
Refs. [15–17] and [18], respectively.

We parametrize the corrections to the decay rate as follows

Γ(H → bb̄) = Γ(0)
(

1 + ∆(αs) +∆(α) +∆(ααs) + . . .
)

, (1)

where the ellipses stand for higher order corrections in α and αs. It is convenient to split
the electroweak corrections into a weak and a QED contributions which to our order are
separately finite and gauge invariant:

∆(α) = ∆(QED) +∆(weak) ,

∆(ααs) = ∆(QED,αs) +∆(weak,αs) . (2)

The aim of this paper is the computation of the mixed corrections ∆(ααs). In Eq. (1) Γ(0)

denotes the Born decay rate which is given by

Γ(0) =
Ncαm

2
bMH

8s2WM2
W

β3
0 , (3)

where Nc = 3 is the number of colours and sW is the sine of the weak mixing angle.
β0 =

√

1− 4m2
b/M

2
H is the velocity of the produced bottom quarks which from now on

we approximate to β0 = 1. As an alternative to Eq. (3) one can replace the fine structure
constant by Fermi’s constant via

GF√
2

=
πα

2s2WM2
W

1

1−∆r
, (4)
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where the finite quantity ∆r parametrizes the radiative corrections to the muon decay
beyond QED corrections within the effective four-fermion theory [19]. This leads to

Γ(0) =
NcGFm

2
bMH

4
√
2π

. (5)

For later reference we provide the Born decay rate including higher order terms in ǫ =
(4 − d)/2 which are useful in the renormalization procedure. For d 6= 4 both (3) and (5)
have to be multiplied by the factor1

f(ǫ) =

(

µ2

M2
H

)ǫ [

1 + ǫ+ ǫ2
(

4− π2

4

)

+O(ǫ3)

]

. (6)

For later convenience we also list the one-loop QCD corrections including terms of order ǫ

∆(αs) =
αs

π
CF

{

17

4
+

3

2
ln

(

µ2

M2
H

)

+ ǫ

[

179

8
− 7π2

8
− 6ζ(3) +

23

2
ln

(

µ2

M2
H

)

+
9

4
ln2

(

µ2

M2
H

)]}

, (7)

where CF = 4/3. To obtain this result the bottom quark mass has been renormalized in
the MS scheme. The one-loop QED corrections are obtained from ∆(αs) with the help of

∆(QED) =
αQ2

b

CFαs
∆(αs) , (8)

where CF = 4/3 and Qb = −1/3 is the charge of the bottom quark.

The remainder of the paper is organized as follows: In the next Section we discuss the
method we want to use for the three-loop diagrams of order ααs and apply it to the
one-loop electroweak corrections. The O(ααs) corrections are presented afterwards in
Section 3. In Section 4 we discuss the numerical effect, compare with the known QCD
corrections and conclude.

2 Corrections of order α

Before discussing the computation of the genuine diagrams of order α we briefly elaborate
on the counterterm contribution. We follow Ref. [20] and introduce one-loop counterterms
for the Higgs boson wave function (δZH), the vacuum expectation value (δv) and the
bottom quark mass (δmb

). This leads to the following counterterm contribution of ∆(weak)

∆
(weak)
CT = Γ(0)

(

1− 2
δv

v
+ δZH −∆r + 2δmb

)

, (9)

1Throughout this paper we adopt a MS-like convention and set γE and log(4π) to zero.
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where Γ(0) is given in Eq. (5). We do not include the on-shell wave function renormal-

ization of the quarks in ∆
(weak)
CT since it is automatically taken into account when using

the optical theorem (see below). In the on-shell scheme the mass counterterm is defined
through

m0
b = Mb

(

1 + δOS
mb

)

, (10)

with Mb being the on-shell mass. We take δOS
mb

from Ref. [21, 22] dropping all tadpole

contributions. The divergent part of δmb
determines the MS counterterm δMS

mb
and is in

our approximation (i.e. at most m2
b terms in the decay rate) given by

δ(weak),MS
mb

= δOS
b

∣

∣

∣

1/ǫ pole
=

α

π

(

− 3m2
t

32s2WM2
W

+
9 + 6s2W − 8s4W

96c2Ws2W

)

1

ǫ
. (11)

The remaining terms on the right-hand side of Eq. (9) can be written in the form [20]

vr ≡ −2
δv

v
+ δZH −∆r

= −ΣW (0)

M2
W

− Σ′H(M2
H)−

2

sW cW

ΣγZ(0)

M2
Z

− α

4πs2W

(

6 +
7− 4s2W
2s2W

ln(c2W )

)

=
α

πs2W

{

− 1 + 2c2W
8c2W

1

ǫ
− 3(1 + 2c2W )

32c2W
+

3(1 + 2c4W )M2
Z

8c2WM2
H

+
(13− 2

√
3π)M2

H

32M2
W

+
(M2

H − 6M2
W )(M2

H + 2M2
W )

4M3
H

√

−M2
H + 4M2

W

arctan
MH

√

−M2
H + 4M2

W

+
(M2

H − 6M2
Z)(M

2
H + 2M2

Z)

8c2WM3
H

√

−M2
H + 4M2

Z

arctan
MH

√

−M2
H + 4M2

Z

+
(M2

H + 5M2
W )

48M2
W

ln

(

µ2

M2
H

)

+
(−1 + 11c2W + 8c4W )

48c2W
ln

(

µ2

M2
Z

)

+
M2

Hc
2
W −M2

W (5 + 18c2W + 8c4W )

48M2
W c2W

ln

(

µ2

M2
W

)

+
(M4

H − 5M2
HM

2
W − 5M4

W )

48M2
W (M2

H −M2
W )

ln

(

M2
W

M2
H

)

+
(−5 + 8c2W )(1 + c2W + c4W )

48c2W s2W
ln

(

M2
W

M2
Z

)

+Nc

[

m2
t (8m

2
t +M2

H)

16M2
HM

2
W

+
m2

t (2m
2
t +M2

H)
√

4m2
t −M2

H

4M3
HM

2
W

arctan
MH

√

4m2
t −M2

H

]}

,

(12)

where v is the vacuum expectation value and ΣW , ΣγZ and ΣH denote the two-point
functions of the corresponding bosons in the notation given in Ref. [20]. The prime in
the case of the Higgs boson two-point function denotes the derivative w.r.t. the external
momentum squared, q2. Afterwards q2 = M2

H is chosen.
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Figure 1: Sample Feynman diagram contributing to the O(α) corrections of Γ(H → bb̄).
External dashed lines denote the Higgs boson.

For the evaluation of the decay rate Γ(H → bb̄) we use the optical theorem which for our
application has the form

Γ(H → bb̄) =
1

MH

Im
[

ΣH(q
2 = M2

H + iǫ)
]

, (13)

where ΣH(q
2) is the Higgs boson two-point function which is evaluated on the Higgs boson

mass shell. As a consequence we have to consider Feynman diagrams as shown in Fig. 1
to evaluate the O(α) corrections. In this approach we automatically take into account the
on-shell wave function renormalization which is the reason why we have not considered it
in Eq. (9). Note that we neglect mb corrections except the leading m2

b factor and thus the
contributing diagrams either contain Z bosons (possibly together with neutral Goldstone
bosons) or W and/or charged Goldestone bosons and top quarks.

We express our final result in terms of the MS bottom quark mass which, as is well
known, leads to a better perturbative behaviour of the decay rate. In this context we
briefly want to discuss the tadpole contributions to the bottom quark propagator (see
also discussions in Refs. [21, 22]). In fact, besides the diagrams in Fig. 1 there are also
contributions where a closed loop is connected via a Z or Higgs boson to the bottom
quark line, so-called tadpoles. These contributions are exactly canceled by the on-shell
counterterm contributions to the bottom quark mass. For this reason we drop the tadpoles
in both parts from the very beginning. Note, however, that after dropping the tadpole
contribution in the counterterm δmb

, it becomes dependent on the electroweak gauge
parameters ξW/Z . The same is true for the contribution from the diagrams in Fig. 1. In
the sum ξW/Z drops out. In case the bottom quark mass is renormalized in the MS scheme
there is no cancellation and the final expression for Γ(H → bb̄) remains ξW/Z-dependent.
Note, however, that also the numerical value of mb in the MS scheme (formally) depends
on ξW/Z since in the extraction of mb from the comparison of theoretical calculations
and experimental data (see, e.g., Ref. [23]) no electroweak tadpoles are included. The
ξW/Z-dependence in Γ(H → bb̄) and mb cancels.

In our calculation we adopt Feynman gauge in the electroweak sector but allow for general
gauge parameter ξS in gluon propagator. In our final result ξS drops out which is a
welcome check. Our Feynman integrals involve the mass scales MH ,Mt,MW and MZ .

Before presenting numerical results let us fix our input parameters which are given by [23–
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25]

Mt = 173.34 GeV ,

MH = 125.09 GeV ,

MW = 80.385 GeV ,

MZ = 91.1876 GeV ,

mb(mb) = 4.163 GeV ,

GF = 1.1663788(6)× 10−5 GeV−2 ,

αs(MZ) = 0.1185 (14)

where the four-loop QCD conversion [26] of the on-shell to the MS top quark mass leads
to mt(mt) = 163.47 GeV and mt(MH) = 166.97 GeV.

Let us in a first step discuss the contribution from the Feynman diagrams which do not
involve top quarks. As massive particles they only contain Z bosons or neutral Goldstone
bosons and thus they depend on q2/M2

Z where q2 = M2
H is the square of the external

momentum. At O(α) an exact calculation is possible, however, at O(ααs) the occurring
integrals become complicated. Thus we evaluate this class of Feynman diagrams in the
limit q2 ≪ M2

Z and apply a Padé approximation to construct an approximation for the
physical limit q2 = M2

H . In principle one could also imagine to consider q2 ≫ M2
Z . How-

ever, this limit contains decays of the form H → ZZ which are kinematically forbidden.
On the other hand, for q2 ≪ M2

Z we neglect contributions from H → Zbb̄, which are,
however, strongly phase-space suppressed. Furthermore, it is possible to experimentally
distinguish this final state from H → bb̄. Note that the decay H → Zbb̄ is not included
in the result of Ref. [10].

In the limit q2 ≪ M2
Z we obtain for ∆(weak,Z) the expansion

∆(weak,Z) =
∑

j≥0

d2j

(

M2
H

M2
Z

)j

=
∑

j≥0

D2j . (15)

where the coefficients Dk are given in Table 1. ∆(weak,Z) includes all relevant contributions
from ∆

(weak)
CT and is thus finite in the limit ǫ → 0. The bottom quark is renormalized in the

MS scheme. The counterterm contribution is not expanded in M2
H/M

2
Z and is contained

in the coefficient D0. Furthermore, we choose µ2 = M2
H for the renormalization scale.

In a next step we use the results in Table 1 and construct various Padé approximations.
The results are shown in Table 2 where also the exact result for ∆(weak,Z) from Ref. [10]
is displayed. The deviation of the numerical approximation based on the [4/4] Padé
expression and the exact result [10] is about 0.01% which justifies the use of this method
at order ααs.

Let us next turn to the contribution involving top quarks and a W and/or charged Gold-
stone bosons. To simplify the integrals and to obtain simple final expressions we assume
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k Dk

0 −0.008768
2 −0.000847
4 −0.000196
6 +0.000269
8 −0.000534
10 +0.000894
12 −0.001515
14 +0.002568
16 −0.004383

Table 1: Coefficients Dk from Eq. (15) for µ2 = MH .

Padé approximant ∆(weak,Z)

[3/3] −0.009744
[3/4] −0.009746
[4/3] −0.009747
[4/4] −0.009746
exact −0.009747

Table 2: Numerical results for ∆(weak,Z) obtained from the construction of Padé approx-
imations using the coefficients in Table 1. The last row contains the exact result from
Ref. [10].

one of the following hierarchies

(A) M2
H ≪ 4M2

W ≪ 4M2
t ,

(B) M2
H ≪ 4M2

W ≈ 4M2
t . (16)

We stress that the O(α) corrections can be computed without any assumptions on the
relative size of the involved mass scales. However, at order ααs the hierarchies in Eq. (16)
significantly simplify the calculation.

In Eqs. (16) the strong hierarchy (“≪”) means that we apply an asymptotic expansion [28]
in the corresponding mass ratio. In the case of an approximation sign we Taylor-expand
the integrand in the mass difference. As a result we obtain ∆(weak) in the form

∆(weak) =
∑

i≥−1

c
(A)
2i

(

M2
W

M2
t

)i

=
∑

i≥−1

C
(A)
2i ,

=
∑

i≥−1

c
(B)
2i

(

M2
t −M2

W

M2
t

)i

=
∑

i≥−1

C
(B)
2i , (17)
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k C
(A)
k (MS) ∆(weak)

−2 +0.005146 +0.005146
0 −0.004506− 0.009746|Z −0.009106
2 −0.000166 −0.009272
4 −0.000100 −0.009372
6 −0.000105 −0.009477
8 −0.000088 −0.009565
10 +0.000048 −0.009517
12 −0.000029 −0.009546
14 +0.000001 −0.009545

exact −0.009549

k C
(A)
k (on-shell) ∆(weak)

−2 +0.004842 +0.004842
0 −0.004754− 0.009746|Z −0.009659
2 −0.000145 −0.009804
4 −0.000095 −0.009899
6 −0.000078 −0.009977
8 −0.000065 −0.010042
10 +0.000029 −0.010012
12 −0.000018 −0.010031
14 +0.000000 −0.010030

exact −0.010034

Table 3: Coefficients C
(A)
k as defined in Eq. (17) (middle column). In the nth row of the

right column the sum including the first n terms is shown. On the top part we adopt the
MS and below the on-shell definition for the top quark mass. The Z boson contribution
is marked by |Z .

where the coefficients c
(A)
k and c

(B)
k are expansions in M2

H/(4M
2
W ). Note that by definition

C
(A)
0 and C

(B)
0 contain the contribution from ∆(weak,Z).

We show our results for hierarchy (A) in Table 3 adopting again µ2 = M2
H and the MS

definition for the bottom quark mass. For the top quark mass both the MS and on-shell
mass value is used.

Note that ∆(weak) ∼ 1/x as x → 0. For this reason we show in Fig. 2 the quantity x∆(weak)

as a function of x = M2
W/M2

t and compare the expansion obtained for the hierarchies (A)
and (B) with the exact result [10].2 For the plot we use the on-shell definition of the
top quark mass and set µ2 = M2

H . The numerical values are obtained by keeping MW

fixed and varying Mt. We take into account expansion terms up to k = 12 (see Table 3)
which corresponds to the expansion depth which is available at order ααs (cf. Section 3).

2There is a typo in the quantity ∆T10+11 in Eq.(A.2) of [10]: the minus sign in front of m2
f ′ should

be a plus sign.
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Figure 2: Comparison of x∆(weak) as obtained for the hierarchies (A) and (B) with the
exact result as a function of x = M2

W/M2
t . The black (solid) curve shows the exact result,

the (red) dashed curve the expansion for x → 0 and the (blue) dotted curve the expansion
around x = 1. The vertical line indicates the experimental result for x ≈ 0.215. For the
renormalization scale of the bottom quark µ2 = M2

H has been chosen. Note that x∆(weak)

behaves as log(x) for x → 0.

One observes that for x ∼< 0.4 a perfect description is obtained from hierarchy (A) (red,
dashed curve) and above x ≈ 0.4 the result from hierarchy (B) (blue, dotted curve) agrees
perfectly with the exact result (black line). For the physical value x ≈ 0.215 one obtains

∆
(weak)
B ≈ −0.009525 , (18)

which has to be compared with the results in Table 3 in the lower panel. There is a
notable deviation of about 5% to the exact result which has its origin in the divergent
behaviour proportional to 1/x for x → 0. For this reason we concentrate in Section 3 on
hierarchy (A).

3 Corrections of order ααs

In this Section we consider the quantity ∆(ααs) of Eq. (1). An analytic expression for
∆(QED,αs) can easily be obtained from the O(α2

s) QCD corrections (see, e.g., Ref. [29])
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after adopting the colour factors. It reads

∆(QED,αs) = Q2
b

ααs

π2
CF

[

691

32
− 3

4
π2 − 9

2
ζ(3) +

105

8
ln

(

µ2

M2
H

)

+
9

4
ln2

(

µ2

M2
H

)]

.(19)

To obtain ∆(weak,αs) we proceed as follows:

• We consider the imaginary part of the three-loop propagator-type diagrams which
are obtained by dressing the O(α) diagrams (cf. Fig. 1 for examples) in all possible
ways with one gluon. This part can be split, in analogy to the O(α) corrections, into
a contribution involving Z or Goldstone bosons and into a contribution involving
W and/or charged Goldstone bosons and top quarks.

• The bare bottom quark mass in the Born result has to be replaced by the MS renor-
malized counterpart using corrections of order ααs. The corresponding counterterm
is available from Ref. [22,30] which we have checked by an independent calculation.
It is given by

δ(weak,αs),MS
mb

= CF
ααs

π2

[

1

ǫ2

(

− 1

16
− 7

128c2W
− 9

128s2W
+

9m2
t

64M2
Ws2W

)

+
1

ǫ

(

1

96
+

31

768c2W
+

27

256s2W
− 3m2

t

32M2
Ws2W

)]

. (20)

Note that δ
(weak,αs),MS
mb contains poles up to order 1/ǫ2 and thus the Born result is

needed up to order ǫ2 terms.

• Γ(0)∆(α) has to be available up to order ǫ and the bottom and top quark masses
have to be renormalized using one-loop counterterms of O(αs) which are given by

δ(αs),OS
mq

=
mbare

q

Mq

− 1 = −αs

π
CF

(

3

4ǫ
+ 1 +

3

4
ln

µ2

M2
q

)

, (21)

with q = b, t. The corresponding MS counterterm is obtained by dropping the finite
part on the right-hand side of the above equation.

• Γ(0)∆(αs) has to be available up to order ǫ and the bottom quark mass has to be
renormalized using one-loop counterterms of O(α) which is given in Eq. (11) .

• There is a contribution where vr from Eq. (12) multiplies Γ(0)∆(αs). Since the latter
is finite we do not need the O(ǫ) part of vr. On the other hand, since vr contains
1/ǫ poles Γ(0)∆(αs) is needed including O(ǫ) terms.

• The fermion-loop contributions to vr [see Eq. (12)] receive two-loop QCD corrections
which are multiplied by the Born decay rate. Since the fermionic contribution to
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ΣγZ(0) vanishes only ΣW (0) and Σ′H(M2
H) get correction terms of order ααs. We

compute them in the limit of a heavy top quark and obtain in the MS scheme

−ΣW (0)

M2
W

− Σ′H(M2
H)

∣

∣

∣

∣

∣

O(ααs)

=
Ncααs

π2s2W

{

m2
t

M2
W

[

19

72
+

7

24
ln

(

µ2

m2
t

)

− 1

12
ζ(2)

]

− M2
H

M2
W

61

3240

+
M4

H

m2
tM

2
W

[

− 503

100800
+

3

560
ln

(

µ2

m2
t

)]

+
M6

H

m4
tM

2
W

[

− 9523

15876000
+

1

630
ln

(

µ2

m2
t

)]

+
M8

H

m6
tM

2
W

[

− 100687

2514758400
+

1

2464
ln

(

µ2

m2
t

)]

+
M10

H

m8
tM

2
W

[

154559

19423404000
+

1

10010
ln

(

µ2

m2
t

)]

+O
(

M12
H

m10
t M2

W

)}

, (22)

where mt = mt(µ).

The individual terms develop poles up to order 1/ǫ2, which cancel in the sum.

We are now in the position to present results for the order ααs corrections. In analogy to
Eqs. (15) and (17) we introduce

∆(weak,αs,Z) =
∑

j≥0

d2j

(

M2
H

M2
Z

)j

=
∑

j≥0

D2j ,

∆(weak,αs) =
∑

i≥−1

c
(A)
2i

(

M2
W

M2
t

)i

=
∑

i≥−1

C
(A)
2i (23)

where for convenience ∆(weak,αs,Z) is added to the coefficient C
(A)
0 .

In the case of ∆(weak,αs,Z) we proceed as at order α: we compute nine expansion terms for
the (formal) limit q2 ≪ M2

Z and set q2 = M2
H . After including the corresponding coun-

terterm contributions we obtain the expansion coefficients listed in Table 4. Afterwards
we construct several Padé approximants and obtain the results in Table 5. We observe a
similar stability as at O(α) and estimate the final result as

∆(weak,αs,Z) = −0.00195(1) , (24)

which has an uncertainty of about 0.5%, an accuracy sufficient for all foreseeable appli-
cations.

In Table 6 we present the results for the coefficients C
(A)
k . We observe a continuous

decrease of the magnitude leading to a stable result with two significant digits after
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k Dk

0 −0.001692
2 −0.000032
4 −0.000547
6 +0.000836
8 −0.001347
10 +0.002183
12 −0.003604
14 +0.006033
16 −0.010223

Table 4: Coefficients Dk from Eq. (23) for µ2 = M2
H .

Padé approximant ∆(weak,αs,Z)

[3/3] −0.001955
[3/4] −0.001954
[4/3] −0.001960
[4/4] −0.001953

Table 5: Numerical results for ∆(weak,αs,Z) obtained from the construction of Padé approx-
imations using the coefficients in Table 4.

including six expansion terms, a similar behaviour as at order α. The seventh and eighth
terms confirm this approximation. It is also interesting to note that the contribution from
the Z boson diagrams amounts to about 65% of the total result. Furthermore, the leading
m2

t contribution amounts to less than 20% of ∆(weak,αs) but to more than 50% of the W
boson diagrams, i.e., ∆(weak,αs) −∆(weak,αs,Z).

4 Numerical results and conclusions

In Table 7 we summarize our results for the O(α) and O(ααs) corrections where the
electroweak part is split into QED and weak corrections. The contribution from the Z
boson diagrams is listed for completeness; their contribution is contained in ∆(weak) and
∆(weak,αs), respectively. For comparison also the QCD corrections up to O(α4

s) [6] based
on computations of the imaginary part of the massless Higgs correlators are shown in
Table 7. Top quark induced QCD corrections due to an effective Hbb̄ coupling, which are
in general small (see, e.g. Eq. (14) of Ref. [8]), are not shown.

Both at one- and two-loop order the weak corrections are negative whereas the QED
corrections are positive. One furthermore observes that the weak corrections are about
an order of magnitude larger than the QED terms. For µ2 = M2

H the weak corrections
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k C
(A)
k (MS) ∆(weak,αs)

−2 −0.000479 −0.000479
0 −0.000514− 0.001953|Z −0.002946
2 −0.000044 −0.002990
4 +0.000018 −0.002972
6 +0.000003 −0.002970
8 +0.000005 −0.002964
10 +0.000004 −0.002960
12 +0.000002 −0.002959

k C
(A)
k (on-shell) ∆(weak,αs)

−2 −0.000481 −0.000481
0 −0.000382− 0.001953|Z −0.002816
2 −0.000032 −0.002848
4 −0.000006 −0.002854
6 −0.000008 −0.002862
8 +0.000011 −0.002851
10 −0.000010 −0.002861
12 +0.000002 −0.002860

Table 6: Coefficients C
(A)
k at order ααs as defined in Eq. (23). In the nth row of the right

column the sum including the first n terms is shown. On the top part we adopt the MS
and below the on-shell definition for the top quark mass.

∆(αs) ∆(α2
s ) ∆(α3

s ) ∆(α4
s )

QCD 0.2040 0.0378 0.0020 −0.0014

∆(QED) ∆(QED,αs)

QED/QCD 0.0011 0.0001

∆(weak) ∆(weak,αs) ∆(weak,Z) ∆(weak,αs,Z)

weak/QCD −0.0100 −0.0029 −0.0097 −0.0020

Table 7: Numerical result for the QCD, QED and weak one-loop and mixed two-loop
corrections for µ2 = M2

H . Note that ∆(weak) and ∆(weak,αs) contain the contributions from
∆(weak,Z) and ∆(weak,αs,Z), respectively.

amount to about −1% which is significantly smaller than the one-loop QCD correction
(+20%), however, it is of the same order of magnitude as the two-loop O(α2

s) corrections
obtained from the massless Higgs correlator, which amount to +3.8% (see, e.g., Ref. [6]).
At the same value of µ the correction term ∆(weak,αs) amounts to about −0.3% which is a
factor three larger than the one-loop QED corrections and which is of the same order of
magnitude, but with the opposite sign, as the three-loop QCD corrections. It is interesting
to note that the four-loop QCD corrections are −0.1%.
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Finally, it is interesting to comment on the assumption the QED and QCD corrections
factorize, an approach often chosen in case O(ααs) terms are missing. To do this we
define

∆(ααs,non−fact.) = ∆(ααs) −∆(α)∆(αs) , (25)

which shall be small in case the factorization approach works. From the numbers in
Table 7 we obtain

∆(ααs ,non−fact.) = −0.000831 , (26)

which corresponds to about 30% of ∆(ααs).

To summarize, in this letter we have computed the complete O(ααs) mixed corections to
the decay rate Γ(H → bb̄). They provide a negative shift of about −0.3% to Γ(H → bb̄)
which corresponds to about 30% of the one-loop electroweak corrections and which is of
the same order of magnitude as the three-loop QCD corrections.
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