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Penguin contributions to CP phases in Bd,s decays to charmonium
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The precision of the CP phases 2β and 2βs determined from the mixing-inducedCP asymmetries in
Bd → J/ψKS and Bs → J/ψφ, respectively, is limited by the unknown long-distance contribution of
a penguin diagram involving up quarks. We analyze the infrared QCD structure of this contribution
and find that all soft and collinear divergences either cancel between different diagrams or factorize
into matrix elements of local four-quark operators up to terms suppressed by ΛQCD/mψ, where mψ

denotes the J/ψ mass. Our results allow us to calculate the penguin-to-tree ratio P/T in terms of
the matrix elements of these operators and to constrain the penguin contribution to the phase 2β

as |∆φd| ≤ 0.68◦. The penguin contribution to 2βs is bounded as |∆φ0
s| ≤ 1.03◦, |∆φ

‖
s | ≤ 1.28◦,

and |∆φ⊥
s | ≤ 0.95◦ for the case of longitudinal, parallel, and perpendicular φ and J/ψ polarizations,

respectively. We further place bounds on |∆φd| for Bd → ψ(2S)KS and the polarization amplitudes
in Bd → J/ψK∗. In our approach it is further possible to constrain P/T for decays in which P/T
is Cabibbo-unsuppressed and we derive upper limits on the penguin contribution to the mixing-
induced CP asymmetries in Bd → J/ψπ0, Bd → J/ψρ0, Bs → J/ψKS , and Bs → J/ψK∗. For all
studied decay modes we also constrain the sizes of the direct CP asymmetries.

PACS numbers: 13.25.Hw

INTRODUCTION

The mixing-induced CP asymmetry in the decay Bd →
J/ψKS is the key quantity to measure the CP phase
of the Bd −Bd mixing amplitude. Within the Stan-
dard Model (SM) this CP asymmetry determines the
angle β = arg[−VtbV ∗

td/(VcbV
∗
cd)] of the unitarity tri-

angle. Bs → J/ψφ plays the same role for the
Bs−Bs system. Since the unitarity of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix essentially fixes βs =
arg[−V ∗

tbVts/(VcbV
∗
cs)] = 1.0◦, CP studies of Bs → J/ψφ

directly probe physics beyond the SM. The decay ampli-
tude Af for an b → ccs decay Bq → f , where f is a CP
eigenstate consisting of a charmonium state and a light
meson, can be written as

Af = λscTf + λsuPf (1)

with λsp = V ∗
pbVps, p = u, c, and

Tf =
GF√
2
〈f |C1Q

c
1 + C2Q

c
2 −

∑

j

CjQj |Bq〉, (2)

Pf =
GF√
2
〈f |C1Q

u
1 + C2Q

u
2 −

∑

j

CjQj |Bq〉. (3)

Here, Q1 = sαγµ(1 − γ5)q
βqβγµ(1 − γ5)b

α and Q2 =
sαγµ(1−γ5)qαqβγµ(1−γ5)bβ are the current-current op-
erators. The index j labels the penguin operators Qj
which involve the CKM elements λst = −λsc − λsu. While
the QCD penguin operators Q3−6 and Q8G are impor-
tant for this paper (see Ref. [1] for their definition), elec-
troweak penguin operators have negligible effects. The

time-dependent CP asymmetry A
Bq→f
CP (t) ≡ [Γ(Bq(t) →

f)−Γ(Bq(t) → f)]/[Γ(Bq(t) → f)+Γ(Bq(t) → f)] reads

A
Bq→f
CP (t) =

Sf sin(∆Mqt)− Cf cos(∆Mqt)

cosh(∆Γqt/2) +A∆Γq sinh(∆Γqt/2)
. (4)

Here ∆Mq and ∆Γq are the mass and width differ-
ence, respectively, between the mass eigenstates of the
Bq−Bq system. We write Sf≈ −ηf sin(φq+∆φq), where
CP |f〉 = ηf |f〉 and φq is the CP phase in the limit
Pf = 0. The SM predictions are φd = 2β and φs = −2βs.
To first order in ǫ = |VusVub/(VcsVcb)| ≈ 0.02 one has

tan(∆φ) ≃ 2ǫ sin γRe
Pf
Tf
. (5)

Tf and Pf are non-perturbative multi-scale matrix el-
ements, which defy calculations from first principles of
QCD.
For the prediction of the branching ratio B(Bd →

J/ψKS) one only needs Tf , which was addressed with
the method of QCD factorization [2] in Ref. [3]: in the
limit of infinite charm and bottom masses Tf can be
expressed in terms of the J/ψ decay constant and the
Bd → KS form factor. The result of Ref. [3] underesti-
mates B(Bd → J/ψKS) by a factor of 8. This failure,
however, is not surprising, because the corrections to the
infinite-mass limit are of order ΛQCD/(mcαs) and there-
fore numerically unsuppressed for the actual value of the
charm mass [2, 4]. The standard approach to quantify
Pf/Tf in Bd → J/ψKS uses the approximate SU(3)F
symmetry of QCD (or its U-spin subgroup) which relates
the decay of interest to b→ ccd modes like Bs → J/ψKS

and Bd → J/ψπ0 [5, 6]. A drawback of this method is
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our poor knowledge of the quality of the SU(3)F sym-
metry in Bd,s → J/ψX (with X = KS , π

0, . . .) decays.
(Comparisons of branching ratios essentially test SU(3)F
in Tf only, with little sensitivity to Pf .) Furthermore, the
b→ ccd control channels have 20 times smaller statistics
than their b → ccs counterparts. SU(3)F seemingly fails
in Bs → J/ψφ, because the φ meson cannot be closely
approximated by an SU(3)F eigenstate, but is an equal
mixture of octet and singlet.
In this paper, we present a dynamical calculation of

Pf/Tf which does not assume an approximate SU(3)F
symmetry. Our results permit, for the first time, the
prediction of Sf and Cf also for b→ ccd decays.

OPERATOR PRODUCT EXPANSION

For definiteness we first specify the discussion to Bd →
J/ψKS and return to Bs → J/ψφ and other modes in
the phenomenology section. For B(Bd → J/ψKS) we
only need Tf and can neglect the penguin coefficients. It
is useful to express Tf in terms of the matrix elements of

Q0V ≡ sγµ(1 − γ5)b cγ
µc,

Q0A ≡ sγµ(1 − γ5)b cγ
µγ5c,

Q8V ≡ sγµ(1 − γ5)T
ab cγµT ac,

Q8A ≡ sγµ(1 − γ5)T
ab cγµγ5T

ac. (6)

Then Tf in Eq. (3) becomes Tf = GF√
2
〈J/ψKS |C0(Q0V −

Q0A) + C8(Q8V −Q8A)|Bd〉 with C0 = C2/Nc + C1 and
C8 = 2C2, where Nc = 3 is the number of colors. Us-
ing next-to-leading order (NLO) Wilson coefficients in
the NDR scheme [1, 7] at the scale µ = mψ one finds
C0 = 0.13 and C8 = 2.2. The smallness of C0 is a well-
known numerical accident entailing that the weak decay
produces the (c, c) pair almost in a color octet state. We
normalize the matrix elements (for j = 0, 8) as

〈QjV 〉 = V0 vj , 〈QjA〉 = V0 aj (7)

to the factorized matrix element V0 ≡ 〈Q0V 〉fact =
2fJ/ψmBdpcmF

B→K
1 (m2

ψ) = (4.26 ± 0.16)GeV3. The

uncertainty stems from the form factor FB→K
1 (m2

ψ) =
0.586 ± 0.021 [8] and the J/ψ decay constant fJ/ψ =
(0.405 ± 0.005)GeV. mBd = 5.28GeV and pcm =
1.68GeV are the Bd mass and the magnitude of the
three-momentum of the J/ψ or KS in the Bd rest
frame. v0,8, a0,8 depend on µ in such a way that the
µ-dependence of C0, C8 cancels from physical quanti-
ties. When we quote numerical values we refer to the
choice µ = mψ. The large-Nc counting of our (com-
plex) hadronic parameters is v0 = 1+O(1/N2

c ), v8, a8 =
O(1/Nc), and a0 = O(1/N2

c ). Normalizing the branching
ratio to the experimental value we find

B(Bd → J/ψKS)

B(Bd → J/ψKS)exp
=

[1± 0.08] |0.47v0 + 7.8(v8 − a8)|2 . (8)

Varying the phase of v8−a8 between −π and π one finds
the correct branching ratio for 0.07 ≤ |v8−a8| ≤ 0.19 if v0
is set to 1. Thus, there is no mystery with the branching
ratio and the hadronic parameters obey the hierarchy
expected from 1/Nc counting. The terms involving a0 are
negligible in view of other uncertainties and are omitted
throughout this paper.
Pf in Eq. (3) receives contributions from Qu1,2 and the

penguin operators Qj, j ≥ 3. The matrix elements of the
latter can be trivially expressed in terms of the operators
in Eq. (6). Therefore, this contribution to Pf/Tf only
depends on v8/v0 and a8/v0. Below we will see that the
magnitudes of these ratios are under control thanks to
the 1/Nc hierarchy of v0, v8, a8 and the information from
B(Bd → J/ψKS)exp. By varying the parameters in the
allowed ranges we can then find the maximal contribution
of the penguin operators to |∆φ|.
In order to apply the same strategy to Qu1,2 we must

first express the up-quark penguin depicted in Fig. 1a
in terms of matrix elements of the local operators in
Eq. (6). In Ref. [10] it is argued that a penguin loop
flown through by a hard momentum q (in our case
q2 ∼ m2

ψ = (3.1GeV)2) can be calculated in perturba-
tion theory (“BSS mechanism”). In Ref. [11] this idea is
used to find an estimate of 〈Qu2 〉 which leads to an upper
bound on |∆φ| which is smaller than the values found by
SU(3)F arguments [6]. In this paper, we turn the BSS
idea into a rigorous field-theoretic method by proving an
operator product expansion (OPE)

〈J/ψKS |Quj |Bd〉 =
∑

k

C̃j,k〈J/ψKS |Qk|Bd〉+ . . . (9)

with k running over k = 0V, 0A, 8V, 8A and the
dots representing terms suppressed by higher powers of

ΛQCD/
√
q2. The Wilson coefficients C̃j,k = C̃

(0)
j,k +

(αs(µ)/(4π))C̃
(1)
j,k+. . . are calculated in perturbation the-

ory to the desired order in αs(µ), with the renormaliza-
tion scale µ = O(mψ ,mb). A similar OPE has been de-
rived to calculate charm-loop effects in the rare semilep-
tonic decays B → K(∗)ℓ+ℓ− [12]. Since leptons carry
no color charges, this application involves no four-quark
operators like those in Eqs. (6) and (9). From the LO

diagrams (see Fig. 1a) one finds C̃
(0)
j,k = 0 except for

C̃
(0)
8G,8V = −m2

b

q2
αs
π and C̃

(0)
2,8V = P (q2) with the penguin

function

P (q2) =
2

3

αs
4π

[
ln

(
q2

µ2

)
− iπ − 2

3

]
. (10)

PROOF OF FACTORIZATION

In order to establish Eq. (9) we must prove that the

coefficients C̃j,k are infrared (IR) safe. To this end we an-
alyze i) the soft IR divergences of the two-loop diagrams
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FIG. 1: The soft IR divergence of the diagram (b) factorizes with the corresponding diagram of the effective-theory
side shown in (c). The diagram (d) is an example of a diagram with a collinear IR divergence.

contributing to 〈Quj 〉, ii) the collinear IR divergences of
these diagrams, iii) spectator scattering diagrams, and
iv) higher-order diagrams in which the large momentum
bypasses the penguin loop (“long distance penguins”).

i) An example of a diagram with a soft divergence is
shown in Fig. 1b. This soft divergence is reproduced
by the corresponding diagram of the effective-theory side
(i.e. RHS) of Eq. (9), depicted in Fig. 1c, so that this

divergence factorizes with C̃
(0)
j,k and does not affect C̃

(1)
j,k .

All soft divergences are from diagrams in which the addi-
tional gluon connects two external lines and cancel from

C̃
(1)
j,k in the same way.

ii) Collinear divergences occur in diagrams in which
a gluon is attached to the line with the strange quark,
which we treat as massless. An example is shown in
Fig. 1d. If l denotes the loop momentum flowing through
the gluon propagator and ps is the momentum of the
external strange quark, the collinear divergence corre-
sponds to the region with l2 = 0 and l ∝ ps. We can then
reduce the problem to the study of one-loop diagrams
with an external on-shell gluon: If we sum over all possi-
bilities to attach this gluon to one of the lines of the LO
diagram in Fig. 1a, the collinear Ward identity of QCD
ensures that this sum vanishes when the open Lorentz in-
dex of the gluon line is contracted with lµ. This feature
ensures that the collinear divergences of the sum of the
two-loop diagrams vanish. (For a discussion in the con-
text of QCD factorization see Refs. [2, 13, 14].) It equally
holds for the effective-theory side of the OPE. On both
sides of Eq. (9) the sum over diagrams needed for the
cancellation involves the diagram with a strange-quark
self-energy which does not contribute to the truncated
matrix element. But adding these unphysical diagrams
to both sides of the OPE has no effect, since these dia-

grams factorize with C̃
(0)
j,k . The cancellation of collinear

divergences is conceptually identical to the situation in
typical processes in collider physics; it is further known
to be much simpler (with fewer diagrams to be discussed)
if a physical gauge (with only two propagating gluon de-
grees of freedom) is adopted.

iii) Next we discuss the spectator scattering contribu-
tions: diagrams in which the gluon connects the b or
s line with the spectator quark line trivially factorize
with the corresponding diagrams on the effective side.
If the gluon connects the spectator with the gluon line
or a charm or up line, we have to take into account that
the squared momentum in the penguin loop is (q + l)2

instead of q2. If the gluon is soft, lµ ∼ ΛQCD, the ex-
pansion of the loop function P around q2 reproduces a

term which correctly factorizes with C̃
(0)
j,k up to term sup-

pressed by ΛQCD/
√
q2. If the gluon is hard-collinear,

with virtuality l2 ∼ pcmΛQCD, the situation is more sub-
tle: the LO diagram is suppressed by ΛQCD/pcm, because
the momentum of the spectator quark changes from zero
to O(pcm) in the decay, which is penalized by the light-
cone distribution amplitude (LCDA) of the kaon [2]. The
asymptotic form of the kaon LCDA, Φ(x) = 6x(1 − x),
where x and 1− x are the fractions of the kaon momen-
tum carried by the s and d quarks, favors momentum
configurations in which the kaon momentum is roughly
equally shared between the two valence quarks. While
the propagator of the scattered hard-collinear gluon is
suppressed as ∼ 1/(ΛQCDpcm), the suppression of the
LO diagram is lifted, because the spectator momentum
is in the region x ∼ 1/2 favored by the kaon LCDA.
To identify further suppression factors we first discuss
the case that the gluon connect a charm line with the
spectator: counting q2 ∼ m2

ψ and the energies of s
and spectator-d quarks as pcm/2, the penguin loop gives
P ((q + l)2) ≃ P (q2) + pcm

mψ
P ′(q2). The non-factorizing

piece involving the derivative P ′(q2) comes with a fac-
tor of pcm/mψ. The virtuality of the (anti-)charm prop-
agator is around pcm entailing a suppression factor of
ΛQCD/pcm. Thus, in total spectator scattering from the
charm lines obeys Eq. (9) up to terms of order ΛQCD/mψ.
Next we discuss the spectator scattering from the up line,
with a sample diagram depicted in Fig. 1e. We find that
these diagrams are power-suppressed by ΛQCD/mψ. In
this respect these spectator diagrams differ from the simi-
lar photon penguins calculated in Ref. [15], which involve
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P (q2) for q2 ∼ 0 rather than q2 ∼ m2
ψ.

vi) So far we have assumed that the underlying hard

process is the penguin loop with the hard scale
√
q2. But

it may also be possible that the hard momentum trans-
fer to the J/ψ occurs through a hard gluon radiated from
the b or s line, while the penguin loop is a “long-distance
penguin” governed by soft QCD. Such a situation is ex-
emplified by the diagram in Fig. 1b with the left gluon
having virtuality ∼ m2

ψ. These diagrams, in which the
whole weak decay process occurs with small momentum
transfers, have a suppression factor (ΛQCD/

√
q2)3 stem-

ming from the hard gluon propagator and an off-shell b
quark propagator (or s quark propagator).

In our discussion above we have considered the effect
of Qu2 . The proof equally holds for the contribution from

Q8G, which contributes to C̃
(0)
8G,8V through a tree-level

diagram.

In our power counting in i)–iv) we have treated pcm
as an intermediate scale between ΛQCD and mψ and
have found no non-factorizable non-perturbative effects
of order pcm/mψ. While pcm enters two-loop diagrams
through pb · ps ∼ mbpcm, such terms do not come with
IR divergences and end up in the NLO corrections to the
coefficients C̃j,k. We find that the counting rule for pcm
is irrelevant, one can reproduce our results above as well
for the limiting cases pcm ∼ ΛQCD and pcm ∼

√
q2.

The choice q2 = m2
ψ for P (q2) may be altered by

adding a contribution of order ΛQCD to
√
q2. This

shuffles a piece proportional to (ΛQCD/mψ)P
′(m2

ψ) into
the coefficient of the sub-leading operator sγµ(1 −
γ5)T

ab
[
�−m2

ψ

]
cγµT ac, which removes the ambiguity

associated with the choice of q2. At NLO in αs one

generates non-zero coefficients C̃
(1)
j,k also for j = 1 or

k = 0A, 8A.

PHENOMENOLOGY

The penguin amplitude depends on the Wilson coeffi-
cients as

Pf = V0

(
2C4 + 2C6 + 2C2C̃

(0)
2,8V + C8GC̃

(0)
8G,8V

)
v8 + . . .

(11)
where the dots represent the terms with v0 and a8
which have much smaller coefficients. The dependence

of C̃
(0)
2,8V (calculated from Fig. 1a) on the renormalization

scheme cancels with the scheme dependence of C4 + C6

in Eq. (11). In the NDR scheme adopted by us these
penguin coefficients give a larger contribution to Pf than

the u-penguin loop contained in C̃
(0)
2,8V .

For the prediction of Pf/Tf we implement the con-
straint from B(B → f) exemplified for f = J/ψKS in
Eq. (8) in the following way: adapting a phase conven-
tion in which Af in Eq. (1) is real and positive, we can

determine a8 in terms of V0, v0, v8, and the measured
B(B → f) [16]. Then we use this to eliminate a8 from
Pf/Tf . For example, we find

PJ/ψKS
TJ/ψKS

= 0.01− 0.02v0 − (0.71 + 0.33i)v8 (12)

for the central values of V0 (quoted after Eq. (7)) and
B(Bd → J/ψKS). We vary v8 and v0 in their allowed
ranges |v8| < 1/3 and |v0| = 1± 0.15 with the constraint
that |a8| ≤ 1/3 must be obeyed. The allowed ranges for
∆φ, Cf , and ∆Sf ≡ Sf + ηf sinφq are almost symmetric
around zero. We list the upper bounds on their mag-
nitudes for several decay modes in Tabs. I and II. The
results include the uncertainties from V0, the branching
ratios, CKM parameters [17], and higher-order terms in
our OPE. For the b → ccd decay modes with Cabibbo-
unsuppressed Pf/Tf the expansion in Eq. (5) has been
replaced by the exact formula (see e.g. Ref. [5, 6]). Our
bounds are conservative, as the considered ranges for
v8 and a8 are wide (permitting even sizable cancella-
tions in Eq. (8)). From Eqs. (8) and (12) one veri-
fies that any additional information on magnitude or
phase of one of these parameters will substantially re-
duce the ranges quoted in Tabs. I and II. Our results
for Bd → J/ψπ0 favor the Belle measurement CJ/ψπ0 =
−0.08± 0.17, SJ/ψπ0 = −0.65± 0.22 [18] over the BaBar
result CJ/ψπ0 = −0.20±0.19, SJ/ψπ0 = −1.23±0.21 [19].
(In the absence of penguin pollution CJ/ψπ0 = 0 and
SJ/ψπ0 = − sin(2β) = −0.69± 0.02.) In the the case of a
more precise and non-vanishing measurement of CJ/ψπ0 ,
for example, CJ/ψπ0 = −0.10 ± 0.01, which corresponds
to the current world average with a ten times smaller
error, we can also put stronger restrictions on the shift
of the mixing-induced CP violation |∆SJ/ψπ0 | ≤ 0.13. A
measurement of CJ/ψπ0 that is consistent with zero, how-
ever, does not improve the bound. This feature occurs in
all decay modes with Cabibbo-unsuppressed Pf/Tf . The
recent measurements of Sf and Cf for the Bd → J/ψρ0

polarization amplitudes [20] comply with the ranges in
Tab. I.

CONCLUSIONS

We have established a factorization formula (to lead-
ing power in ΛQCD/mψ) for the penguin contribution to

the CP -violating coefficients Sf and Cf in A
Bq→f
CP (t)

for final states f containing charmonium. As a cru-
cial result the penguin contributions involve the same
hadronic matrix elements as the tree amplitude. This
allows us to constrain Pf/Tf and e.g. find |∆φd| ≤ 0.68◦

for Bd → J/ψKS and |∆φ⊥s | ≤ 0.95◦ for Bd → J/ψφ,
representing bounds that were thought to be uncalcula-
ble from first principles. Novel territory are our predic-
tions for Sf and Cf in b → ccd decays, in which Pf/Tf
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TABLE I: The maximal phase shift of φd due to penguin pollution and limits for the CP violation observables Sf
and Cf in various Bd → f decays. Decays into two vector mesons involve different polarization amplitudes,

indicated by 0, ‖, and ⊥ [21].

Final State J/ψKS ψ(2S)KS J/ψπ0 (J/ψρ)0 (J/ψρ)‖ (J/ψρ)⊥ (J/ψK∗)0 (J/ψK∗)‖ (J/ψK∗)⊥

max(|∆φd|) [
◦] 0.68 0.74 n. a. n. a. n. a. n. a. 0.87 1.28 1.07

max(|∆Sf |) [10
−2] 0.86 0.94 18 22 27 22 1.11 1.64 1.38

max(|Cf |) [10
−2] 1.33 1.33 29 35 41 36 1.70 2.47 2.08

TABLE II: Same as Tab. I for Bs → f decays.

Final State J/ψKS (J/ψφ)0 (J/ψφ)‖ (J/ψφ)⊥ (J/ψK∗)0 (J/ψK∗)‖ (J/ψK∗)⊥

max(|∆φs|) [
◦] n. a. 1.03 1.28 0.95 n. a. n. a. n. a.

max(|∆Sf |) [10
−2] 37 1.80 2.22 1.65 39 60 24

max(|Cf |) [10
−2] 40 2.01 2.44 1.84 42 59 24

is Cabibbo-unsuppressed. Our results do not depend on
any properties of the charmonium wave functions.
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