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Abstract

We compute the decoupling constant ζm relating light quark masses of effective
nl-flavour QCD to (nl+1)-flavour QCD to four-loop order. Immediate applications
are the evaluation of the MS charm quark mass with five active flavours and the
bottom quark mass at the scale of the top quark or even at GUT scales. With the
help of a low-energy theorem ζm can be used to obtain the effective coupling of a
Higgs boson to light quarks with five-loop accuracy. We briefly discuss the influence
on Γ(H → bb̄).

PACS numbers: 12.38.-t, 12.38.Bx, 14.65.Dw, 14.65.Fy

1 Introduction and notation

Perturbative calculations in QCD are quite advanced and have reached, at least for some
observables, the four and even five-loop level (see Refs. [1, 2] for a recent review). This
concerns in particular the renormalization group functions which have been computed at
four loops in Refs. [3–7]. The first five-loop result has been obtained recently in Ref. [8]
where the quark mass anomalous dimension has been computed to this order.

In order to consistently relate the quark masses and strong coupling constant evaluated at
different energy scales, both the renormalization group functions and also the decoupling
relations have to be available. The latter take care of integrating out heavy quark fields.
In fact, N -loop running goes along with N−1-loop decoupling. Thus, besides the five-loop
anomalous dimensions also the four-loop decoupling relations are needed. In Refs. [9,10] a
first step has been undertaken in this direction and the four-loop decoupling constant for
αs has been computed (although the five-loop beta function is not yet available). In this
paper we complement the result by computing the four-loop corrections to the decoupling
constant for the light quark masses, which supplements the five-loop result for γm [8].



In Ref. [11] a formalism has been derived which allows for an effective calculation of the N -
loop decoupling constants with the help of N -loop vacuum integrals. In the following we
present the formulae which are relevant for the calculation of the quark mass decoupling
constant.

The bare decoupling constant ζ0m is defined via the relation

m0′
q = ζ0mm

0
q , (1)

where m0
q and m

0′
q are the bare quark mass parameters in the full nf - and effective theory

(nl ≡ nf − 1)-flavour theory. Introducing the renormalization constants in both theories
leads to the equation

m′

q(µ) =
Zm

Z ′

m

ζ0mmq(µ) = ζmmq(µ) . (2)

which relates finite quantities and defines ζm. Note that primed quantities depend on

α
(nl)
s and non-primed quantities on α

(nf )
s . Four-loop results for Zm and Z ′

m can be found
in Refs. [3, 4, 7] and ζ0m can be computed with the help

ζ0m =
1− Σ0h

S (0)

1 + Σ0h
V (0)

, (3)

where Σ0h
S (0) and Σ0h

V (0) are the scalar and vector parts of the light-quark self energy
evaluated at zero external momentum. The superscript “h” reminds that one has to
consider only the hard part which involves at least one propagator of the heavy quark.

In the next Section we discuss the calculation of ζ0m and its renormalization to arrive at
ζm. Section 3 applies a low-energy theorem to derive from the four-loop result of ζm the
effective Higgs-fermion coupling constant to five-loop order. We summarize our findings
in Section 4.

2 Decoupling for light quark masses

In this section, we compute the decoupling constant ζ0m and combine it with the four-
loop result for Zm to obtain the finite quantity ζm. The computation of ζ0m requires
the knowledge of the hard contribution to the scalar and vector part of the light-quark
propagator, see Fig. 1 for sample Feynman diagrams. The first non-vanishing contribution
arises at two loops where one diagram contributes. At three-loop order there are 25 and
at four loops we have 765 Feynman diagrams.

The perturbative expansion of Eq. (3) to four loops leads to

ζ0m = 1− Σ0h
S (0)− Σ0h

V (0) + Σ0h
V (0)

[

Σ0h
S (0) + Σ0h

V (0)
]

+ . . . , (4)

where in the last term on the right-hand side only two-loop expressions for Σ0h
S (0) and

Σ0h
V (0) have to be inserted.
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Figure 1: Sample Feynman diagrams contributing to the hard part of the light-quark
propagator up to four loops. Solid and curly lines denote quarks and gluons, respectively.
At least one of the closed fermion loops needs to be the heavy quark.

We generate the Feynman diagrams with the help of QGRAF [12] and pass the output via
q2e [13,14], which transforms Feynman diagrams into Feynman amplitudes, to exp [13,14]
that generates FORM [15, 16] code. After processing the latter one obtains the result as a
linear combination of scalar functions which have a one-to-one relation to the underlying
topology of the diagram. The functions contain the exponents of the involved propagators
as arguments. At this point one has a large number of different functions. Thus, in a
next step one passes them to a program which implements the Laporta algorithm [17]
and performs a reduction to a small number of so-called master integrals. We use for the
latter step the C++ program FIRE [18]. Our four-loop result is expressed in terms of 13
master integrals which we take from Ref. [19] (see also [20–22] and references therein).
All ǫ coefficients are known analytically except the ǫ3 of integral J6,2 (in the notation from
Ref. [19]). We take the numerical value of this coefficient from Eq. (4.10) of Ref. [21],
taking into account the different normalizations of the integrals.

Note that for our calculation we have used a general gauge parameter ξ of the gluon
propagator. At four loops, in intermediate steps terms up to order ξ6 are present, however,
in the final result for ζ0m all ξ terms drop out. The last term on the right-hand side of
Eq. (4) is separately ξ-independent since at two loops Σ0h

S (0) and Σ0h
V (0) are individually

ξ-independent. The results up to three-loop order have been checked with the help of
MATAD [23].

To obtain ζ0m we have to renormalize αs and the heavy quark mass mh to two-loop order.
The corresponding MS counterterms are well-known (see, e.g.. Ref. [7]). ζ0m still contains
poles in ǫ which are removed by multiplying with the factor Zm/Z

′

m (see, Eq. (2)) which is
needed to four-loop order [3,4,7]. Note that Z ′

m depends on the strong coupling constant

of the effective theory, α
(nl)
s , whereas Zm and ζ0m are expressed in terms of α

(nl+1)
s . In

order to achieve the cancellation of the ǫ poles the same coupling constant has to be used
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in all three quantities. We have decided to replace α
(nl)
s in favour of α

(nl+1)
s which is done

using the corresponding decoupling constant ζαs
up three-loop order [11]. Note, however,

that also higher order terms in ǫ are needed since ζαs
gets multiplied by poles present

in Z ′

m. Up to two-loop order they can be found in Refs. [24, 25]; the three-loop terms of
order ǫ can be extracted from Refs. [9, 10].

Our final result for the decoupling constant parametrized in terms of the MS heavy quark
mass reads

ζMS
m =

1 +

(

α
(nf )
s

π

)2
(

89

432
− 5

36
ln
µ2

m2
h

+
1

12
ln2 µ

2

m2
h

)

+

(

α
(nf )
s

π

)3
[

2951

2916

+
1

9
ζ2 ln

2 2− 1

54
ln4 2− 407

864
ζ3 +

103

72
ζ4 −

4

9
a4 −

(

311

2592
+

5

6
ζ3

)

ln
µ2

m2
h

+
175

432
ln2 µ

2

m2
h

+
29

216
ln3 µ

2

m2
h

+ nl

(

1327

11664
− 2

27
ζ3 −

53

432
ln
µ2

m2
h

− 1

108
ln3 µ

2

m2
h

)]

+

(

α
(nf )
s

π

)4 [

5158677029

3292047360
+

5635351

4354560
ln4 2− 601

1620
ln5 2 +

4

81
ln6 2− 1445

576
ζ2

− 5635351

725760
ζ2 ln

2 2 +
601

162
ζ2 ln

3 2− 25

36
ζ2 ln

4 2 +
627120469

40642560
ζ3 −

289

81
ζ23

+
985

648
ζ3ζ2 −

125

864
ζ3ζ4 −

12628999

580608
ζ4 +

22015

432
ζ4 ln 2−

65

3
ζ4 ln

2 2

− 19499

288
ζ5 +

179

864
ζ5ζ2 −

283655

6912
ζ6 +

17425

12096
ζ7 +

5635351

181440
a4 +

10

9
a4ζ2

+
1202

27
a5 +

320

9
a6 +

40

3
s6 −

5

4608
J ǫ3

6,2 +

(

−2810855

373248
− 31

216
ln4 2

+
31

36
ζ2 ln

2 2− 373261

27648
ζ3 +

4123

288
ζ4 +

575

72
ζ5 −

31

9
a4

)

ln
µ2

m2
h

+

(

51163

10368

− 155

48
ζ3

)

ln2 µ
2

m2
h

+
301

324
ln3 µ

2

m2
h

+
305

1152
ln4 µ

2

m2
h

+ nl

(

−2261435

746496
+

49

2592
ln4 2

− 1

270
ln5 2− 49

432
ζ2 ln

2 2 +
1

27
ζ2 ln

3 2− 1075

1728
ζ3 −

1225

3456
ζ4 +

49

72
ζ4 ln 2

+
497

288
ζ5 +

49

108
a4 +

4

9
a5 +

(

16669

31104
+

1

108
ln4 2− 1

18
ζ2 ln

2 2 +
221

576
ζ3

− 163

144
ζ4 +

2

9
a4

)

ln
µ2

m2
h

− 7825

10368
ln2 µ

2

m2
h

− 23

288
ln3 µ

2

m2
h

− 5

144
ln4 µ

2

m2
h

)

+ n2
l

(

17671

124416
− 5

864
ζ3 −

7

96
ζ4 +

(

− 3401

46656
+

7

108
ζ3

)

ln
µ2

m2
h

+
31

1296
ln2 µ

2

m2
h

+
1

864
ln4 µ

2

m2
h

)

]
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µ=mh= 1 +

(

α
(nf )
s (mh)

π

)2

0.2060 +

(

α
(nf )
s (mh)

π

)3

(1.848 + 0.02473nl)

+

(

α
(nf )
s (mh)

π

)4
(

6.850− 1.466nl + 0.05616n2
l

)

, (5)

with α
(nf )
s ≡ α

(nf )
s (µ). In the analytic expression ζn denotes the Riemann zeta func-

tion and an = Lin(1/2). Furthermore we have s6 ≈ 0.987441426403299 [19] and
J ǫ3

6,2 ≈ −30697.2691041025210232119379677280395757 [21].

Often it is convenient to use ζm for on-shell heavy quark mass since in that case Mh is
just a parameter and does not run. The corresponding result is obtained with the help of
the two-loop relation between the MS and on-shell quark mass [26–28]. We refrain from
showing the corresponding analytical result and restrict the presentation to the numerical
expression which is given by

ζOS
m = 1.+

(

α
(nf )
s

π

)2
(

0.2060− 0.1389 ln
µ2

M2
h

+ 0.08333 ln2
µ2

M2
h

)

+

(

α
(nf )
s

π

)3
[

1.477− 0.9550 ln
µ2

M2
h

+ 0.7384 ln2
µ2

M2
h

+ 0.1343 ln3
µ2

M2
h

+ nl

(

0.02473− 0.1227 ln
µ2

M2
h

− 0.009259 ln3
µ2

M2
h

)]

+

(

α
(nf )
s

π

)4
[

0.2233

+ 2.674 ln
µ2

M2
h

+ 6.227 ln2
µ2

M2
h

+ 2.165 ln3
µ2

M2
h

+ 0.2648 ln4
µ2

M2
h

+ nl

(

−1.504− 0.6470 ln
µ2

M2
h

− 0.9260 ln2
µ2

M2
h

− 0.1632 ln3
µ2

M2
h

− 0.03472 ln4
µ2

M2
h

)

+ n2
l

(

0.05616 + 0.005016 ln
µ2

M2
h

+ 0.02392 ln2
µ2

M2
h

+ 0.001157 ln4
µ2

M2
h

)]

. (6)

On the webpage [29] we provide analytic results in computer-readable form for a general
SU(Nc) gauge group.

In the remaining part of this section we discuss two applications which involve the evalua-
tion of light quark masses at high scales. In the first one we compute the running bottom
quark mass at the scale µ = Mt which appears as an intermediate step in analyses con-
cerned with Yukawa coupling unification. Here the role of the heavy quark is taken over
by the top quark. In the second application we cross the bottom threshold and evaluate
the charm quark mass for µ = MZ using m

(4)
c (3 GeV) as input. As input parameters for

the numerical analyses we use [30, 31]

α(5)
s (MZ) = 0.1185 ,
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m
(5)
b (m

(5)
b ) = 4.163 GeV ,

m(4)
c (3 GeV) = 0.986 GeV . (7)

As a first phenomenological application we consider the evaluation of the bottom quark
mass at the scale of the top quark with six active flavours using m

(5)
b (m

(5)
b ) as input. We

are interested in the dependence of m
(6)
b (Mt) on the decoupling scale of the top quark.

Since this scale is unphysical it should get weaker after including higher order corrections.
Our results, which are shown in Fig. 2a, are obtained using the following scheme, where
N ∈ {1, 2, 3, 4, 5} refers to the number of loops:

• Use N -loop running: m
(5)
b (m

(5)
b ) → m

(5)
b (µdec

t )

• Use (N − 1)-loop decoupling: m
(5)
b (µdec

t ) → m
(6)
b (µdec

t )

• Use N -loop running m
(6)
b (µdec

t ) → m
(6)
b (Mt)

The values for αs involved in this procedure, α
(5)
s (m

(5)
b (m

(5)
b )), α

(5)
s (µdec

t ), α
(6)
s (µdec

t ), and

α
(6)
s (Mt), are obtained from α

(5)
s (MZ) using the same loop-order for the running and

decoupling as described above for the bottom quark mass.

In Fig. 2am
(6)
b (Mt) is shown as a function of the scale where the transition from five- to six-

flavour QCD is performed, µdec
t , normalized to the on-shell top quark mass. For on-shell

top quark mass we chooseMt = 173.34 GeV [32]. We vary µdec
t /Mt by a factor of 10 around

the central scale µdec
t /Mt = 1. The one-loop result leads to m

(6)
b (Mt) ≈ 2.9 GeV and is not

shown in the plot. One observes that already the result where two-loop running is used
(short-dashed line) shows only a weak dependence on µdec

t . It becomes even weaker at
three and four loops (results with higher perturbative order have longer dashes) and results
in an almost flat curve at five loops (solid line) which can barely be distinguished from
the four-loop curve. The five-loop results depends on the unknown five-loop coefficient
β4 of the beta function. Our default choice in Fig. 2a is β4 = 100β0 (β0 = 11/4− nf/6).
For β4 = 0 and β4 = 200β0 one observes a shift of the five-loop result by about +0.5 MeV
and −0.5 MeV, respectively.

It is interesting to look at the shift on m
(6)
b (Mt) at the central scale µdec =Mt. The two-,

three- and four-loop curve leads to shifts of about −201 MeV, −21 MeV and −2 MeV,
respectively. For β4 = 100β0 the five-loop result leads to a shift of about −0.5 MeV.

In a second application we consider the evaluation ofm
(5)
c (MZ) withm

(4)
c (3 GeV) as input.

The calculation proceeds in analogy to the bottom quark case discussed before, where for
the on-shell bottom quark mass we use the value Mb = 4.7 GeV. Our results are shown
in Fig. 2b. Again one observes a flattening of the curves after including higher order
corrections. However, for µdec

b ≈ 1 GeV, which corresponds to the left border of Fig. 2b,
all curves show a strong variation which indicates the breakdown of perturbation theory
for small scales. Around µdec

b /Mb ∼> 0.3 both the four- and five-loop curves are basically
flat.
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Z
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e
V
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5

(b)

Figure 2: m
(6)
b (Mt) as a function of µdec

t (a) and m
(5)
c (MZ) as a function of µdec

b (b). The
numbers indicate the loop order used for the running.

At the central scale µdec
b =Mb one observes shifts in m

(5)
c (MZ) of −55 MeV, −7 MeV and

−1 MeV after including two-, three- and four-loop running accompanied by one-, two-
and three-loop decoupling. The shift at five loops is below 1 MeV for β4 = 100β0 but also
for β4 = 0 and β4 = 200β0.

3 Low-energy theorem: Higgs-fermion coupling

The effective Lagrangian describing the coupling of a Higgs boson to gluons and light
quarks can be written in the form

Leff = −H
0

v0
(C1O′

1 + C2O′

2) , (8)

where the effective operators, which are constructed from light degrees of freedom [33],
are given by

O′

1 = (Ga,µν)2 ,

O′

2 =

nl
∑

i=1

m0′
qi
ψ̄0′
qi
ψ0′
qi
. (9)

The residual dependence on the mass mh of the heavy quark h is contained in the co-
efficient functions C0

1 and C0
2 . In Eq. (8) H denotes the Higgs field and v the vacuum

expectation value. The superscript “0” reminds that the corresponding quantities are
bare. For the renormalization of C0

1 , C
0
2 ,O′

1 and O′

2 we refer to Ref. [11, 33]; for the pur-
pose of this paper it is of no further relevance. In Ref. [11] a low-energy theorem has
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been derived which relates the computation of the renormalized coefficient function C2 to
derivatives of ζm w.r.t the heavy mass mh. It is given by

C2 = 1 +
∂ ln ζm
∂ lnmh

. (10)

It should be stressed that Eq. (10) is valid to all orders in αs. Note that Eq. (10) contains
the derivative w.r.t. lnmh. Since the mh dependence of C2 appears in the form ln(µ/mh)
a derivative w.r.t. lnmh is equivalent to a derivative w.r.t. lnµ. At this point we
can exploit that the µ dependence of the next, not computed perturbative order can
easily be reconstructed using renormalization group techniques. Thus, on the basis of our
four-loop calculation for ζm we can compute C2 to five-loop accuracy using the recently
computed five-loop result for the quark mass anomalous dimension [8]. Note that the
four-loop anomalous dimensions have been computed in Refs. [3, 4] (γm) and Refs. [5, 6]
(β), respectively.

Inserting ζMS
m into Eq. (10) we obtain the following result

CMS
2 = 1 +

(

α
(nf )
s

π

)2

0.2778 +

(

α
(nf )
s

π

)3

(2.243 + 0.2454nl)

+

(

α
(nf )
s

π

)4
(

2.180 + 0.3096nl − 0.01003n2
l

)

+

(

α
(nf )
s

π

)5
(

66.71 + 13.44nl − 3.642n2
l + 0.07556n3

l

)

, (11)

where we have chosen µ = mh to obtain more compact expressions. Analytic result valid
for general µ are provided from [29].

In practice, one often encounters the situation where C2 has to be inserted in a formula
expressed in terms of α

(nl)
s . If we furthermore transform the heavy quark mass to the

on-shell scheme we obtain for µ =Mh

COS
2 = 1 +

(

α
(nl)
s

π

)2

0.2778 +

(

α
(nl)
s

π

)3

(1.355 + 0.2454nl)

+

(

α
(nl)
s

π

)4
(

−12.13 + 1.004nl − 0.01003n2
l

)

+

(

α
(nl)
s

π

)5
(

−140.9 + 44.20nl − 4.332n2
l + 0.07556n3

l

)

. (12)

Let us briefly discuss the influence of C2 on the Higgs boson decay to bottom quarks where
the role of the heavy quark is taken over by the top quark. We consider the contributions
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proportional to (C2)
2 from Eq. (8) and use the result for the massless correlator from

Ref. [34]. For convenience we identify the renormalization scale with the Higgs boson
mass and set µ = MH . Then the decay rate of the Standard Model Higgs boson to
bottom quarks can be written in the form

Γ(H → bb̄) =
GFM

2
H

4
√
2π

m2
b(MH)R(MH) , (13)

R(MH) = 1 + 5.667
(αs

π

)

+ (29.147 + 0.991)
(αs

π

)2

+ (41.758 + 13.105)
(αs

π

)3

+ (−825.7 + 50.7)
(αs

π

)4

+ (??? + 224.8)
(αs

π

)5

(14)

= 1 + 0.20400 + (0.03777 + 0.00128) + (0.00195 + 0.00061)

+ (−0.00139 + 0.00009) + (??? + 0.00001) ,

with αs ≡ αs(MH) ≈ 0.1131. The first number in the round brackets in Eq. (14) corre-
sponds to the case C2 = 1 [34] and the second one to the contribution from (C2 − 1). At
three-loop order the top quark induced part amounts to about 30%, at order α4

s only 6%.
Note that the massless correlator at order α5

s is currently unknown which is indicated by
the three question marks. The α5

s term in Eq. (14) origins from the five-loop contribution
in Eq. (12) and products of lower-order contributions.

Note that in this consideration the contribution of C1 (cf. Eq. (8)) has been neglected.
The corresponding corrections of order α3

s can be found in Ref. [35]. Corrections of order
α4
s which are proportional to C1C2 require the evaluation of massless four-loop two-point

functions and are currently unknown. Corrections of order α5
s to the Higgs boson decay

rate involving (C1)
2 have been computed in Ref. [36].

In Refs. [9, 10] the five-loop result for C1 is given in terms of α
(nf )
s and the MS quark

mass. We complement this result by C1 parametrized in terms of the effective coupling
constant and the on-shell mass:

COS
1 = − 1

12

α
(nl)
s

π







1 +

(

α
(nl)
s

π

)

2.750 +

(

α
(nl)
s

π

)2

(9.642− 0.6979nl)

+

(

α
(nl)
s

π

)3
(

50.54− 6.801nl − 0.2207n2
l

)

+

(

α
(nl)
s

π

)4
[

− 625.2 + 149.8nl

− 3.090n2
l − 0.07752n3

l + 6
(

β
(nl)
4 − β

(nl+1)
4

)

]}

. (15)

where µ =Mt has been chosen. The analytic version in computer-readable for can again
be found in [29].
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4 Summary and conclusions

In this paper we compute the four-loop corrections to the decoupling constant for light
quark masses, ζm, which has to be applied every time heavy quark thresholds are crossed.
It constitutes a fundamental constant of QCD and accompanies the five-loop quark anoma-
lous dimension [8] in the “running and decoupling” procedure. Our results completes the
calculation of the four-loop decoupling constants which has been started in Refs. [9, 10],
however, the five-loop corrections to the QCD beta function is still lacking for establishing
relations between αs(µ) and mq(µ) at low and high energy scales.

As a by-product of our calculation we obtain the effective coupling of a scalar Higgs boson
and light quarks to five-loop order. It is obtained from ζm with the help of an all-order
low-energy theorem. We briefly investigate the influence on Γ(H → bb̄).
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