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Abstract

Since the discovery of a Higgs particle [1, 2] the effective Higgs potential of the Standard
Model or extensions and the stability of the ground state corresponding to its minimum
at the electroweak scale have been subject to a lot of investigation. The vacuum
expectation value of the scalar SU(2) doublet field in the Standard Model, which is
responsible for the masses of elementary particles, may in fact not be at the global
minimum of the effective Higgs potential. The question whether there is a deeper
minimum at some large scale is closely linked to the behaviour of the running quartic
Higgs self-interaction λ(µ). In this talk an update on the analysis of the evolution
of this coupling is given. We use three-loop beta-functions for the Standard Model
couplings, two-loop matching between on-shell and MS quantities and compare the
theoretical precision achieved in this way to the precision in the latest experimental
values for the key parameters.

1 Introduction: The stability of the Standard Model

ground state

In the Standard Model (SM) of particle physics fermions interact via the exchange of
gauge bosons. The strength of these interactions is given by the coupling constants
gs for the QCD part and g2, g1 for the electroweak part. Furthermore, a scalar SU(2)

doublet Φ =

(

Φ1

Φ2

)

is introduced which couples to the SU(2) gauge bosons via the

coupling g2 and to the fermions via Yukawa couplings, the top-Yukawa coupling yt

being the strongest. The quartic self-coupling λ of the field Φ appears in the classical
Higgs potential

V (Φ) = m2Φ†Φ + λ
(

Φ†Φ
)2

. (1)

For m2 < 0 the doublet Φ aquires a vacuum expectation value (VEV) 〈Φ〉 = 1√
2

(

0
v

)

in the minimum of the classical Higgs potential (Fig. 1 (a)). The masses of the quarks,
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leptons, massive gauge bosons and the Higgs boson are then proportional to the value
v ≈ 246.2 GeV [3].

If we assume the SM to be valid up to the Planck scale Λ ∼ 1019 GeV – a reasonable
scenario in the absence of new physics – we have to include quantum corrections which
change the shape of the effective Higgs potential [4] significantly as compared to the
classical potential at high scales.

The effective potential is best introduced in the path integral approach to quantum
field theory. Consider the generating functional W [J ] defined by the path integral

eiW [J ] :=

∫

dΦdA ei
∫
d4x[L(Φ(x),∂µΦ(x),A(x),∂µA(x))+J(x)Φ(x)] = 〈0+|0−〉|J (2)

which describes the transition from the vacuum state at t → −∞ to the one at t → +∞
in the presence of the external current J =

(

J1

J2

)

coupling to the scalar doublet Φ.

All other fields in the Lagrangian L are denoted by A. We can eliminate the external
current J by a Legendre transformation introducing the effective action

Γ[Φcl] := W [J ]−
∫

d4xJ(x)Φcl(x) (3)

and the classical field strength

Φcl(x) :=
δW [J ]

δJ(x)
=

〈0+|Φ(x)|0−〉
〈0+|0−〉

∣

∣

∣

∣

J

. (4)

The effective Higgs potential Veff is a function of Φcl and can be defined as the first
term in an expansion of the effective action around the point where all fields have zero
momentum:

Γ[Φcl] =

∫

d4x

(

−Veff(Φcl) +
1

2
(∂µΦcl)

2Z(Φcl) + . . .

)

. (5)

The so-defined effective potential, which in general depends on all parameters of the
theory, contains two main pieces of information. On the one hand the nth derivative
wrt Φcl gives the effective strength of the interaction of n external scalar fields, e.g.

d2Veff

dΦ2
cl

= m2
eff
,

d4Veff

dΦ4
cl

= λeff. (6)

On the other hand the requirement

dVeff

dΦcl

= 0. (7)

yields all the candidates for VEVs of the scalar field for J = 0, which correspond to
local minima in the effective potential.

Generic shapes of this effective potential are shown in Fig. 1 for the cases of a Higgs
mass larger (b) and smaller (c) than a critical value mmin, the minimal stability bound
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Figure 1: Classical and effective Higgs potential as a function of |Φcl| :=
√
Φ†Φ.

(see also [5]). If the second minimum at large scales is deeper than the first at the
electroweak scale the latter is not stable against tunneling to this global minimum1.

For large field strengths Φcl ∼ Λ ≫ v we can use the approximation [7]

Veff(Φcl) ≈ λ(Φcl) Φ
4
cl

(

e
− 1

2

t∫

0

dt′γΦ(t′)

)4

(8)

with t := ln
(

Φ2

cl

v2

)

and the running coupling λ(µ) evolved to the scale µ = Φcl. From this

it has been demonstrated that the stability of the SM vacuum is in good approximation
equivalent to the question whether the running coupling λ(µ) stays positive up to the
scale Λ [7, 8, 9]. It is this requirement which will be investigated at high precision in
this talk.

The vacuum stability problem has been subject to a lot of investigation over the last
years [10, 11, 12, 13, 14, 15, 5, 16, 17, 18]. For a recent discussion of the vacuum
stability problem in the MSSM see [19].

2 Calculations: β-functions and matching relations

The evolution of the Higgs self-coupling λ with the energy scale µ is given by the
β-function

βλ(λ, yt, gs, g2, g1, . . .) = µ2 d

dµ2
λ(µ). (9)

This power series in the couplings of the SM is computed in perturbation theory and is
available up to three-loop order [13, 20, 21, 22] as well as the β-functions for the gauge
[23, 24, 25] and Yukawa [13, 26] couplings, which are also needed in order to solve

1Note that the effective potential is a gauge dependent quantity (as are the renormalized field Φ

and its anomalous dimension γΦ) and hence the exact location of the second minimum is also gauge
dependent. The existence of a second minimum and the fact whether it is lower or higher then the
first, however, does not depent on the gauge parameters. For a recent discussion of this topic see [6].
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eq. (9) numerically. The second ingredient to the solution of eq. (9) is a set of initial
conditions for each coupling, e.g. their values at the scale of the top mass Mt. These
values are needed in the MS-scheme in which the β-functions are computed. Matching
relations between experimentally accessible on-shell quantities, such as the top quark
pole mass Mt and Higgs pole mass MH, and MS parameters have been calculated at
two-loop level [14, 27, 5, 28, 29, 30]. For the key parameters

Mt = (173.34± 0.76) GeV [31], (10)

MH = (125.7± 0.4) GeV [3], (11)

αMS
s

(MZ) = 0.1185± 0.0006 [3] (12)

we find the following best values for the MS parameters:

gs(Mt) 1.1671
g2(Mt) 0.6483
g1(Mt) 0.3587
yt(Mt) 0.9369± 0.00050(th,match)

λ(Mt) 0.1272± 0.00030(th,match)

Table 1: SM couplings in the MS-scheme at µ = Mt, theoretical uncertainties for yt

and λ stem from the on-shell to MS matching [14].

3 Analysis: The evolution of λ(µ)

Applying three-loop β-functions for λ, yt, gs, g2 and g1 as well as the initial conditions
from Tab. 2 we evaluate λ(µ) numerically up to µ = Λ ∼ 1019 GeV.

Fig. 2 shows the results for one-loop, two-loop and three-loop β-functions which demon-
strates the excellent convergence of the perturbation series. The difference between the
two and three-loop curve can be taken as an estimate for the theoretical uncertainty
stemming from the β-functions. From this we see that the SM ground state is no longer
stable if we extend it to scales & 1010 GeV. This could be mended by some new physics
appearing between this scale and the electroweak scale. On the other hand – as λ stays
close to zero – the two minima of the effective Higgs potential are almost degenerate in
energy which leads to a lifetime of the electroweak ground state much longer than the
age of the universe [14, 5, 16, 17], and such a metastable scenario does not contradict
our observations.

But in order to give a definitive answer to the question whether the SM is stable up
to large scales we have to consider all sources of uncertainty. Apart from the small
uncertainty stemming from the β-functions there is also a matching uncertainty of
which the two main contributions, the initial value for λ and for yt, are given in Tab. 2.
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Figure 2: Evolution of λ: One-, two- and three-loop beta-functions

The effect of varying these two parameters by one σmatching for the three-loop curve is
shown in Fig. 3. From this we can estimate that the matching precision is comparable
to the precision in the β-functions.

By comparison the experimental uncertainties are significantly larger. The dashed
(dotted) lines in Fig. 4 show the behaviour of λ evolved using three-loop β-functions
but with Mt, MH and αs increased (decreased) by one standard deviation.

While the uncertainties originating from αs and MH are approximately of the same size
and at the Planck scale about a factor 2 larger than the difference between the two-loop
and three-loop curves, the uncertainty stemming from the top mass measurement is
about an order of magnitude larger than the theoretical one at µ ∼ 1019 GeV. Within
one σ we are clearly in the metastable scenario for the SM but the large uncertainty in
the top mass measurement does not allow for a final answer to the question of vacuum
stability. It is interesting to investigate the possibilities offered by a precision deter-
mination of the top mass, e.g. at the ILC, where an uncertainty of σMt

∼ 30 MeV is
within reach [32]. Similarly, an uncertainty σMt

< 100 MeV is anticipated for CLIC
[33]. In Fig. 5 the evolution of λ is shown for values of the top mass varied by the
prospective σMt

= 30 MeV which leads to an experimental uncertainty for this param-
eter which would be competitive with the theory uncertainty for the evolution of the
Higgs self-coupling.

Such a precision measurement of Mt or the appearance of new physics between the
electroweak and the Planck scale will hopefully lead to an answer to the question of
vacuum stability in the not too distant future.
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Figure 3: Evolution of λ: Matching uncertainties
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Figure 4: Evolution of λ: Experimental uncertainties
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Figure 5: Evolution of λ: Top mass uncertainty at the ILC
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