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Abstract

The charged fermion masses of the three generations exhibit the two strong hierarchiesm3 ≫ m2 ≫
m1. We assume that also neutrino masses satisfy mν3 > mν2 > mν1 and derive the consequences of
the hierarchical spectra on the fermionic mixing patterns. The quark and lepton mixing matrices
are built in a general framework with their matrix elements expressed in terms of the four fermion
mass ratios mu/mc, mc/mt, md/ms, and ms/mb and me/mµ, mµ/mτ , mν1/mν2, and mν2/mν3,
for the quark and lepton sector, respectively. In this framework, we show that the resulting mixing
matrices are consistent with data for both quarks and leptons, despite the large leptonic mixing
angles. The minimal assumption we take is the one of hierarchical masses and minimal flavour
symmetry breaking that strongly follows from phenomenology. No special structure of the mass
matrices has to be assumed that cannot be motivated by this minimal assumption. This analysis
allows us to predict the neutrino mass spectrum and set the mass of the lightest neutrino well below
0.01 eV. The method also gives the 1 σ allowed ranges for the leptonic mixing matrix elements.
Contrary to the common expectation, leptonic mixing angles are found to be determined solely by
the four leptonic mass ratios without any relation to symmetry considerations as commonly used in
flavor model building. Still, our formulae can be used to build up a flavor model that predicts the
observed hierarchies in the masses—the mixing follows then from the procedure which is developed
in this work.
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1 Introduction

The Standard Model of particle physics (SM) describes the interactions among elementary particles at
high energies with great success. In spite of this, the setup of the SM lacks an explanation of the origin
of fermion masses and mixing. In particular, for the quark sector, one observes six masses, three mixing
angles and one phase. It is a simple exercise to relate the quark mixing matrix to the fundamental
parameters of the theory, the Yukawa couplings. Generally, however, it is said that mixing angles as
well as the masses are independent free parameters. Is there really no functional relation between the
quark masses and the corresponding mixing matrix elements? There are many models in the literature
that want to give an explanation of the mixing matrix elements in terms of the masses [1–28]. Most
of them put assumptions on a specific texture in the original mass matrices. We shall show, by
contrast, that the pure phenomenological observation of strong hierarchies in the quark masses leads
to a functional description of the mixing matrix elements in terms of mass ratios. The consequences
in the mixing of this phenomenological observation have already been studied [15,20,26,29–33]. Our
approach differs from the previous ones in many aspects: i) we take the Singular Value Decomposition
of the complex mass matrices as a starting point offering a generic treatment for both quarks and
leptons; ii) by means of an approximation theorem we mathematically formulate the steps to build
the reparametrization of the mixing matrix in terms of the singular values (fermion masses); iii)
we rotate the mass matrices in all three planes of family space whereas before, the 1-3 rotation was
neglected; iv) as the two unitary rotations in the 2-3 and 1-3 plane involve an approximation (mf,1 = 0
and mf,2 = 0, respectively) we consider for the first time a modified method of perturbation theory to
add the effect of the terms neglected; v) we do not consider the complex CP phases as free parameters
and show that a minimal choice is sufficient to explain CP data; vi) we provide explicit formulae for
the mixing angles in terms of only mass ratios.

The applicability of this formulation to the leptonic mixing is not clear a priori. First, neutrino
masses do not show any strong hierarchy, at best a very mild one. Second, the leptonic mixing matrix
exhibits large mixing, while the one in the quark sector is rather close to the unit matrix. This
picture seems to suggest two quite different origins for the respective mixing matrices: quark masses
strongly dominating the mixing patterns, whereas geometrical factors found from symmetries shaping
the leptonic mixing, with only a weak intervention from the lepton masses [34,35].

Fermion masses, on the other hand, are also as puzzling as the mixing matrices: the top quark
mass is by far the largest among the charged fermions, there are six orders of magnitude separating the
top quark from the electron mass, six orders of magnitude separating the largest neutrino mass from
the electron mass (assuming a neutrino mass scale of 0.1 eV). There are three orders of magnitude
between the masses of the up-type quarks, whereas two orders of magnitudes in the down-quark sector.
Top and bottom quark are separated by two orders of magnitude—the lightest charged lepton and the
heaviest quark by again six orders of magnitude. Within each (charged) fermion species (f = u, d, e),
the masses follow a hierarchy mf,3 ≫ mf,2 ≫ mf,1,

mu : mc : mt ≈ 10−6 : 10−3 : 1, md : ms : mb ≈ 10−4 : 10−2 : 1,

me : mµ : mτ ≈ 10−4 : 10−2 : 1,
(1)

while the two squared mass differences measured from neutrino oscillations obey a much weaker
hierarchy,

∆m2
21 : ∆m

2
31(32) ≈ 10−2 : 1. (2)

Quark masses plus mixing parameters sum up to ten arbitrary physical parameters in the SM.
Consideration of neutrino masses, whether Dirac or Majorana, adds at least ten more parameters to
the count. Two more complex phases and a possibly arbitrary number of masses for sterile neutrinos
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appear in the more general cases including Majorana neutrinos [36]. The SM per se seems to lack a
course of action on how to relate the mixing matrix elements to the corresponding fermion masses.

The first realization of a mixing angle in terms of the masses is commonly assigned to Gatto et
al. [1] which is referred to as the Gatto-Sartori-Tonin relation. This relation is an expression of the
Cabibbo angle commonly written as

θq12 ≈
√

md

ms
, (3)

where originally, the authors of [1] found a similar relation in terms of light meson masses from the
demand of weak self-masses being free from quadratic divergences. In a footnote, they break it down
to an elementary discussion in a “naive quark model” and state

tan2 θ =
mn −mp

mp
=
mn

mλ

, (4)

where mn, mp, and mλ are the old notations of down-, up-, and strange-quark masses (moreover, the
second equal sign was misleadingly written as a minus sign). The first work referring to [1] as origin of
“tan θ = mn/mλ” was [3] (even though with a typo in the abstract). For small angles, tan θ ≈ θ and
we are at Eq. (3). Since

√

md/ms is an astonishingly good approximation for the Cabibbo angle, we
will show in the course of this paper how to rearrive at this expression in a formal way of parametrizing
mixing matrices in terms of invariants.

The work of [1] was followed by derivations of the same formula focused on the derivation in a more
model-building related approach using left-right symmetric scenarios [1–5,12,37]. In the same decade,
a model independent approach was initiated where mass matrices with different null matrix elements
(“texture zeros”) were considered [38–43]; similar relations were then found for other mixing angles.
Subsequently, horizontal or family discrete symmetries were used in order to relate the three families
in a non-trivial fashion [11,13,14,44–48]. In their initial stage, though, the experimental uncertainty
in the mixing angles and fermion masses was still too large as to build a stable model consistent
with the unstable phenomenology. This approach was vigorously resurrected in the last decade when
precision measurements for neutrino oscillations started [35, 49, 50]. Relations between the neutrino
mixing angles and lepton mass hierarchies were found [51,52] where the values for the three neutrino
masses are compatible with what follows from our method, though θ13 was predicted too low (only
about 3◦). Nevertheless, up to now, no complex mass matrix with a well-motivated constrained set
of parameters has been found to entirely and successfully postdict the Cabibbo-Kobayashi-Maskawa
(CKM) quark mixing matrix or to predict the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix in
the lepton sector. In this work, we do not focus on a specific model predicting mixing angles, but give
explicit relations following from a model independent treatment based on the observation of the two
strong hierarchies m3 ≫ m2 ≫ m1 in the charged fermion masses. Moreover, we dare to apply the
same fomulae to the neutrino mixing and derive the PMNS angles with astonishingly good agreement.

This paper is organized in the following way: first, we start discussing the generic treatment
of mixing matrices following from hierarchical mass matrices in Section 2, where we focus on the
mathematical derivation of relations among fermion mass ratios and mixing angles. This result gets
applied to the phenomenological data in Section 3. Finally, we conclude. In the appendices, we
review the current status of input data, give a brief statement about the applicability of the method
elaborated in this work, comment on the hierarchical structure of the mass matrices as a consequence
of hierarchical masses and minimal flavor symmetry breaking, and provide the explicit, approximative
formulae that gave the results of Section 3.
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2 Mass and mixing matrices

Let us extend the SM by three right-handed neutrinos to have a more symmetric treatment of the
problem in the quark and lepton sector. Dirac neutrinos alone still leave the question open why the
Yukawa couplings for neutrinos are so much smaller than for the charged fermions. Nonetheless, in
the description of fermion mixings in terms of fermion masses this assumption does not play a rôle
and later we take an effective neutrino mass matrix without the need to specify whether neutrinos
are Dirac or Majorana. The most general, renormalizable and gauge invariant construction of fermion
mass matrices follows from the Yukawa Lagrangian

−LY =
∑

f=d,e

Y ij
f ψfL,iΦψfR,j +

∑

f=u,ν

Y ij
f ψfL,i (iσ2Φ

∗)ψfR,j +H.c., (5)

where i, j = 1, 2, 3 are family indices and summation over them is implicitly understood. The generic
fermion fields are denoted as ψf , where the left-handed fermions are grouped into SU(2)L doublets
and the right-handed ones are the usual singlets. The Higgs doublet is given by Φ = (φ+, φ0) whereas
its nonvanishing vacuum expectation value v = 〈φ0〉 = 174GeV. The spontaneous breakdown of
electroweak symmetry gives rise to four Dirac mass matrices of the form

Mf = vYf . (6)

These mass matrices are 3×3 complex arbitrary matrices; each of them is diagonalized by a biunitary
transformation

Df = LfMfR
f †, (7)

where Df is a diagonal matrix with real and positive entries while Lf and Rf are two unitary matrices
acting in family space on left- and right-handed fermions of type f respectively. Both transformations,
Lf and Rf , correspond to the unitary matrices appearing in the Singular Value Decomposition of Mf .
These unitary matrices transform the sets of three left- or three right-handed fermion fields each from
the interaction basis to the physical mass basis

ψ′
f,L = Lfψf,L and ψ′

f,R = Rfψf,R. (8)

The mass eigenstates are therewith ψ′
f . In return, the diagonal weak charged current interactions are

no longer diagonal, and mix different fermion families. This occurs as a consequence of the mismatch
between the two different left unitary matrices acting inside the same fermion sector which results in
the observable mixing matrices in the charged current interactions

VCKM = LuLd† and UPMNS = LeLν†. (9)

2.1 The double mass hierarchy pattern (DMHP)

The singular values of the diagonal matrix Df in Eq. (7) are to be identified with the measured fermion
masses (see A). An interesting and not yet exploited fact is that the observed hierarchies in the masses
(singular values) can be used to approximate the original mass matrices by lower-rank matrices as
stated in the Schmidt-Mirsky approximation theorem [53–56].1

The left and right unitary matrices, Lf and Rf are decomposed into the left and right singular

vectors, lf,i and rf,i (i = 1, 2, 3), and built up as Lf † = [lf,1, lf,2, lf,3] and R
f † = [rf,1, rf,2, rf,3]. Each

1It is often wrongly called the Eckart-Young-Mirsky or simply Eckart-Young theorem, see [57] for an early history on
the Singular Value Decomposition.
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pair of singular vectors correspond to the singular value mf,i. For square matrices when all three
singular values can be ordered as mf,3 > mf,2 > mf,1 ≥ 0, the decomposition is unique up to a shared
complex phase for each pair of singular vectors.2

The number of non-zero singular values equals the rank of the mass matrix Mf . The mass matrix
can be written in terms of its singular values with the respective left and right singular vectors as a
sum of rank one matrices,

Mf =

[(

lf,1
mf,1

mf,2
r†f,1 + lf,2r

†
f,2

)

mf,2

mf,3
+ lf,3r

†
f,3

]

mf,3. (10)

Any hierarchy among the singular values is of major interest to us as it leads to a lower-rank approx-
imation Mr

f (r = rank[Mr
f ] < 3). The lower-rank approximation is the closest matrix of the given

rank to the original matrix, where “close” has to be specified (see B). We obtain it by keeping the
largest singular values and setting the smaller ones equal to zero. The lower rank matrices are unique
if and only if all the kept singular values are larger than those set to zero.

Because of mf,3 ≫ mf,2 ≫ mf,1, Eq. 10 provides a powerful way to appreciate the double hierarchy
of its singular values and the emerging relation to its rank by the use of Schmidt-Mirsky’s approxi-
mation theorem. As both types of quarks and charged lepton masses satisfy those two hierarchies, we
conclude, that their mass matrices can be safely approximated as either matrices of rank one or rank
two, depending on how strong their double mass hierarchy pattern (DMHP) is.

As illustrated in Eq. (10), this expression points also to the fact that the fermion mass ratios
mf,1/mf,2 and mf,2/mf,3 play the dominant rôle in determining the structure of the mass matrix
whereas mf,3 sets the overall mass scale. Only those two ratios will be necessary in the determination
of the mixing parameters, since the overall mass scale can be factored out. For later use, we abbreviate
m̂f,1 = mf,1/mf,3 and m̂f,2 = mf,2/mf,3. In the following, the hat (̂ ) denotes the division by the
largest mass mf,3.

The four mass ratios parametrization The fact, that only two mass ratios for each fermion
species are independent parameters, gives four independent mass ratios in each sector (quarks and lep-
tons). An important remark at this point is, that also four parameters are needed to fully parametrize
the mixing. This observation shall be used to build up the mixing matrix. In the standard parametriza-
tion, those four values are three angles and one phase—additional phases are to be rotated away by
redefinition of the fermion fields. The case of Majorana neutrinos does not allow to rotate away the
phases for the neutrinos, so two “Majorana phases” are left. In the following, we will leave aside the
issue of Majorana phases and only discuss the Dirac phases. We shall show that it is possible to use
the four mass ratios of each fermion sector to entirely parametrize the mixing without introduction of
new parameters.

It is interesting to note, that a complete parametrization of the fermion mixing in terms of the
fermion mass ratios only works in the two- and three-family case. To completely parametrize the
mixing matrix, for n > 1 families, we need (n − 1)2 mixing parameters. On the other hand, n − 1
mass ratios are independent for each fermion species. Therefore, only when the number of mass
ratios in the corresponding fermion sector is equal to or larger than the number of mixing parameters,
2(n − 1) ≥ (n − 1)2, this parametrization will be possible. In general, this only works out for two or
three families.

2In the case of degeneracy among some of the singular values, there is no longer a unique Singular Value Decomposition
for Mf . This matters in the discussion of degenerate neutrino masses.
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2.2 The lower-rank approximations

Let us investigate the effect of neglecting the first generation masses. From now on we will work with
the singular values normalized by the largest one. In the m̂f,1 → 0 limit, the application of Schmidt-
Mirsky’s approximation theorem to the mass matrices is consistent with the rank-two approximation.
As we are neglecting all contributions O(m̂f,1) we shall take into account all corrections of the same
order later on to get a more precise result and reduce the error stemming from this approximation.

The rank two mass matrices are then given by

M̂r=2
f =

[

lf,2m̂f,2r
†
f,2 + lf,3r

†
f,3

]

=





0 0 0

0 m̂f
22 m̂f

23

0 m̂f
32 m̂f

33



 . (11)

In general, all the matrix elements should be different from zero. However, it is crucial to establish
a connection between a lower-rank approximation and its origin to the Yukawa interactions. That
is, m̂f,1 = 0 is equivalent to decoupling the first fermion family from the Higgs field, Y f

1j = 0 = Y f
j1.

Effectively, thus, we are left with a 2× 2 mass matrix. In the 1-1 sector, in contrast, a phase freedom
corresponding to U(1) rotations for the left- and right-handed fields is left, where the second and third
generation share one common phase.

Up to now, we have only used the hierarchy mf,2 ≫ mf,1 to decouple the first generation masses.
According to the lower-rank approximation theorem, the rank-two approximation differs in every
element from the full rank matrix, whereas its norm, for any chosen one, only changes slightly. The
DMHP furthermore shows mf,3 ≫ mf,2 which can be exploited to further approximate the initial
mass matrix by a rank-one matrix,

M̂r=1
f = lf,3r

†
f,3 =





0 0 0
0 0 0
0 0 1



 . (12)

Successively reducing the rank of the mass matrices helps to simplify the parametrization without
loosing track of the parameters. It is, however, not necessary to work in the very crude rank one
approximation, but sufficient to consider as a starting point the rank two approximation.

Eq. (12) reveals a left-over U(2) rotation in the 1-2 plane and one common U(1) factor for the third
generation. We want to emphasize that the described picture of lower-rank approximations follows
what is discussed in the literature as minimally broken flavor symmetry [22, 58, 59]. In the limit of
vanishing Yukawa couplings, the SM exhibits a [U(3)]5 global flavor symmetry ([U(3)]6 if right-handed
neutrinos are considered). Each individual U(3) flavor symmetry gets gradually broken

U(3)
M3−→ U(2)

M2−→ U(1)
M1−→ nothing,

with M3 > M2 > M1 which simultaneously occurs in the up- and down sector and trivial U(1)s are
left out for readability. After the first symmetry breaking step at M3, one global phase freedom is left
for the third generation that is combined to a global U(1) for the second and third after the following
symmetry breaking. There is one residual U(1) symmetry left for all fermions in each sector at the
end which is either baryon or lepton number. It is not only safe to work with M3 ≫ M2—where we
are at the U(2) flavor symmetries of [22, 58, 59], but even M2 ≫ M1 which allows to work with the
rank-two approximation at a sufficiently low scale and perform the final symmetry breaking step at
say the electroweak scale.

U(2) symmetric Yukawa couplings give a well-motivated and frequently used setup to study flavor
physics in supersymmetric [60,61] and unified [22] theories and are still a viable tool to discuss recent
results in flavor physics [62, 63]. Application to lepton flavor physics was also considered [64–67],
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recently also in the context of [U(3)]5 breaking [68]. The implication of U(2) flavor symmetries which
can be used in a weaker symmetry assignment [69], is the arrangement of the first two families into one
doublet whereas the third family transforms as a singlet under the flavor symmetry. This assignment
can be achieved with the minimal discrete symmetry S3 [70–74] that was applied to neutrinos [75] as
well as quarks [28].

The important point in the discussion of fermion mixings in terms of fermion masses via lower-
rank approximations is, that we implicitly assume the maximal [U(3)]6 flavor symmetry broken with
each symmetry breaking step occurring simultaneously for each subgroup [U(3)]6 = U(3)Q ×U(3)u ×
U(3)d ×U(3)L ×U(3)e ×U(3)ν .

Order of independent rotations To parametrize the three-fold mixing, we follow the commonly
used three successive rotations depending on one angle and one phase each. The order of these
transformations needs to follow the consecutive breakdown of the initial U(3) symmetry as implied by
the hierarchy in the masses. Therefore,

Lf = Lf
12(θ

f
12, δ

f
12)L

f
13(θ

f
13, δ

f
13)L

f
23(θ

f
23, δ

f
23), (13)

where each individual rotation is parametrized by one angle θfij and one phase δfij.
3

Note that this set of rotations diagonalize the mass matrices for each fermion type. The resulting
mixing matrices are the product of all the individual rotations

VCKM = LuLd† = Lu
12L

u
13L

u
23L

d
23

†
Ld
13

†
Ld
12

†

and
UPMNS = LeLν† = Le

12L
e
13L

e
23L

ν
23

†Lν
13

†Lν
12

†.

By convention, up- and down-type rotations are exchanged for leptons.

2.3 The effective 2 × 2 mass matrix

It is instructive to first study the two-family limit in the rank-two approximation following from
m̂f,1 ≪ 1. The second hierarchy mf,2 ≪ mf,3 implies a 2× 2 mass matrix of the form

m̂f =

(

m̂f
ss m̂f

sl

m̂f
ls m̂f

ll

)

, (14)

with hierarchical elements |m̂f
ll|2 ≫ |m̂f

sl|2, |m̂
f
ls|2 ≫ |m̂f

ss|2 and where we are now generically treating
two fermion families whose singular values obey the hierarchy, σl ≫ σs. In general, the matrix elements
are complex numbers. The labelling s and l refers to the corresponding smaller and larger singular
value, respectively. It can be shown that the order of magnitude of m̂f

ss is about O(|m̂f
sl|2) (see C). In

the following, we work with the approximation m̂f
ss = 0.

Unlike most considerations, we take the outcome of the DMHP and minimal flavor symmetry
breaking to set the magnitudes of the off-diagonals equal—the phases are not constrained, such that

|m̂f
sl| = |m̂f

ls| not m̂f
sl = (m̂f

ls)
∗,

as implied by the requirement of an Hermitian mass matrix. We only need normal mass matrices.4

In both cases (normal and Hermitian), the left and right Hermitian products are diagonalized by the

3Later, when reparametrizing the individual rotations in terms of the masses we will see that some of these six mixing
parameters are unphysical while the rest can be expressed solely by two mass ratios.

4A matrix is normal if the left and right Hermitian products are the same: mm† = m† m.
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same unitary transformation. For a normal mass matrix, however, the phases can be arranged in a
way that the off-diagonal magnitudes do not have to be the same. We only constrain the matrix of
absolute values to be symmetric, whereas the phases can be arbitrary:

m̂f =

(

0 |m̂f
sl|eiδ

f
sl

|m̂f
sl|eiδ

f

ls m̂f
ll

)

. (15)

As a self-consistency check, it is important to verify that the required hierarchy in all the mass
matrix elements of the full-rank scenario actually is respected when expressing the matrix elements in
terms of the masses (singular values).

Reparametrization in terms of the singular values Due to our lack of knowledge of right-
handed flavor mixing, the relevant object that determines our phenomenology is the Hermitian product
nf = mf (mf )†, which exhibits two invariants: trnf = σf2s +σf2l and detnf = σf2s σf2l . The small and

large singular value are denoted by σfs and σfl , respectively. Through means of the two invariants, we
find

|m̂f
sl| =

√

σ̂fsl, and |m̂f
ll| = 1− σ̂fsl, (16)

where we have expressed for a generic treatment the normalized ratio of the small singular value over
the large one as σ̂fsl ≡ σfs /σ

f
l .

This reparametrization nicely shows the result of the Schmidt-Mirsky approximation theorem: on
the one hand, |m̂f

ll|2 ≫ |m̂f
sl|2, while on the other hand, |m̂f

ll| = 1 is the only non-vanishing matrix

element in the limit σ̂fs → 0.
The left unitary transformation corresponding to the diagonalization of this matrix is given by

Lf
sl(σ̂

f
sl, δ

f
sl) =

1
√

1 + σ̂fsl





1 e−iδ
f
sl

√

σ̂fsl

−eiδfsl
√

σ̂fsl 1



 . (17)

This result has been already discussed previously by many authors [8,9,18,26]. The mixing angle can

be obtained from tan θfsl =
√

σ̂fsl.
5 Note that this relation indeed is the Gatto-Sartori-Tonin result,

see Eq.(3).

The two-family mixing matrix Eq. (17) diagonalizes the mass matrix of one fermion type. In
the weak charged current, an a-type fermion (a = u, e) meets a b-type fermion (b = d, ν), so we need
two such diagonalizations to describe fermion mixing in the charged current interactions. Anyway,
two unitary 2× 2 rotations do not commute, and the new mixing parameters are not just the sum or
difference of the former ones: θsl 6= θasl ± θbsl and δ 6= δasl ± δbsl. Explicitly,

Vsl = La
slL

b
sl

†
= diag(1, e−iδa

sl)

(
√
1− λ2e−iδ0 λe−iδ

−λeiδ
√
1− λ2eiδ0

)

diag(1, eiδ
a
sl), (18)

where we factored out the phase δasl. This choice is completely arbitrary, the same is true for δbsl. The
relevant phases inside the matrix only depend on the difference. The mixing can then be obtained in

5Another solution can be found, that behaves wrongly in the limit σ̂
f

sl → 0 and gives maximal mixing tan θfsl → ∞

instead of zero mixing.
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the following way

λ = sin θsl =

√

√

√

√

σ̂asl + σ̂bsl − 2
√

σ̂aslσ̂
b
sl cos(δ

a
sl − δbsl)

(1 + σ̂asl)(1 + σ̂bsl)
, (19)

tan δ =
σ̂bsl sin(δ

a
sl − δbsl)

σ̂asl − σ̂bsl cos(δ
a
sl − δbsl)

, (20)

tan δ0 =
σ̂aslσ̂

b
sl sin(δ

a
sl − δbsl)

1 + σ̂aslσ̂
b
sl cos(δ

a
sl − δbsl)

. (21)

The functional dependence on the two initial complex phases is found to be only their difference. From
the hierarchies σ̂xsl = σxs /σ

x
l ≪ 1 (for x = a, b) follow the new phases to be approximately given by

tan δ ≈ − tan(δasl − δbsl) and tan δ0 ≈ 0. For the full-rank scenario, however, this simple conclusion
cannot be drawn—it actually holds for the “initial” 2-3 rotation, but not anymore when subsequent
rotations are added.

Comment on the complex phases In general, the complex phases of the initial mass matrix
elements are not constrained to a particular value. The employed matrix invariants only restrict the
moduli of the matrix elements, the phases are unconstrained. There is nevertheless an ambiguity
in those phases that is not necessary to set up a full parametrization of fermion mixing in the SM.
The standard parametrization uses three successive rotations with θij ∈ [0, π2 ] and one complex phase
δCP ∈ [0, 2π). These four parameters are sufficient to describe both mixing and CP violation in each
fermion sector (unless we want to include a description of Majorana phases for neutrinos). In contrast,
we have four mass ratios—and the freedom to put either real or purely imaginary matrix elements.
This last choice can be achieved by restricting all phases to be either maximal CP violating (π/2 or
3π/2) or CP conserving (0 or π). Interestingly, at the end, there is no freedom in phase choices at
all and we find that only the 1-2 phase is allowed to be maximally CP violating, which indeed follows
from a symmetry argument.

2.4 The full-rank picture

Working in the lower-rank approximations, we are neglecting the first generation mass (m̂f,1 = 0) in
the 2-3 rotation and the second generation mass (m̂f,2 = 0) while performing the 1-3 rotation. The
last transformation that appears in Eq. (13) acting in the 1-2 plane needs no approximation. It affects
only the upper left 2 × 2 submatrix and is an exact diagonalization. In all cases, the mass matrices
are of the form (14), where the elements are properly distributed over the 3× 3 matrix elements. All
residual matrix elements are zero. The same holds for the arising rotation matrices that are 3 × 3
generalizations of Eq. (17).

Working in the leading order approximations shows a subtle inconsistency: neglecting O(m̂f,2)
terms in the 1-3 rotation means actually ignoring a large effect, becauseO(m̂f,1) = O(m̂2

f,2). Moreover,
to include O(m̂f,1) contributions in the 1-3 rotation following the initial rotation in the 2-3 plane,
we first have to consider contributions of the same order that were missing in the initial rotation.
Therefore, we briefly discuss how to consistently include corrections of missing pieces to improve the
result.

Inclusion of corrections We include the corrections as correcting (small) rotations. This procedure
is crucial in view of the symmetry breaking chain from an enhanced flavor symmetry, as [U(3)]3

(corresponding to a rank-zero mass matrix), down to the least symmetry left over. Since each breaking
step is done by a small parameter, we do not disturb much by adding perturbations. Moreover, by
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repeatedly applying rotations, this guarantees from the very beginning normalized eigenvectors, and
furthermore, an inclusion of formally higher order terms in perturbation theory. This can be seen
from the following example of two real rotations, where ǫ̂ . σ̂fsl:

6

Lf
sl

(p=1)
= Lf

sl

(1)
(±ǫ̂)Lf

sl

(0)
(σ̂fsl) =

(

cos θfsl
(p=1)

sin θfsl
(p=1)

− sin θfsl
(p=1)

cos θfsl
(p=1)

)

, (22)

and the new angle is given by

sin θfsl
(p=1)

=

√

σ̂fsl ±
√
ǫ̂

√

(1 + σ̂fsl)(1 + ǫ̂)
. (23)

For real rotations, the requirement ǫ̂ . σ̂fsl is irrelevant, because O(2) rotations commute. Therefore,
there is also no need to specify any order in the addition of correcting rotations in each i-j plane.

Inverting this procedure shows that it is equivalent to add the perturbation term

−
√
ǫ̂

[

1 + (σ̂fsl)
2 − 2σ̂fsl +

√

ǫ̂σ̂fsl(σ̂
f
sl − 1)

]

(1− ǫ̂) (24)

to the off diagonal matrix elements s-l and l-s.
Continuing this, an arbitrary number of correcting rotations could be added in each 2×2 rotation:

sin θfsl
(p=n)

=

∑n
j=0(−1)δj

√

âj +O
(

[√

âiâj âk
]

i 6=j 6=k

)

√

(1 + â0)(1 + â1)(1 + â2) · · · (1 + ân)
, (25)

where we have denoted â0 ≡ σ̂fsl and âi>0 for the parameters of the following rotations. Each (−1)δi is
the orientation of the i-th rotation, which is either clockwise or counterclockwise (plus or minus). We
neglect in Eq. (25) all trilinear and higher products of âi, where no â

2
i and no even products appear. Let

us emphasize here, nevertheless, that these correcting rotations do not follow the traditional procedure
of perturbation theory where we could naively think that the following new correcting rotation is a
power of the previous one. Inclusion of new correcting rotations requires a careful treatment. We
have found to be sufficient to include two correcting rotations to the mixing matrix parametrization
which are the contributions O(m̂f,1), O(m̂2

f,2), and O(m̂f,1 · m̂f,2) which are of the same order as the
neglected terms in each case.

First rotation: The 2-3 sector Starting from the rank-two approximation, we loose track of all
√

m̂f,1 contributions in the mass matrix. However, all correcting rotations have to be consistent with
the initial approximation (m̂f,1 → 0) and, moreover, all “higher order” contributions (∼ m̂2

f,2, ∼ m̂2
f,1)

are already covered as can be seen from (24). We therefore conclude, that all reasonable rotations in
the 2-3 plane can be expressed as

Lf
23

(p=2)
= Lf

23

(2)
(m̂f,1 · m̂f,2)L

f
23

(1)
(m̂f,1)L

f
23

(0)
(m̂f,2). (26)

Additionally, in principle, there is a freedom in the choice of the complex phase, which can be boiled
down to the two different sign choices.

6The two signs reflect the freedom of choice for a clockwise or counterclockwise correcting rotation.
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Second rotation: The 1-3 sector What follows is the same procedure in the 1-3 sector after the
2-3 rotations have been done. In this case, the p = 2 leading correcting rotations are

Lf
13

(p=2)
= Lf

13

(2)
(m̂f,1 · m̂f,2)L

f
13

(1)
(m̂2

f,2)L
f
13

(0)
(m̂f,1). (27)

Last rotation: The 1-2 sector No approximation is left anymore, therefore the exact rotation is
expressed as

Lf
12 = Lf

12(
m̂f,1

m̂f,2
, δf12), (28)

where we now explicitly put the phase δf12. This occurrence is very clear from the rank evolution: in
the rank-one approximation, there is the freedom of a U(2) rotation left in the 1-2 block. The initial
2-3 and 1-3 rotations can always be taken real, the only possible phase then sits in the 1-2 rotation.

The necessity of correcting rotations is very apparent from the flavor symmetry breaking chain:
First, in the rank-two approximation we have





0 0 0
0 X X
0 X X





L
(0)
23−→





0 0 0
0 X 0
0 0 X



 .

After performing the symmetry breaking step to the full-rank matrix, we get contributions in all matrix
elements not larger than O(

√

m̂f,1)—also in off-diagonal components that were already rotated away:





∗ ∗ ∗
∗ X ∗
∗ ∗ X



 .

So, we indeed have to consider higher order corrections to the initial rotation. The correcting rota-
tions also do not spoil the required hierarchy. After the successive 2-3 and 1-3 rotations there is a
contribution shuffled into the 1-1 entry which is ∼ s213m33 ∼ O(m̂f,1) and therefore of higher order
compared to O(m̂1/m̂2), the original 1-1 element.

3 Applying the DMHP to phenomenology

By building up the mixing matrices following the procedure of the previous section, there appears the
impression of an arbitrariness in the choice of complex phases. This arbitrariness can be attenuated
taking into account some well motivated considerations. First, complex phases appear pairwise in the
up- and down-type fermion sectors. We therefore have the freedom to keep track of them in only
one sector and set all phases in the other one equal to zero. The charged current mixing matrix is
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therefore constructed in the following way:

VCKM = LuLd†,

Lu = Lu
12

(

mu

mc

)

Lu
13

(

mumc

m2
t

)

Lu
13

(

m2
c

m2
t

)

Lu
13

(

mu

mt

)

Lu
23

(

mumc

m2
t

)

Lu
23

(

mu

mt

)

Lu
23

(

mc

mt

)

, (29)

Ld† = Ld
23

†
(

ms

mb
, δ

(0)
23

)

Ld
23

†
(

md

mb
, δ

(1)
23

)

Ld
23

†
(

mdms

m2
b

, δ
(2)
23

)

×

Ld
13

†
(

md

mb
, δ

(0)
13

)

Ld
13

†
(

m2
s

m2
b

, δ
(1)
13

)

Ld
13

†
(

mdms

m2
b

, δ
(2)
13

)

Ld
12

†
(

md

ms
, δ12

)

, (30)

UPMNS = LeLν†,

Le = Le
12

(

me

mµ

)

Le
13

(

m2
µ

m2
τ

)

Le
13

(

memµ

m2
τ

)

Le
13

(

me

mτ

)

Le
23

(

memµ

m2
τ

)

Le
23

(

me

mτ

)

Le
23

(

mµ

mτ

)

,

(31)

Lν† = Lν
23

†

(

mν2

mν3
, δ

(0)
23

)

Lν
23

†

(

mν1

mν3
, δ

(1)
23

)

Lν
23

†

(

mν1mν2

m2
ν3

, δ
(2)
23

)

×

Lν
13

†

(

mν1

mν3
, δ

(0)
13

)

Lν
13

†

(

m2
ν2

m2
ν3

, δ
(1)
13

)

Lν
13

†

(

mν1mν2

m2
ν3

, δ
(2)
13

)

Lν
12

†

(

mν1

mν2
, δ12

)

. (32)

The method itself is not quite arbitrary at all. For the CKM mixing it gives well-separated regions
that have to be entered with a specific choice for the phases (see Fig. 1). Since both quark masses as
well as CKM mixing matrix entries are rather well measured, this observations allows us to set the
phases. We find only one distinct choice. Moreover, we make a minimal choice: on the one hand, we
allow CP phases to be either maximally CP violating or CP conserving. On the other hand, we find,
that the only maximally CP violating phase has to be in the 1-2 rotation of the down-type quarks or
neutrinos, respectively. This can be seen from Fig. 2 where the three bands correspond to a phase
δ12 = 0, π2 and π.

The previously derived subsequent rotations only depend on four mass ratios in each fermion sector
and have to be faced with phenomenological data. As input values we are using the quark and lepton
masses only (see A) and then give a prediction for the neutrino masses to be in agreement with
observations of neutrino mixing in this setup.

3.1 Minimal or maximal CP violation

The nature of the complex phases and its impact in the mixing matrix elements needs further inves-
tigation. Giving a solution to this problem is, however, outside the scope of this work. We shall use
our observation to distribute the CP violating phase properly and leave the origin of CP violation for
later work.

A final comment can be done, though, that guarantees the uniqueness of the parametrization. In
Fig. 1, we show the maximally allowed ranges for the mixing matrix elements Vub and Vcb. The amount
of data points was constructed choosing the quark masses from their 1σ regimes and randomly taking
every phase in the final paramerization from the set {0, π2 , π}. It is sufficient to constrain oneself to
this set which gives the minimal and maximal allowed amount of CP violation [76]—and connected
to that minimal and maximal mixing. The latter can be seen from Eq. (19) for the two-generation
sub-case: the phase difference δasl − δbsl controls the magnitude of the mixing angle between minimal
(δasl − δbsl = 0) and maximal (π) mixing.

The fact, that only one combination of phases survives, is astonishing: note that all possible
combinations in Eq. (30) are generically 37 = 2187 choosing from {0, π2 , π}. Still, after taking δ12 = π

2
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Figure 1: Distribution of allowed values in the Vub-Vcb plane. The small red points show allowed
regions where the masses were varied in their 1σ regimes, the blue crosses show the values coming
from the central values of the masses. Right: zoom into the phenomenological viable region. There
are only three distinct phase choices leading to both small values for Vub and Vcb.

Table 1: The choice of phases in Eqs. (30) and (32) leading to the mixing matrices shown in (33) and
(38).

δ12 δ
(0)
13 δ

(1)
13 δ

(2)
13 δ

(0)
23 δ

(1)
23 δ

(2)
23

CKM π
2 0 π π 0 π π

PMNS π
2 0 π π π π 0

and constraining the remnant phases to be either zero or π, 64 combinations are left. It is therefore
not a priori clear that the mass ratios alone give the right mixing. The functional dependence on the
mass ratios, however, is unique once the phases are set. We therefore use this description to determine
the position of the maximal CP phase, where in contrast the other phases give relative minus signs.
The maximal CP violating phase in the neutrino 1-2 mixing is somehwat different to what was found
in connection with maximal atmospheric mixing [77].

3.2 Projected values of V th

CKM
and Jq

Consideration of all the aforementioned prescriptions gives the following numbers for the magnitude
of the mixing matrix elements (see D for the explicit formulae of the mixing angles and the Jarlskog
invariant),

|V th
CKM| =





0.974+0.004
−0.003 0.225+0.016

−0.011 0.0031+0.0018
−0.0015

0.225+0.016
−0.011 0.974+0.004

−0.003 0.039+0.005
−0.004

0.0087+0.0010
−0.0008 0.038+0.004

−0.004 0.9992+0.0002
−0.0001



 (33)

and the following amount of CP violation as measured by the Jarlskog invariant,

Jq = Im(VusVcbV
∗
ubV

∗
cs) = (2.6+1.3

−1.0)× 10−5, (34)

where all quantities here are seen to be in quite good agreement within the errors compared to the
global fit result given by the PDG 2014 [78] (see A for present knowledge on masses and mixings).
Note that generically, the amount of CP violation is much larger (Fig. 2) and a small value of Vub is
connected to a small Jq, as expected.
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Figure 2: The left plot shows the regions for the Cabibbo angle (more exactly Vus—clearly the solution
δ12 = π

2 is favoured (which corresponds to the stripe in the center). On the right side, the rephasing
invariant Jq is shown against Vub. Color code as in Fig. 1: red dots are points with masses varied in
the 1σ regimes, blue crosses are the central values.

3.3 Lepton sector

Quark masses show a very strong hierarchy. Charged lepton masses also do. Neutrinos, though, do
not do. Is it really viable to apply the DMHP also to lepton mixing? Leptonic mixing angles are
large, this observation may hint to a different mechanism. However, mass ratios for neutrinos are also
large. The parametrization of fermion mixing in terms of mass ratios allows to also cope with large
mixings by large mass ratios. Nevertheless, we have to include a solid examination of the errors in
this approximation and see whether the same procedure as for quarks is viable also for leptons.

Are neutrino masses hierarchical? Neither the quasidegenerate solution nor the strong hierarchy
are excluded yet. A hierarchical mass spectrum in any case predicts a very light lightest neutrino
(it still can be exactly massless—in this case we would only have a rank two mass matrix), where
degenerate masses are likely to be tested in the near future.

The power of the mixing parametrization in terms of mass ratios lies in its invertibility: the
formulae give us a unique description of the missing mass ratio once the mixing angle is measured.
The pattern of neutrino masses brings us into the comfortable situation of nearly disentangling the 1-2
from the 2-3 mixing, because ∆m2

21/∆m
2
31 ≪ 1. Additionally, the 1-2 mixing angle has the smallest

error in the global fit.

Predicted neutrino masses We do not focus on a specific model behind the theory of neutrino
masses. It is sufficient to consider an effective neutrino mass matrix irrespective of the UV completion
behind. To embed our description into a theory of neutrino flavor, it definitely matters if neutrinos
are Dirac or Majorana. The size of the masses, however, allows to neglect RG running in any case.
Therefore, we also ignore the nature of the neutrino mass operator. Since we take the magnitudes of
the Dirac masses symmetric for quarks, the only difference would be the off-diagonal phase. Having
this similarity in mind, the 1-2 approximation for neutrinos follows directly from Eq. (18) and the
determining equation for the missing mass ratio from Eq. (19) with obvious relabelings:

|Ue2| ≈

√

m̂eµ + m̂ν12 − 2
√

m̂eµm̂ν12 cos(δ
e
12 − δν12)

(1 + m̂eµ)(1 + m̂ν12)
, (35)
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where the mass ratios are m̂eµ = me/mµ and m̂ν12 = mν1/mν2. The three individual neutrino masses7

are obtained via the mass squared differences:

mν2 =
√

∆m2
21/(1− m̂2

ν12),

mν1 =
√

m2
ν2 −∆m2

21,

mν3 =
√

∆m2
31 −∆m2

21 +m2
ν2.

(36)

In Eq. (35), there appears the phase difference δe12 − δν12. Although a twofold rotation shows no CP
violation, this phase has to be considered because it appears last in the order of successive rotations.
Moreover, we observed a maximal CP phase in the quark 1-2 sector. Albeit there is no connection
between quark and lepton mixing at this stage, we shall keep the assignment δe12 − δν12 =

π
2 and get

m̂ν1 =
|Ue2|2(1 + m̂e)− m̂e

1− |Ue2|2(1 + m̂e)
= 0.41 . . . 0.45 (37)

using m̂e = 0.00474 and |Ue2| = sin θ12 = 0.54 . . . 0.56. The masses are calculated as

mν1 = (0.0041 ± 0.0015) eV,

mν2 = (0.0096 ± 0.0005) eV,

mν3 = (0.050 ± 0.001) eV.

The errors were propagated from the ∆m2 and added linearly to be more conservative. Within 3σ,
the lightest neutrino can be massless. This prediction, however, will significantly improve with the
improved errors on ∆m2

21.
The minimally and maximally allowed neutrino masses (corresponding to δe12−δν12 = 0, π) are very

close:

min (in eV) max (in eV)

mν1 = 0.0029 ± 0.0017 mν1 = 0.0062 ± 0.0017
mν2 = 0.0091 ± 0.0003 mν2 = 0.011 ± 0.001
mν3 = 0.050 ± 0.001 mν3 = 0.050 ± 0.001

In any case, the lightest neutrino is much lighter than 0.01 eV.

U
th

PMNS
as implied by the four leptonic mass ratios Albeit the hierarchy is not as strong as

for quarks and charged neutrinos, we dare to use the same description and show that indeed large
mass ratios in the four mass ratio parametrization also lead to large mixing angles. The applicability
of the whole method depends on hierarchical masses. In B we give a simple criterion parameter to
check whether the lower-rank approximations are good approximations. Indeed, the deviation from
unity is only a few percent. Therefore, we safely use the previous described procedure.

With the predicted neutrino masses (which only know about |Ue2|) and the knowledge of the
charged fermion mass ratios, the leptonic mixing matrix exhibits the following numerical values

|U th
PMNS| =





0.83+0.04
−0.05 0.54+0.06

−0.09 0.14 ± 0.03

0.38+0.04
−0.06 0.57+0.03

−0.04 0.73 ± 0.02

0.41+0.04
−0.06 0.61+0.03

−0.04 0.67 ± 0.02



 , (38)

7We are implicitly assuming normal ordering. Inverted ordering is excluded by construction because it is not hierar-
chical in the minimal flavor symmetry breaking chain.
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Figure 3: Left: Evaluation of the three neutrino masses with the lightest mass (m0, in eV). In the
regime m0 < 0.1 eV the assumption of a hierarchical pattern is indeed viable. Note also, that the
ratio mν2/mν3 basically does not change with decreasing m0 = mν1. Right: The value of |Ue2| in
dependency from δν12—the experimentally allowed 3σ region (indicated by the horizontal red lines) is
compatible with the choice δν12 = π

2 , while not with δν12 = 0 or π.

whereas the implied amount of CP violation is displayed as

Jℓ = Im(Ue2Uµ3U
∗
e3U

∗
µ2) = 0.031+0.006

−0.007. (39)

We remark an astonishingly good agreement with the measured values (see A) and observe a close-
to-maximal CP violation in the lepton sector! (δCP = 70◦ from the central values: Jℓ = Jmax

ℓ sin δCP,
the error on Jmax

ℓ is nevertheless compatible with maximal CP violation, δCP = 90◦.)

3.4 About precision

The goal of the presented work is not to be a precision analysis of quark and lepton mixing. The
projected values of the mixing matrices are rather a rough-and-ready estimate compatible though very
well with experimental data. We wanted to show that the knowledge of fermion masses is sufficient
to describe their mixing accepting a hierarchical nature.

The errors that are presented in Eqs. (33) and (38) follow from the uncertainties in the masses.
Better precision in the determination of quark masses leads to better discrimination in future whether
the described procedure is valid. The estimates are not too bad, nevertheless, we ignored radiative
corrections to the mixing matrices and constrain ourselves on a tree-level discussion. One-loop cor-
rections to the masses or Yukawa couplings would be suppressed by factors YijYjkYkl/(16π

2) and are
therefore in the range of the errors for the masses. Renormalization group running of the parameters
is also negligible: quark mixing angles do basically not run. The running of fermion mixing parame-
ters depends on a factor (mi +mj)/(mi −mj) which is small for the hierarchical spectra. Especially
neutrino masses and mixings run only slightly in the scenario which is under consideration in this
work.

4 Conclusions

We investigated the long-standing question of understanding the functional description of the mixing
matrices in terms of the fermion masses. The pure phenomenological observation of strong hierarchies
among the charged fermion massesmf,3 ≫ mf,2 ≫ mf,1 guides the way to a parametrization of fermion
mixings in terms of mass ratios without further assumptions. By solely exploiting the mathematical
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properties of the mass matrices, namely their Singular Value Decomposition, and making use of
the double mass hierarchy pattern (DMHP), we have shown that four mass ratios in each fermion
sector and a maximal CP violating phase in the 1-2 rotation are sufficient to reproduce the numerical
quantities of the fermionic mixing matrices. Hierarchical masses guarantee a unique decomposition
into singular vectors up to a complex phase shared by the respective pair of singular vectors of a
singular value. This uniqueness theorem dissolves the common ambiguities found in the literature
originated in the freedom of weak bases. Schmidt-Mirsky’s approximation theorem has been used to
approximate the hierarchical mass matrices by lower-rank matrices that are the closest one to the
given full rank matrix. The connection of each lower rank approximation to the nature of the Yukawa
interactions, mf,i = 0 → Y f

ij = 0 = Y f
ji , helps to simplify the reparametrization of the mass matrix

without loosing track of the parameters. This connection is established via the minimal breaking of
maximal flavor symmetry [U(3)]3 → [U(2)]3 → [U(1)]3 → U(1)F in each fermion sector, where the
remnant U(1)F symmetry is either baryon or lepton number. The approximation, however, neglects
sizeable terms in the mass matrices that have been consistently added by use of correcting rotations.
The arbitrariness of complex phases is reduced by requiring them to be either maximally CP violating
(π/2) or CP conserving (π). This assumption is motivated by the fact that the four mass ratios should
be enough to serve as mixing parameters in the unitary 3× 3 mixing matrix.

We found a remarkably good agreement of the projected magnitudes of both the CKM and PMNS
matrix elements and reproduce the Jarlskog invariant of the quark sector quite well. The strength of
this description in terms of mass ratios lies in its invertibility. In the leptonic sector, we have calculated
the neutrino mass spectrum following from the inversion of the formulae in the 1-2 mixing sector and
the measured mass squared differences. The lightest neutrino has a mass well below 0.01 eV, while the
largest neutrino mass lies around 0.05 eV. We therefore conclude that, if also in the neutrino sector the
mixing is determined by the mass ratios without any further contribution, the electron neutrino mass
escapes its nearby measurement from tritium decay. Moreover, we give a prediction for the leptonic
CP phase close to maximal, δνCP ≈ 90◦.

Hence, contrary to the common expectation, leptonic mixing angles are found to be determined
solely by the four leptonic mass ratios: me/mµ, mµ/mτ , mν1/mν2, and mν2/mν3 without any relation
to the geometrical factors observed in most flavor models. Notwithstanding, we see a great power
of the described method in the application to flavor model building: once a model gives hierarchical
masses, the mixing follows from this hierarchy. In contrast, our approach gives viable patterns and
textures for mass matrices in terms of the singular values (fermion masses). We explicitly leave the
question of a model behind open. Likewise, the origin of CP violation stays unexplained, though our
observation about the distribution of CP phases gives an important starting point.
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A State of the art in the fermion masses and mixing matrices

In this section, we collect the current knowledge about fermion mixing data and specify the input
values we use in the following for the masses.

For all numerical evaluations made in this work, we stick to the updated values of the quark mixing
matrix [78],

|VCKM| =





0.97427 ± 0.00014 0.22536 ± 0.00061 0.00355 ± 0.00015
0.22522 ± 0.00061 0.97343 ± 0.00015 0.0414 ± 0.0012

0.00886+0.00033
−0.00032 0.0405+0.0011

−0.0012 0.99914 ± 0.00005



 , (40)

with the Jarlskog invariant equal to Jq = (3.06+0.21
−0.20)× 10−5. In the standard parametrization by the

Particle Data Group (PDG), the central values give the following mixing angles,

θq12 ≈ 13.3◦, θq13 ≈ 0.2◦, θq23 ≈ 2.4◦. (41)

The most recent update on the 3σ allowed ranges of the elements of the PMNS mixing matrix are
given by [79],

|UPMNS | =





0.801 → 0.845 0.514 → 0.580 0.137 → 0.158
0.225 → 0.517 0.441 → 0.699 0.614 → 0.793
0.246 → 0.529 0.464 → 0.713 0.590 → 0.776



 . (42)

Where the best fit points of the mixing angles are

θℓ12 = 33.48◦, θℓ13 = 8.50◦, θℓ23 = 42.3◦. (43)

The maximal value of the leptonic Jarlskog invariant is given by Jmax
ℓ = 0.033 ± 0.010 and different

from zero at more than 3σ—still, the proper Jℓ has first to be multiplied by sin δCP and is supposed
to be smaller.

The study of the mixing matrices in terms of the masses is done at the scale of the Z boson mass.
The input values for the numerical calculations are obtained using the experimental values of the
quark masses as given by the PDG Review 2014 [78] and running them to the scale of the Z boson
determining the electroweak scale. We include highest precision running in QCD by the virtue of the
RunDec package [80]. For completeness, we show the input values and their uncertainties as well as
the resulting outputs in Table 2.

The reported measured on-shell values in MeV for the charged lepton masses are,

me = 0.510998928, mµ = 105.6583715, mτ = 1776.82 ± 0.16, (44)

where we have neglected the tiny experimental errors in the first two generation masses. The recent
changes of this values affect only the few last digits. Therefore, we safely trust the results of [81] for
their values at the Z scale (in MeV):

me(MZ) = 0.486570161, mµ(MZ) = 102.7181359, mτ (MZ) = 1746.24+0.20
−0.19 . (45)

The nine mass ratios are of essential use in the evaluation of the analytic formulae to describe
fermion mixing. We show our input values determined from Table 2 and Eq. (45) in Table 3.

In the case of neutrinos, only two squared mass differences have been measured whose values are
taken from [79],

NO: ∆m2
31 = +2.457 ± 0.002 × 10−3 eV2, IO: ∆m2

32 = −2.448 ± 0.047 × 10−3 eV2,

∆m2
21 = 7.50+0.19

−0.17 × 10−5 eV2,
(46)

where NO and IO stand for normal and inverted ordering, respectively.
Still, the most recent direct bound on the neutrino mass scale stems from tritium beta decay

experiments: m(νe) . 2 eV at 95% C.L. [82]. The KATRIN experiment is going to improve this
bound by one order of magnitude [83].
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Table 2: The quark masses are run to the Z boson mass scale by virtue of the RunDec package [80].
The mass inputs correspond to the experimental measured values while the outputs, evaluated at the
Z pole, include the resummation of higher order corrections from QCD by the RG running. RunDec
takes properly into account the decoupling of heavy quarks below their scale. All masses are given in
GeV.

input output

mu(2GeV) = 0.0023+0.0007
−0.0005 mu(MZ) = 0.0013+0.0004

−0.0003

md(2GeV) = 0.0048+0.0005
−0.0003 md(MZ) = 0.0028+0.0003

−0.0002

ms(2GeV) = 0.095 ± 0.005 ms(MZ) = 0.055 ± 0.003

mc(mc) = 1.275 ± 0.025 mc(MZ) = 0.622 ± 0.012

mb(mb) = 4.18± 0.03 mb(MZ) = 2.85± 0.02

mt(OS) = 173.07 ± 1.24 mt(MZ) = 172.16+1.47
−1.46

Table 3: Charged fermions mass ratios at the MZ scale.

f mf,1/mf,2 mf,1/mf,3 mf,2/mf,3

u 0.0021+0.0007
−0.0005 (7.6+2.4

−1.8)× 10−6 0.0036 ± 0.0001

d 0.051+0.009
−0.006 (9.8+1.1

−0.7)× 10−4 0.019 ± 0.0012

e 0.00474 0.000279 0.0588

B Applicability of the method

The Schmidt-Mirsky theorem relates the validity of the lower rank approximation to a measure of
being close to the full rank matrix. This measure has to be a scalar parameter and can be any norm.
In the original formulation, the Frobenius norm was used, which is also the most natural choice since it
is the square root over the sum of squared singular values and directly related to one of the invariants
of the mass matrix

‖ Mf ‖F =

√

∑

i=1,2,3

m2
f,i. (47)

The use of this norm serves as a way to define a criterion which allows us to distinguish when the
hierarchy is strong enough as to safely make an approximation. In this regard, we define the parameter
xrf as,

xrf ≡

√

(r − 1)m2
f,2 +m2

f,3

‖ Mf ‖F
=

√

√

√

√

(r − 1)m2
f,2 +m2

f,3

m2
f,1 +m2

f,2 +m2
f,3

, (48)

where r = rank[Mr
f ] ∈ {1, 2}. The approximation becomes better the closer xrf is to one and is exact

in the xrf → 1 limit. Eq. (48) is actually the ratio of the lower rank approximated mass matrix norm
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Table 4: Values of the criterion parameter xrf ≡
√

[(r − 1)m2
f,2 +m2

f,3]/(m
2
f,1 +m2

f,2 +m2
f,3), for the

different cases of the fermion masses, where xrf provides a measure of the applicability of the method.
The fact that all cases here are sufficiently close to one guarantees the safe use of the lowest rank
approximations. Even for neutrinos, x2ν is close to one, where we exploit the prediciton for neutrino
masses from Sec. 3.3.

xrf u d e ν

r = 1 0.999993 0.999816 0.998274 0.978894
r = 2 0.999999 0.999999 0.999999 0.996773

with the original norm. Hence, xrf is a measure of the applicability of the method. Table 4 shows the
different values obtained of xrf for the several charged fermion masses. The values in the rank one
approximation, r = 1, for all practical purposes equal to one, though for both charged and neutral
leptons deviate in the per mill and percent regime, respectively. From here we can already understand
why the quark mixing matrix is so close to the unit matrix which is the trivial mixing matrix in the
rank one approximation. In a similar manner, the very mild hierarchy for neutrinos leads to a stronger
deviation from the rank one approximation and therefore larger mixing angles.

C Hierarchical mass matrices

We show how to derive the hierarchical structure of the mass matrices by the use of the lower-rank
approximation theorem and the principle of minimal flavor violation. Let us consider the two-flavor
case and the mass matrix

m =

(

mss msl

mls mll

)

, (49)

with the two singular values σs and σl respecting the hierarchy σs ≪ σl.
We decompose the mass matrix in terms of the Singular Value decomposition

LmR† = diag(σs, σl), (50)

where the left and right unitary matrices diagonalize the Hermitian products

Lmm† L† =

(

σ2s 0
0 σ2l

)

= Rm†mR†. (51)

Each Hermitian product can be expressed as a sum of rank one matrices with the components of L
and R,

mm† = σ2s

(

|L11|2 L11L
∗
21

L∗
11L21 |L21|2

)

+ σ2l

(

|L12|2 L12L
∗
22

L∗
12L22 |L22|2

)

(52)

and

m†m = σ2s

(

|R11|2 R11R
∗
21

R∗
11R21 |R21|2

)

+ σ2l

(

|R12|2 R12R
∗
22

R∗
12R22 |R22|2

)

. (53)

Due to our lack of knowledge of right-handed flavor mixing, the relevant object that determines our
phenomenology is the left Hermitian product, mm†.
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Applying Schmidt-Mirsky’s approximation theorem Consider the rank-one approximation in
Eq. (52) by σ̂ = σs/σl = 0 normalized with respect to the larger singular value

m̂r=1(m̂r=1)† =

(

|L12|2 L12L
∗
22

L∗
12L22 |L22|2

)

. (54)

The components of the left unitary matrix depend on σ̂. In the limit σ̂ → 0, there is trivial mixing
and the rank one left Hermitian product is

m̂r=1(m̂r=1)† =

(

0 0
0 1

)

. (55)

A small breaking of the [U(1)]2 symmetry for the massless fermions implies only a small deviation
from the trivial mixing:

|L| ∼
(

1 θ
θ 1

)

. (56)

The mixing angle is related to the parameter of symmetry breaking σ̂ and it is an easy exercise to
derive θ ∼

√
σ̂ from Eq. (51).

We then get an estimate on the magnitudes of each element in Eq. (52)

|m̂ m̂†| ∼
(

O(θ2) O(θ)
O(θ) 1 +O(θ2)

)

. (57)

The explicit form of the mass matrix m stays unknown as long as we have no information about
R. However, the minimal breaking of the maximal flavor symmetry applies to both chiralities simul-
taneously and the argument from above is the same for the right Hermitian product. We therefore
know that L and R have the same moduli and get the hierarchical structure of m:

m̂ =

(

mss msl

mls mll

)

∼
(

O(θ2) O(θ)
O(θ) 1 +O(θ2)

)

, (58)

with |msl| = |mls| as a natural consequence of hierarchical masses and minimal flavor symmetry
breaking. The hierarchical structure for the mass matrix and its Hermitian product is the same.
Hence, due to the strong hierarchy in the masses we can neglect the role of |mss|2 ∼ θ4 in (57)
working with the leading order contributions in θ and assume mss = 0 as done in Eq. (15). This gives
corrections to the Gatto-Satori-Tonin relation, tan θ =

√

σs/σl =
√
σ̂, which are O(θ3) = O(σ̂

√
σ̂)

and therefore neglected.

D Explicit approximate formulae for the mixing angles and the Jarl-
skog invariant

The explicit formulae for the distinct mixing matrix elements in terms of the mass ratios is rather
lengthy. We opt then, to show only the three mixing angles, used in the standard parametrization,
with the corresponding Jarlskog invariant. This allows to express the mixing angles in terms of three
moduli of the mixing matrix

sin θf=q,ℓ
23 =

∣

∣

∣
V f=q,ℓ
23

∣

∣

∣

√

1−
∣

∣

∣V
f=q,ℓ
13

∣

∣

∣

2
, sin θf=q,ℓ

12 =

∣

∣

∣
V f=q,ℓ
12

∣

∣

∣

√

1−
∣

∣

∣V
f=q,ℓ
13

∣

∣

∣

2
, sin θf=q,ℓ

13 =
∣

∣

∣
V f=q,ℓ
13

∣

∣

∣
. (59)
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In the four mass ratios parametrization it is more natural to give not the formulae of the mixing angles
in terms of the masses but rather of the aforementioned moduli

|V f=q,ℓ
12 | ≈

√

m̂a
12 + m̂b

12

(1 + m̂a
12)(1 + m̂b

12)
, (60)

|V f=q,ℓ
23 | ≈ ∓

√

m̂a
13 +

√

m̂b
13 +

√

m̂a
23 ∓

√

m̂b
23 +

√

m̂a
13m̂

a
23 ±

√

m̂b
13m̂

b
23

√

(1 + m̂a
13)(1 + m̂b

13)(1 + m̂a
23)(1 + m̂b

23)(1 + m̂a
13m̂

a
23)(1 + m̂b

13m̂
b
23)

, (61)

|V f=q,ℓ
13 | ≈ ∓|V f=q,ℓ

23 |
√

m̂a
12

1 + m̂a
12

+

√

m̂a
13 −

√

m̂b
13 +

√

m̂a
13m̂

a
23 +

√

m̂b
13m̂

b
23 + m̂a

23 + m̂b
23

√

(1 + m̂a
13)(1 + m̂a

13m̂
a
23) (1 + (m̂a

23)
2) (1 + m̂a

12)(1 + m̂b
13)(1 + m̂b

13m̂
b
23)
(

1 + (m̂b
23)

2
)

, (62)

where we have denoted m̂
a(b)
ij = m

a(b)
i /m

a(b)
j , the upper and lower signs in Eq. 61 correspond to q and

ℓ, respectively. The two fermion species of each sector are a = u, e and b = d, ν.
The Jarlskog invariant is given by,

Jf=q,ℓ ≈ cos θb12 sin θ
b
12 sin θ

f=q,ℓ
23

(

sin θa12 sin θ
f=q,ℓ
23 + sin θa13 − sin θb13

)

, (63)

where

sin θ
a(b)
12 =

√

√

√

√

m̂
a(b)
12

1 + m̂
a(b)
12

and sin θ
a(b)
13 ≈

±
√

m̂
a(b)
13 +

√

m̂
a(b)
13 m̂

a(b)
23 + m̂

a(b)
23

√

(

1 + m̂
a(b)
13

)(

1 + m̂
a(b)
13 m̂

a(b)
23

)(

1 + (m̂
a(b)
23 )2

)

. (64)

The approximate relations here given differ from the complete one in ∼ 1% order.
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