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Abstract

In this paper we study an SU(5)×A5 flavour model which exhibits a neutrino mass sum
rule and golden ratio mixing in the neutrino sector which is corrected from the charged
lepton Yukawa couplings. We give the full renormalizable superpotential for the model
which breaks SU(5) and A5 after integrating out heavy messenger fields and minimising
the scalar potential. The mass sum rule allows for both mass orderings but we will show
that inverted ordering is not valid in this setup. For normal ordering we find the lightest
neutrino to have a mass of about 10-50 meV, and all leptonic mixing angles in agreement
with experiment.
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Parameter best-fit (±1σ) 3σ range

θPMNS
12 in ◦ 33.48+0.77

−0.74 31.30→ 35.90

θPMNS
13 in ◦ 8.52+0.20

−0.21 7.87→ 9.11

θPMNS
23 in ◦ 42.2+0.1

−0.1 ⊕ 49.4+1.6
−2.0 38.4→ 53.3

δPMNS in ◦ 251+67
−59 0→ 360

∆m2
21 in 10−5 eV2 7.50+0.19

−0.17 7.03→ 8.09

∆m2
31 in 10−3 eV2 (NH) 2.458+0.002

−0.002 2.325→ 2.599

∆m2
32 in 10−3 eV2 (IH) −2.448+0.047

−0.047 −2.590→ −2.307

Table 1: The best-fit values and the 3σ ranges for the parameters taken from [8]. There are
two minima for θPMNS

23 . The first one corresponds to the normal hierarchy whereas the second
one corresponds to the inverted hierarchy.

1 Introduction

Experimental results in the lepton sector have shed some new light on the origin of flavour.
In contrast to the quark sector lepton mixing angles have the distinctive feature that the
atmospheric angle θPMNS

23 and the solar angle θPMNS
12 , are both rather large [1]. Direct evidence

for the reactor angle θPMNS
13 was first provided by T2K, MINOS and Double Chooz [2–4].

Subsequently Daya Bay [5], RENO [6], and Double Chooz [7] Collaborations have measured
sin2(2θPMNS

13 ) to a high precision, see also Tab. 1.
Among the many proposals trying to address the mixing patterns we will focus here on

models exhibiting the so-called golden ratio (GR) mixing, where θPMNS
12 is connected to the

golden ratio φg = 1+
√

5
2 .

A possible connection was first mentioned as a footnote in [9] and afterwards implemented
in two different types of golden ratio models. In [9–14] they find the prediction θPMNS

12 =

tan−1
(

1
φg

)
≈ 31.7◦ (golden ratio type A) to leading order while in [14–17] they found θPMNS

12 =

cos−1(φg/2) = 36◦ (golden ratio type B). More details on the history can be found as well in
the excellent introduction of [13]. In this work we will find the first relation to leading order.

The neutrino mixing matrix UGR will have the form

UGR =


√

φg√
5

√
1

φg
√

5
0

−
√

1
2φg
√

5

√
φg

2
√

5
1√
2√

1
2φg
√

5
−
√

φg
2
√

5
1√
2

P0 , (1.1)

which is given in the convention of the Particle Data Group [1] with the diagonal matrix P0 =
Diag(exp(− iα1

2 ), exp(− iα2
2 ), 1) containing the Majorana phases. In [10] and [12] it was shown

that this mixing pattern can emerge from an A5 family symmetry. Hence, we will adopt here
as well an A5 family symmetry. The mixing pattern which arises in GR type B models can
be realised by using a D10 symmetry [17] but will not be discussed here any further.

A5 was utilised as well to construct a four family lepton model [18] and its double cover
A′5 was then used to construct a four family model including quarks [19] and a flavour model
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explaining cosmic-ray anomalies [20].
If we assume a diagonal charged lepton basis the physical mixing angles are given as

θPMNS
12 = tan−1

(
1

φg

)
≈ 31.7◦ , (1.2)

θPMNS
13 = 0◦ , (1.3)

θPMNS
23 = 45◦ . (1.4)

Especially, θPMNS
13 is outside of the 3σ-range of its experimental value, cf. Tab. 1 and therefore

golden ratio mixing can only be a leading order estimate for the mixing angles which have to
be corrected properly.

In [21] an A5 flavour model was proposed which accommodates built in perturbations to
golden ratio mixing which predict correlations between the mixing angles. In [13] corrections
to golden ratio mixing were achieved by introducing an additional flavon which perturbs
the structure of the Majorana mass matrix and thereby adjusts the mixing angles to be in
agreement with experimental data.

In our work we will use another approach based on the idea of Grand Unification were
such corrections from the charged lepton sector to the neutrino mixing are well motivated. In
such a setup one can expect θe12 to be of the order of the Cabibbo angle θC leading to a θPMNS

13

of a few degrees as we will discuss later in more detail. But due to the precise measurement
of the reactor angle only a few of the vast amount of flavour models are realistic and include
Grand Unification [22–25]. Furthermore, we are not aware of any A5 golden ratio GUT model.

To be more precise, the model presented in this paper features SU(5) unification. Hence,
we can exploit the recently proposed new Yukawa coupling relations [26,27] which are in very
good agreement with experimental results and are an essential ingredient in an SU(5) GUT
context for the prediction θPMNS

13 ≈ θC/
√

2 ≈ 9◦ [22, 23,26,28].
The corrections from the charged lepton sector are indeed not the only ones which have to

be taken into account. Due to a mass sum rule in the neutrino sector the neutrino spectrum
is rather heavy especially for inverted ordering which will induce large renormalization group
(RG) running effects that exclude the inverted ordering as we will see. For normal ordering
the running is much smaller but still should be taken into account.

The paper is organised as follows: In section 2 we will discuss the model including the
symmetry breaking sector and the resulting effective Yukawa and mass matrices. In section 3
the phenomenological implications of the model are discussed including RGE effects which
rule out the inverted hierarchy neutrino mass pattern. In section 4 we summarise and conclude
and in the appendices we present more technical details about the family symmetry A5 and
the messenger sector of the model.

2 The model

In this section we present the SU(5)× A5 flavour model before we discuss phenomenological
implications. Our discussion is split into two parts. In the first part we will discuss the sector
responsible for the necessary symmetry breaking of the SU(5) gauge group and the A5 family
symmetry. Then it will become clear why we have arranged for certain flavon alignments when
we couple the symmetry breaking fields to the visible matter sector. Namely, the resulting
Yukawa and mass matrices will give us GR mixing in the neutrino sector and a non-diagonal
charged lepton Yukawa matrix of the desired structure.
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2.1 The symmetry breaking sector

The symmetry breaking sector can be split into two parts. The first sector contains adjoints
of SU(5) and breaks the GUT gauge symmetry and the second sector contains non-trivial
representations of A5 which will break the family symmetry in the desired directions.

2.1.1 The SU(5) breaking superpotential

We start our discussion with the more compact SU(5) breaking sector. The GUT group
is broken by the vacuum expectation values (vevs) of the two adjoint fields H24 and H ′24.
The field H24 will couple to the matter sector resulting in non-trivial Clebsch-Gordan (CG)
coefficients and hence non-standard GUT scale Yukawa coupling ratios. The superpotential
for the adjoint fields reads

W24 = M24 TrH24H
′
24 + λH Tr(H ′24)3 + λSS

3 + κS TrH2
24 , (2.1)

where we have also introduced a singlet field S. The scalar potential is minimised by the vevs

〈H ′24〉 = V ′24 Diag
(
1, 1, 1,−3

2 ,−
3
2

)
, (2.2)

〈H24〉 = V24 Diag
(
1, 1, 1,−3

2 ,−
3
2

)
, (2.3)

〈S〉 = VS , (2.4)

which fulfill the relations

(V24)3 =
1

15

λS
κ3λH

M3 , (V ′24)2 =
2

3

MV24

λH
, (VS)2 =

5

2

κ

λS
(V24)2 . (2.5)

The vevs of the adjoints break SU(5) to the Standard Model gauge group SU(3)C×SU(2)L×
U(1)Y .

The above mentioned superpotential is a modified, combined version of superpotential
(b) and (c) of [29] extended by a singlet. In that work the so-called double missing partner
mechanism — a possible solution to the doublet-triplet-splitting problem in these kind of
models — was discussed. This mechanism could be applied here as well but the construction
of the full potential goes beyond the scope of the current work.

2.1.2 The flavon alignment

Now we turn to the flavon alignment sector. Before we discuss the corresponding superpo-
tentials we want to first give an overview of all the flavons and their alignments. First of all,
there are a couple of flavons which transform as one-dimensional representations under A5

〈θi〉 = vθi , i = 1, 2, 3 , 〈εj〉 = vεj , j = 1, . . . , 5 . (2.6)

Then we have two flavons in three-dimensional representations

〈φ2〉 = v
(2)
φ (0, 1, 0) , 〈φ3〉 = v

(3)
φ (0, 0, 1) , (2.7)

two flavons in five-dimensional representations

〈ω〉 =

(√
2
3(v2 + v3), v3, v2, v2, v3

)
, 〈ω̃〉 = v1 (1, 0, 0, 0, 0) , (2.8)
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and one flavon in a four-dimensional representation of A5

〈λ〉 = vλ (1, 1, 1, 1) . (2.9)

The alignment for the four- and five-dimensional flavon fields closely resembles the align-
ment in [13] and [15] and hence we will not discuss it here in detail. The superpotential for
them reads

Wf = g1ωλDω + g2λ
2Dλ + g3ω̃

2Dω̃ . (2.10)

For the three-dimensional flavons the superpotential is of the form

Wt = g4φ2ω̃D
(2)
ωφ + g5φ3ω̃D

(3)
ωφ + g6φ

2
2D

(2)
φ + g7φ

2
3D

(3)
φ , (2.11)

which upon inserting 〈ω̃〉 yields the non-trivial F-terms

∂Wt

∂D
(2)
ωφ,1

=
√

3g4v1φ2,1 , (2.12)

∂Wt

∂D
(3)
ωφ,1

=
√

3g5v1φ3,1 , (2.13)

∂Wt

∂D
(2)
φ

= 2g6φ2,2φ2,3 , (2.14)

∂Wt

∂D
(3)
φ

= 2g7φ3,2φ3,3 . (2.15)

It is easy to see that these terms vanish given the alignments in eq. (2.7).
Finally for the one-dimensional flavons we have used the mechanism described in [29,30].

The superpotential reads

Ws = P

(
θ6

1

Λ4
−M2

)
+ P

(
θ12

2

Λ10
−M2

)
+ P

(
θ12

3

Λ10
−M2

)
+

P

(
ε3

1

Λ1
−M2

)
+ P

(
ε12

2

Λ10
−M2

)
+ P

(
ε6

3

Λ4
−M2

)
+

P

(
ε12

4

Λ10
−M2

)
+ P

(
ε12

5

Λ10
−M2

)
+O(P 3) , (2.16)

where for clarity all driving fields, messenger scales and mass parameters are denoted by the
same symbols P , Λ and M respectively. It should be noted that the driving fields only couple
to one flavon each although all possible combinations are permitted by charge conservation.
This form can always be achieved by a suitable rotation of the driving fields as described
in [30]. Higher orders in P are not relevant for the alignment due to the vanishing vev of P .

All the flavon fields and their charges under shaping symmetries, as well as their SU(5)
and A5 representations are listed in Tab. 2. The messenger sector for the flavon alignment
will be described in appendix A.

2.2 The Yukawa and mass matrices

In this section we give the effective operators that determine the structure of the Yukawa
matrices and the right-handed neutrino mass matrix for the type I seesaw [31] we implement.
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SU(5) A5 ZR4 Z2 Z2 Z3 Z3 Z3 Z3 Z3 Z3 Z4

φ2 1 3 0 0 0 0 0 1 2 0 0 1
φ3 1 3 0 1 1 0 2 0 2 2 0 1
ω̃ 1 5 0 0 0 1 2 1 2 0 0 1
ω 1 5 0 0 0 0 0 0 2 0 0 0
λ 1 4 0 1 0 1 1 2 2 0 0 1

θ1 1 1 0 1 1 0 2 2 1 1 0 0
θ2 1 1 0 1 1 0 2 1 2 1 0 3
θ3 1 1 0 0 1 0 0 1 0 1 1 3
ε1 1 1 0 0 0 0 1 1 1 0 0 0
ε2 1 1 0 0 0 0 2 0 0 0 0 3
ε3 1 1 0 1 0 1 2 0 0 0 0 0
ε4 1 1 0 0 0 2 2 2 2 0 0 3
ε5 1 1 0 1 0 1 0 2 2 0 0 3

D
(2)
φ 1 1 2 0 0 0 0 1 2 0 0 2

D
(3)
φ 1 1 2 0 0 0 2 0 2 2 0 2

Dω̃ 1 4 2 0 0 1 2 1 2 0 0 2

D
(2)
ω̃φ 1 3 2 0 0 2 1 1 2 0 0 2

D
(3)
ω̃φ 1 3 2 1 1 2 2 2 2 1 0 2

Dω 1 3′ 2 1 0 2 2 1 2 0 0 3
Dλ 1 5 2 0 0 1 1 2 2 0 0 2
S 1 1 2 0 0 1 2 0 0 0 2 0

Table 2: The Zn charges, SU(5) and A5 representations of the flavons and driving fields.
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Note that the symmetries including shaping symmetries are not sufficient to forbid all un-
wanted operators. Therefore we have also studied a “UV completion” in appendix A where
we give the renormalizable superpotential including messenger fields. After integrating out
the heavy vector-like messenger fields we end up with the operators we are going to discuss
in this section.

The matter content of our model is organised in ten-dimensional representations of SU(5),
Ti with i = 1, 2, 3, five-dimensional representations F , and one-dimensional representations
N which transform as one-, three- and three-dimensional representations of A5 respectively,
see also Tab. 3.

The superpotential for the neutrino sector reads

W = yn1FNH5 + yn2NNω . (2.17)

After symmetry breaking this results in the Majorana mass matrix

MRR = yn2


2
√

2
3(v2 + v3) −

√
3v2 −

√
3v2

−
√

3v2

√
6v3 −

√
2
3(v2 + v3)

−
√

3v2 −
√

2
3(v2 + v3)

√
6v3

 (2.18)

for the right-handed neutrinos and the neutrino Yukawa matrix reads in our basis

Yν = yn1

1 0 0
0 0 1
0 1 0

 . (2.19)

Note that we are using the left-right convention for the Yukawa matrices, which means that
the first index of the matrix corresponds to the SU(2)L doublets. Using the type I seesaw
formula we end up with the mass matrix for the light Majorana neutrinos

mLL = v2
u

(yn1 )2

yn2

a b b
b c d
b d c

 , (2.20)

where vu denotes the SU(2)L Higgs doublet vev of H5 and the coefficients a, b, c, d are
functions of v2 and v3:

a ≡ −
√

3/2(v2 − 2v3)

4v2
3 + 2v3v2 − 11v2

2

,

b ≡ − 3
√

3v2

−8v2
3 − 4v3v2 + 22v2

2

,

c ≡
3
√

3/2(4v2
3 + 4v3v2 − 3v2

2)

x
,

d ≡
√

3/2(4v2
3 + 8v3v2 + 13v2

2)

x
,

x ≡ 32v3
3 + 24v2v

2
3 − 84v3v

2
2 − 22v3

2 .

The phenomenology of these structures will be discussed in the next section.
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The effective superpotentials for the charged lepton and down-type quark sector is

Wd,l =
y33

Λ2
T3(Fφ2)1H24H̄5 +

y22

Λ3
T2(Fφ3)1θ1H̄5H24 +

y21

Λ4
T1(Fφ3)1θ3H

2
24H̄5

+
y12

Λ4
T2 (F (φ2φ3)3)1 θ2H̄5H24 +

y32

Λ3
T2(Fφ2)1ε1H̄5H24 ,

(2.21)

where Λ denotes a generic mass scale of the messenger fields (see appendix A for more details).
Note that the messenger sector plays a crucial role here. Only by symmetries additional
operators would be allowed and we would not end up with the desired structures.

After plugging in the SU(5) and A5 breaking vevs we find the following Yukawa matrices
for the down-type quarks

Yd =

 0 1
Λ4 y12v

(3)
φ v

(2)
φ vθ2 0

y21
Λ4 vθ3v

(3)
φ

y22
Λ3 v

(3)
φ vθ1 0

0 y32
Λ3 v

(2)
φ vε1

y33
Λ2 v

(2)
φ

 ≡
 0 a12 0
a21 a22 0
0 a32 a33

 , (2.22)

and for the charged leptons

Ye =

 0 −1/2a21 0
6a12 6a22 6a32

0 0 −3/2a33

 . (2.23)

Note, first of all, that we find the SU(5) relation Yd = Y T
e up to order one CG coefficients.

These coefficients are arranged such that we have realistic Yukawa coupling ratios, cf. [26–28],
and we will as well be able to correct the reactor mixing angle to realistic values.

In the up-type quark sector we have only used singlet flavons which acquire a non-zero
vev. The effective superpotential reads

Wu =
yu11

Λ3
ε1ε2ε4T1T1H5 +

yu12

Λ3
T1T2H5ε1ε2ε3

+
yu22

Λ2
T2T2H5ε1ε1 +

y31

Λ2
T1T3H5ε1ε5 +

yu32

Λ
T3T2H5ε1 + yu33T3T3H5 ,

(2.24)

and from that we find for the up-type quark Yukawa matrix

Yu =


yu11
Λ2 vε1vε2vε4

yu12
Λ2 vε1vε2vε3

yu31
Λ2 vε5vε1

yu12
Λ2 vε1vε2vε3

yu22
Λ2 v

2
ε1

yu32
Λ vε1

yu31
Λ2 vε5vε1

yu32
Λ vε1 yu33

 ≡
b11 b12 b13

b12 b22 b23

b13 b23 b33

 . (2.25)

The complete matter and Higgs field content of the model and their charges under ad-
ditional shaping symmetries is collected in Tab. 3. We have checked that there are no new
additional effective operators contributing to the Yukawa matrices up to mass dimension
eight. Hence, we expect possible higher order corrections to be negligible small. We will
comment more on this in appendix A where we discuss the messenger sector of the model.

3 Phenomenology

In this section we present the phenomenological implications of our model. First we discuss
the quarks and charged leptons. We put a special emphasis on the Yukawa coupling ratios of
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SU(5) A5 ZR4 Z2 Z2 Z3 Z3 Z3 Z3 Z3 Z3 Z4

F 5̄ 1 1 0 0 0 0 1 2 0 0 0
N 1 3 1 0 0 0 0 0 2 0 0 2
T1 10 1 1 1 0 2 2 2 2 0 0 0
T2 10 1 1 0 0 0 2 1 1 0 0 3
T3 10 1 1 0 0 0 0 2 2 0 0 3

H5 5 1 0 0 0 0 0 2 2 0 0 2
H̄5 5̄ 1 0 0 0 2 1 2 0 0 1 0
H24 24 1 0 0 0 1 2 0 0 0 2 0
H ′24 24 1 2 0 0 2 1 0 0 0 1 0

Table 3: Charges under Zn and SU(5) and A5 representations of the matter and Higgs fields.

the charged leptons and down-type quarks which arise in our model. Afterwards we discuss
briefly a numerical fit to the low energy charged lepton and quark masses and CKM mixing
parameters. In the second part of this section we cover the neutrino sector of our model.
We revise the neutrino mass sum rule and show how corrections for the leptonic mixing
parameters occur due to a non-diagonal charged lepton Yukawa matrix and RGE corrections.
Finally, we show the predictions of our model for the leptonic mixing parameters and for
observables testable in the near future in neutrino experiments.

3.1 The quark and charged lepton sector

In the last section we derived the Yukawa matrices for the quark and the charged lepton sector
which fulfill the minimal SU(5) relation Yd = Y T

e up to O(1) CG coefficients. This deviation
from the minimal relation gives better agreement to the observed fermion masses [26–28]. To
be concrete, we have the ratios

ye
yd
≈ 1

2
,

yµ
ys
≈ 6 ,

yτ
yb
≈ 3

2
, (3.1)

where yτ , yµ, ye, yb, ys and yd are the eigenvalues of the Yukawa matrices Ye and Yd.
Especially, the relation for the third generation was already realised to be very promising in
[26] and then its phenomenology was further studied in subsequent publications, e.g. [32–34].

In [35] the double ratio
yµ
ys

yd
ye
≈ 10.7+1.8

−0.8 (3.2)

was studied which depends only weakly on RGE corrections and supersymmetric threshold
corrections. Plugging in our results for the Yukawa coupling ratios we get

yµ
ys
yd
ye

= 12 which
is within 1σ as was already realised in [35]. In contrast, the very popular Georgi-Jarlskog
relations [36], yµ/ys = 3 and ye/yd = 1/3, yield

yµ
ys
yd
ye

= 9 which deviates more than 2σ from
the best fit result.

Since we use left-right conventions we have to diagonalise Ye via U †eY
†
e YeUe = Diag(y2

e , y
2
µ, y

2
τ )

where Ue = U12U13U23 is a unitary matrix. U23, U13 and U12 are given as

U23 =

1 0 0
0 ce23 se23e−i δe23

0 −se23ei δe23 ce23

 (3.3)
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and analogous expressions for U12 and U13. We use the abbreviation cos(θeij) = ceij and
sin(θeij) = seij . Bearing in mind that θe13 = θe23 = 0 in a very good approximation, the matrix
Ue is parameterised only by one angle θe12 and one phase δe12.

If we compare both sides of U †eY
†
e YeUe = Diag(y2

e , y
2
µ, y

2
τ ) we find at leading order

θe12 =

∣∣∣∣a12

a22

∣∣∣∣ and δe12 = arg
a12

a22
. (3.4)

The eigenvalues of Ye and Yd are not sufficient to fix the values of a12 and a21 independently
since at leading order only their product appears in the expression for the eigenvalues. And
importantly, the phase δe12 is essentially undetermined by the quark and charged lepton sector
only. Nevertheless, neglecting mixing from the up-type quark sector the same procedure for
the down-type sector leads to the relation θC ≈ |a21a22

| for the Cabibbo angle. And in this case
it follows for θe12 [28]

θe12 ≈ θC , (3.5)

and subsequently θPMNS
13 ≈ θC/

√
2 [22,23,28].

The main focus of this paper lies on the neutrino sector and for that especially yτ and θe12

are important. To quantify them we have fitted the parameters of the Yukawa matrices at
the high energy scale to the low energy observables with the help of the REAP package [37].
The Yukawa coupling ratios we discussed before are only valid in a regime with rather large
tanβ ≈ 30 where we have to consider so-called SUSY threshold corrections for the masses
and mixing parameters [38].

The approach we have used here is documented, for instance, in [32, 39, 40] so that we
will not go into much detail here. For the up-type quarks we have used the tree-level MSSM
matching relation

Y MSSM
u =

Y SM
u

sinβ
(3.6)

at the SUSY scale MSUSY = 1 TeV. For the Yukawa couplings of the charged leptons and
down-type quarks we have included the tanβ enhanced threshold corrections in the matching
formulas

yMSSM
e,µ,τ =

ySM
e,µ,τ

cosβ(1 + εl tanβ)
, (3.7)

yMSSM
d,s =

ySM
d,s

cosβ(1 + εq tanβ)
, (3.8)

yMSSM
b =

ySM
b

cosβ(1 + (εq + εA) tanβ)
. (3.9)

Also the quark mixing parameters are modified by this matching via

θMSSM
i3 =

θSM
i3 (1 + (εq + εA) tanβ)

1 + εq tanβ
, (3.10)

θMSSM
12 = θSM

12 , (3.11)

δMSSM
CKM = δSM

CKM . (3.12)

Hence, apart from the parameters in the Yukawa matrices we have two additional param-
eters to describe the SUSY threshold corrections. For definiteness we have fixed tanβ = 30
and MGUT = 2 · 1016 GeV.
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Parameter Value

a12 4.46 · 10−4

a22 2.12 · 10−3

a21 5.95 · 10−4

a32 −1.22 · 10−3

a33 1.5 · 10−1

b11 −2.22 · 10−7

b12 9.54 · 10−5

b13 1.19 · 10−3

b22 1.72 · 10−3

b23 1.29 · 10−2

b33 5.19 · 10−1

δu12 5.78
δu13 6.16 · 10−1

δu23 0

εq tanβ 0.36
εA tanβ 0.19

Table 4: Parameters of the quark and charged leptons Yukawa matrices at the GUT scale
with tanβ = 30 and MSUSY = 1 TeV.

Quantity (at mt(mt)) Experiment

yτ in 10−2 1.00
yµ in 10−4 5.89
ye in 10−6 2.79

yb in 10−2 1.58± 0.05
ys in 10−4 2.99± 0.86
ys/yd 18.9± 0.8

yt 0.936± 0.016
yc in 10−3 3.39± 0.46

yu in 10−6 7.01+2.76
−2.30

θCKM
12 0.2257+0.0009

−0.0010

θCKM
23 0.0415+0.0011

−0.0012

θCKM
13 0.0036± 0.0002

δCKM 1.2023+0.0786
−0.0431

Table 5: Experimental data for the quark and charged leptons Yukawa couplings at low
energy taken from [41] and the mixing angles were taken from [1]. The uncertainties for the
charged lepton Yukawa couplings were assumed to be 1%, for more details see the text. Our
fit to these observables has χ2 ≈ 0.05.
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We performed a χ2-fit to the low energy observables (nine fermion masses, three mixing
angles, one phase). Since we have more parameters than observables it is not surprising that
we find χ2 ≈ 0.05 where we stopped the time consuming minimisation procedure because
the fit is sufficiently good. Note, that in principle χ2 can be made arbitrarily small. The
numerical results for the parameters can be found in Tab. 4. For convenience we have also
collected the low energy observables including their uncertainties in Tab. 5. Note, that we
have assumed an uncertainty of 1% of the Yukawa couplings for the charged leptons which is
larger than their experimental errors. But since we use only one-loop RGEs we cannot expect
a very high precision.

3.2 Neutrino sector

In this section we present the phenomenological implications for the neutrino sector of our
model. First, we revise the mass sum rule present in our model which was also discussed
before in other golden ratio models with an A5 family symmetry [10, 13]. Then we discuss
two important corrections in our model. First we study RGE corrections and then corrections
from the charged lepton sector to the neutrino mixing angles and phases in terms of sum rules.
Especially, the latter is crucial to predict the reactor mixing angle, within its experimentally
allowed range.

Including RGE effects rules out the inverted neutrino mass hierarchy in our setup because
of incompatible constraints from the mass and the mixing sum rule on the one hand and the
experimental value for θPMNS

12 on the other hand.
Finally, we will discuss the results from a numerical parameter scan for various observables

in the neutrino sector.

3.2.1 The neutrino mass sum rule

The neutrino sector is described by the superpotential from eq. (2.17). The right-handed
neutrino mass matrix in eq. (2.18) is diagonalised by the golden ratio mixing matrix UGR

from eq. (1.1)
UT

GRMRRUGR = Diag(M1,M2,M3) (3.13)

with the heavy neutrino masses

M1 =
y2(v2(6φg − 2) + 4v3)√

6
, (3.14)

M2 =
y2(4v3 − v2( 6

φg
+ 2))

√
6

, (3.15)

M3 =
y2

√
2(v2 + 4v3)√

3
. (3.16)

These masses obey the sum rule
M1 +M2 = M3 , (3.17)

which was already noted in [13].
The light neutrino mass matrix mLL in eq. (2.19) is as well diagonalised by UGR after a

matrix P ′ = Diag(1, 1,−1) with unphysical phases has been applied to UGR [13].

11



The resulting complex light neutrino masses mi read

m1 =

√
6y2v2

u

y2(v2(6φg − 2) + 4v3)
, (3.18)

m2 =

√
6v2
uy

2

y2(4v3 − v2( 6
φg

+ 2)
, (3.19)

m3 =

√
3
2y

2v2
u

(v2 + 4v3)y2
(3.20)

which obey the inverse sum rule [13,15]

1

m1
+

1

m2
=

1

m3
. (3.21)

In this sum rule the neutrino masses are still complex. If we want to discuss the physical
masses we have to consider the absolute values of the masses |mi|. We reexpress the mass mi

as mi = |mi| exp(−i αi). One phase αi is unphysical since it corresponds to a global phase of
the neutrino mass matrix. We choose the mass m3 to be real and set α3 = 0. The phases α1

and α2 are then the Majorana phases.
Writing down the Majorana phases explicitly the sum rule from eq. (3.21) reads

eiα1

|m1|
+

eiα2

|m2|
=

1

|m3|
. (3.22)

One can rewrite the sum rule using the mass squared differences which yields a mass range
for the lightest neutrino mass in both hierarchies [42]. But note that this sum rule is valid at
the seesaw scale and hence the mass sum rule should be evaluated at this high scale.

3.2.2 Renormalization Group Corrections

Since the experimental values for the mixing angles and the mass squared differences were
measured at a low energy scale in contrast to the model parameters which are defined at a
high energy scale, possible effects due to RGE corrections have to be considered.

The RGE corrections for the mass squared differences were derived, for instance, in [43]

8π2 d

dt
∆m2

21 = α∆m2
21 + Cy2

τ

[
2s2

23

(
m2

2c
2
12 −m2

1s
2
12

)
+ Fsol

]
, (3.23)

8π2 d

dt
∆m2

32 = α∆m2
32 + Cy2

τ

[
2c2

23m
2
3c

2
13 − 2m2

2c
2
12s

2
23 + Fatm

]
, (3.24)

where

Fsol =
(
m2

1 +m2
2

)
s13 sin 2θPMNS

12 sin 2θPMNS
23 cos δPMNS (3.25)

+ 2s2
13c

2
23

(
m2

2s
2
12 −m2

1c
2
12

)
,

Fatm = −m2
2s13 sin 2θPMNS

12 sin 2θPMNS
23 cos δPMNS − 2m2

2s
2
13s

2
12c

2
23 (3.26)

and t = lnµ. In our analytical estimates we will neglect Fsol and Fatm because they are
proportional to the small s13. The term proportional to α ≈ 1/137 is negligible as well. If we

12



also neglect the running of the parameters in the β functions we can integrate the RGEs and
obtain approximations for the mass squared differences at the seesaw scale MS ≈ 1013 GeV
using the best-fit values for the observables. Together with the mass sum rule this implies an
allowed range for the neutrino mass scale

0.011 eV . m1 for NH, (3.27)

0.028 eV . m3 . 0.454 eV for IH. (3.28)

Note that the sum rule only implies a lower bound on the mass scale for the normal hierarchy.
The analytical RGE expressions for the mixing angles of the PMNS matrix are [43]

θ̇PMNS
12 = − Cy

2
τ

32π2
sin 2θPMNS

12 s2
23

∣∣m1eiα1 +m2eiα2
∣∣2

∆m2
21

+O(θPMNS
13 ) , (3.29)

θ̇PMNS
13 =

Cy2
τ

32π2
sin 2θPMNS

12 sin 2θPMNS
23

m3

∆m2
32(1 + ζ)

(3.30)

× [m1 cos(α1 − δPMNS)− (1 + ζ)m2 cos(α2 − δPMNS)− ζm3 cos δPMNS] +O(θPMNS
13 ) ,

θ̇PMNS
23 = − Cy

2
τ

32π2
sin 2θPMNS

23

1

∆m2
32

[
c2

12

∣∣m2eiα2 +m3

∣∣2 + s2
12

∣∣m1eiα1 +m3

∣∣2
1 + ζ

]
(3.31)

+O(θPMNS
13 ) .

Here the abbreviation ζ =
∆m2

21

∆m2
32

was used. In the MSSM C = 1 and Cy2τ
32π2 ≈ 0.3 · 10−6(1 +

tan2 β), where we set tanβ = 30.
The running of θPMNS

12 can be enhanced by the small mass squared difference in the
denominator if the mass scale is much larger than the splitting. Hence, for heavy masses
all mixing angles can change considerably. This will be especially important for the inverted
hierarchy.

Before we will come back to this we just want to give here the value for θPMNS
12 at MS

depending on the mass scale. In order to determine the value of θPMNS
12 (MS) we need to

calculate the difference of the Majorana phases ∆ = α1 − α2 at the seesaw scale. The
absolute value of the mass sum rule, cf. eq. (3.21), implies

cos ∆ =
1

2
m1m2

(
1

m2
3

− 1

m2
2

− 1

m2
1

)
, (3.32)

where the masses label here the absolute values of the neutrino masses. Inserting this expres-
sion as well as the mass squared differences at the high scale leads to

θPMNS
12 (MS) ≈

(
23.00− 2170.02

m2
3

eV2 −
0.013

m2
3

eV2

)◦
for IH. (3.33)

The same expression for the normal hierarchy is rather lengthy and not that relevant for our
discussion so that we do not quote it explicitly here. With the minimal value of m3 from
eq. (3.28) we find the maximal value for θPMNS

12 (MS)

θPMNS
12 (MS) ≈ 5.65◦ for IH. (3.34)
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Performing the same analysis for the normal hierarchy with the minimal value for m1, cf.
eq. (3.27), yields

θPMNS
12 (MS) ≈ 33.44◦ for NH. (3.35)

As we can see for the inverted hierarchy case we find an inevitable sizeable running for
tanβ = 30.

3.2.3 Corrections from the charged lepton sector

If we assume a non-diagonal Yukawa matrix of the charged leptons, their mixing angles
influence the parameters of the PMNS matrix via UPMNS = UeU

†
ν with the neutrino mixing

matrix Uν and the mixing matrix of the charged leptons Ue. As we discussed before in our
model Uν is of the golden ratio form UGR, cf. eq. (1.1).

Approximate expressions for the leptonic mixing angles in terms of sum rules of neutrino
mixing angles and the charged lepton mixing angles were derived, for instance, in [44–46]. In
leading order in the small mixing angles they read

sPMNS
23 e−iδ23 ≈ sν23e−iδν23 − θe23c

ν
23e−iδe23 , (3.36)

θPMNS
13 e−iδ13 ≈ θν13e−iδν13 − θe13c

ν
23e−iδe13 − θe12s

ν
23ei(−δν23−δe12) , (3.37)

sPMNS
12 e−iδ12 ≈ sν12e−iδν12 + θe13c

ν
12s

ν
23ei(δν23−δe13) − θe12c

ν
23c

ν
12e−iδe12 . (3.38)

In our model we have arranged θe12 ≈ θC and θe13 ≈ θe23 ≈ 0. This can easily be seen in
the Yukawa matrix Ye from eq. (2.23) where the mixing between the generations is governed
to leading order by the ratios of the elements in the rows.

Using these estimates as well as the golden ratio mixing angles of the A5 model from
eqs. (1.2, 1.3, 1.4) the expressions from eqs. (3.36, 3.37, 3.38) simplify to

sPMNS
23 e−iδ23 ≈ 1√

2
e−iδν23 + θrad

23 , (3.39)

θPMNS
13 e−iδ13 ≈ − 1√

2
θe12ei(−δν23−δe12) + θrad

13 , (3.40)

sPMNS
12 e−iδ12 ≈ sν12e−iδν12 − 1√

2
θe12c

ν
12e−iδe12 + θrad

12 , (3.41)

where the extra terms θrad
ij are complex numbers representing the RGE corrections.

It follows from eq. (3.40) that θPMNS
13 is dominated by θe12 as long as the RGE corrections

are not very large which leads to the already mentioned relation θPMNS
13 ≈ θC/

√
2.

At the seesaw scale we can neglect the radiative corrections and find the sum rule [44]

θPMNS
12 +

1√
2
θe12 cos (δPMNS − π) ≈ θν12. (3.42)

Since θPMNS
13 ≈ θC/

√
2 the possible values for θPMNS

12 at the seesaw scale are hence restricted
to be in the range (24− 39)◦.
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3.2.4 Results for inverted hierarchy

Using the previous results it is easy to understand that for the inverted hierarchy we do not
find any allowed parameter points for tanβ = 30. As we have discussed before the allowed
range for θPMNS

12 at the seesaw scale is (24 − 39)◦ cf. eq. (3.42). On the other hand from
eq. (3.34) we find θPMNS

12 at the seesaw scale to be smaller than 5.65◦ and hence the inverted
hierarchy is not viable.

In this way we can also estimate that the inverted hierarchy is only possible in this setup
for tanβ . 17 to keep the RGE corrections small enough which is nevertheless in tension
with our Yukawa coupling ratios, cf. [26].

Note that the RGE running is quite sizeable and hence our approximations might not be
justified. But even in a numerical scan using the REAP package [37] we did not find any
viable points which we can understand at least qualitatively from our estimates.

3.2.5 Results for normal hierarchy

In our analytical estimates we find an overlap for the allowed ranges for θPMNS
12 , cf. eq. (3.35)

and (3.42), and hence the normal hierarchy is feasible here.
We find an allowed parameter space which is compatible within 3σ with all observables.

In our setup the neutrino sector is completely determined by four parameters. Two real
parameters and one phase in the effective light neutrino mass matrix and one additional
phase from the charged lepton sector (δe12). Note, that θe12 was already fixed in the fit and we
will find that θPMNS

13 is in the correct range. For our parameter scan we have used again the
REAP package [37], where we have set the seesaw scale to about 1013 GeV and yn1 = 0.1.

Our numerical scan results for the leptonic mixing parameters are displayed in Fig. 1,
where the allowed 3σ (1σ) regions are limited by blue (red) dashed lines. The black dashed
lines represent the 1σ range for the not directly measured CP phase δPMNS from the global
fit [8]. The blue points are the result from our parameter scan to which we have applied the
experimental data as constraints.

Note that θPMNS
23 is not within the 1σ region. And hence, if it is confirmed that the atmo-

spheric mixing is not close to maximal this concrete model would be ruled out. Nevertheless,
it is rather straightforward to introduce a θe23 mixing which would allow to fit θPMNS

23 but
would make the model much less predictive.

For the Majorana phases α1 and α2 we find values between 0◦–90◦ or 270◦–360◦ for α1

and 70◦–290◦ for α2. We find the Dirac phase δPMNS to be in the region from 57◦–108◦ or
244◦–303◦. The Jarlskog invariant which determines the CP violation in neutrino oscillations
is given by [47]

JCP = Im(Uµ3U
∗
e3Ue2U

∗
µ2) =

1

8
cos(θPMNS

13 ) sin(2θPMNS
12 ) sin(2θPMNS

13 ) sin(2θPMNS
23 ) sin δPMNS.

(3.43)
We obtain JCP ≈ ±(0.027− 0.035).

We would like to mention here the work done in [48] where among other things a simi-
lar setup was studied and constraints for the phases were found. Nevertheless, the authors
neglected RGE running effects which they can do by assuming a small tanβ or no supersym-
metry at all and furthermore they have no mass sum rule and therefore neutrino masses can
be light in their setup. Nevertheless, in the normal hierarchical setup where RGE effects do
not have a large impact we find similar results.
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Figure 1: Results of our parameter scan for the normal hierarchy (blue points). The allowed
experimental 3σ (1σ) regions are limited by blue (red) dashed lines. The black dashed lines
represent the 1σ range for the not directly measured CP phase δPMNS from the global fit [8].
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Figure 2: Prediction for the effective neutrino mass mee accessible in neutrinoless double
beta decay experiments as a function of the lightest neutrino mass m1. The blue dashed region
represents the allowed region for normal ordering whereas the pink dotted region indicates the
inverted ordering region which is not allowed in our setup. The grey region on the right side
shows the bounds on the lightest mass from cosmology [51] and the grey region in the upper
part displays the upper bound on the effective mass from the EXO experiment [50]. The red
lines represent the sensitivity of GERDA phase I respectively GERDA phase II [49].

As we mentioned before the mass sum rule only implies a lower bound for the mass scale
for the normal hierarchy. But here we find as well an upper bound due to the constraint
that θPMNS

13 should stay within the experimental 3σ region. This can be clearly seen in the
last plot in Fig. 1 where we have plotted cos (α2) against θPMNS

13 . The mass sum rule implies
cos (α2) to be in the range from −1 to about 0.48, where larger values imply larger masses
and larger RGE corrections to θPMNS

13 .
The effective neutrino mass accessible in neutrinoless double beta decay experiments like

GERDA [49] or EXO [50] is given by

|mee| =
∣∣m1U

2
e1 +m2U

2
e2 +m3U

2
e3

∣∣ =
∣∣∣m1c

2
12c

2
13e−iα1 +m2s

2
12c

2
13e−iα2 +m3s

2
13e−i2δPMNS

∣∣∣ .
(3.44)

A graphically representation of our prediction for mee as a function of m1 is shown in Fig. 2.
We find values for mee in the range from 0.02 eV to 0.04 eV corresponding to the lightest
neutrino mass m1 in the region from 0.01 eV to 0.05 eV. This results are beyond the sensitivity
of the GERDA experiment but might be tested by a future experiment.

With the value for the lightest neutrino mass m1 between about 0.01 eV and 0.05 eV and
the experimental mass squared differences from Tab. 1 we obtain for the sum of the neutrino
masses

∑
mν = (0.074–0.171) eV. This prediction is compatible with the cosmological bound

for the sum of the neutrino masses [51]∑
mν < 0.23 eV. (3.45)

The quantity which will be measured in the experiment KATRIN [52] is the kinematic
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neutrino mass mβ which is given as

m2
β = m2

1c
2
12c

2
13 +m2

2s
2
12c

2
13 +m2

3s
2
13. (3.46)

Applying the range for m1 as well as the measured mass squared differences we arrive at
mβ ≈ (0.014–0.052) eV. Regarding the sensitivity of the experiment which is mβ > 0.2 eV
our model prediction is beyond the reach of KATRIN.

4 Summary and Conclusions

In this paper we have presented the first SU(5)× A5 SUSY Flavour Model to our knowledge.

It features to leading order the appealing prediction θPMNS
12 = tan−1

(
1
φg

)
≈ 31.7◦ where φg

is the golden ratio φg = (1 +
√

5)/2. The reactor mixing angle is predicted to be vanishing at
leading order and the atmospheric mixing angle to be maximal. Furthermore, the neutrino
masses exhibit a sum rule, which turns out to be very important for the phenomenology.

The prediction of a vanishing reactor mixing angle is excluded by several standard devi-
ations and hence the leading order predictions have to be corrected to make the model seem
realistic. In grand unified theories nevertheless, it is natural to expect that the charged lepton
Yukawa matrix is not diagonal because it is related to the down-type quark sector which is
well motivated to be non-diagonal in flavour space. This is furthermore suggested by the
approximate relation θPMNS

13 ≈ θC/
√

2, where θC is the Cabibbo angle. But in our setup we
do not only have relations between quark and lepton mixing angles, but also between down-
type quark and charged lepton Yukawa couplings which are non-standard, yτ/yb ≈ −1.5 and
yµ/ys ≈ 6, and for the double ratio (yµ/ys)(yd/ye) = 12 which are all in perfect agreement
with experimental data. The Yukawa coupling ratios for the third and second generation put
furthermore two non-trivial constraints on the SUSY spectrum which might be tested at the
LHC or one of its successors.

To achieve the desired Yukawa coupling ratios and a non-diagonal charged lepton Yukawa
matrix we have presented a complete symmetry breaking sector for SU(5) and A5. The SU(5)
breaking sector is peculiar because it is in principle compatible with the double missing
partner mechanism as discussed in [29], a mechanism to decouple the coloured triplets and
hence suppress proton decay sufficiently. In the A5 symmetry breaking we have introduced
a few non-trivial representations which break A5 in the desired groups such that we end
up with golden ratio mixing type A to leading order in the neutrino sector including also a
sum rule for the neutrino masses. We have also studied a messenger sector for the model
which is important for choosing between different Yukawa coupling relations in the effective
higher-dimensional operators and forbidding other unwanted effective operators which might
be allowed by the symmetries alone.

Apart from corrections from the charged lepton sector, RGE corrections can also play
a major role. In fact, RGE corrections rule out the inverted neutrino mass hierarchy. The
neutrino mass sum rule allows both mass hierarchies but in both cases only a certain mass
range. For inverted hierarchy the neutrino masses turn out to be rather heavy and since tanβ
is as well rather large the RGE corrections to θPMNS

12 are so large that although at the high
scale we are at most a few degrees away from the observed value at low energies we are far
outside the allowed 3σ region for θPMNS

12 . Hence, only the normal hierarchy is possible in our
model setup and we find all three mixing angles to be in the 3σ regions and JCP ≈ ±0.03
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with the lightest neutrino mass m1 ≈ 0.01–0.05 eV. Due to the mass and angle sum rules
we also find constraints on the phases, most phenomenologically relevant for the near future,
δPMNS to be in the region from 57◦–108◦ or 244◦–303◦.

Hence, our model can be tested from neutrino and collider experiments in several different
ways in the near future.

Note Added

During the finalisation of this work an update of the nu-fit global fitting collaboration ap-
peared [53]. Nevertheless, the results which we used in our analysis changed only very little
compared to their previous fit and hence our conclusions remain unchanged.
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A The messenger sector

In this section we discuss the renormalizable superpotential of the model. As mentioned before
the heavy messenger fields are integrated out to obtain the higher dimensional operators of
the effective superpotential. The complete messenger field content can be found in Tabs. 6
and 7.

We will first discuss the renormalizable superpotentials for the up- and down-type quark
sectors including additional operators not seen in our supergraphs but allowed by symmetry.
We will then do the same for the flavon sector. At last we will discuss higher dimensional
operators.

We begin with the mass terms for the messenger fields

Wren
Λ = MΣiΣiΣ̄i +MΩiΩiΩ̄i +MΞiΞiΞ̄i +MΓiΓiΓ̄i +MΥf6Υf6Ῡf6

+M∆f6
∆f6∆̄f6 +MΥf12Υf12Ῡf12 +M∆f12

∆f12∆̄f12 +MΛf12Λf12Λ̄f12 ,
(A.1)

where a summation over i is implied. The indices f6 and f12 denote the singlet flavons which
occur as 6th and 12th power respectively in their aligning superpotentials. It is f6 ∈ {θ1, ε3}
and f12 ∈ {θ2, θ3, ε2, ε4, ε5} where a summation over these flavons is implied. Each messenger
field has a mass higher than the GUT scale. The individual messenger masses are related to
the messenger mass scale Λ by order one coefficients which are often not explicitly stated to
simplify the notation.

The renormalizable superpotential for the up-quark sector is

Wren
u = T3T3H5 + T3ε1Ω̄1 + Ω1T2H5 + ε21Γ̄3 + Γ3T2Ω̄1 + Ω1T2H5

+ ε1T1Ω̄2 + Ω2ε2Ω̄3 + +Ω3Ω̄1ε3 + Ω3Ω̄4ε4 + Ω4T1H5 + Ω̄4Ω1ε5 ,
(A.2)

where the coupling constants have been ommitted to increase clarity. The supergraphs for
this sector can be found in Fig. 3. In order to get the effective operators in section 2, the
messenger fields have to be integrated out.
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SU(5) A5 ZR4 Z2 Z2 Z3 Z3 Z3 Z3 Z3 Z3 Z4

Σ1 5 3 1 0 0 2 1 2 1 0 1 0
Σ̄1 5̄ 3 1 0 0 1 2 1 2 0 2 0
Σ2 5 1 1 0 0 2 1 1 2 0 1 3
Σ̄2 5̄ 1 1 0 0 1 2 2 1 0 2 1

Ξ1 45 3 1 0 0 2 1 2 1 0 1 0
Ξ̄1 4̄5 3 1 0 0 1 2 1 2 0 2 0
Ξ2 45 3 1 0 1 2 1 1 1 2 0 1
Ξ̄2 4̄5 3 1 0 1 1 2 2 2 1 0 3
Ξ3 45 1 1 1 0 2 2 1 2 0 0 0
Ξ̄3 4̄5 1 1 1 0 1 1 2 1 0 0 0
Ξ4 45 1 2 0 0 0 0 1 0 0 0 0
Ξ̄4 4̄5 1 0 0 0 0 0 2 0 0 0 0

Γ1 1 3 0 0 0 0 1 1 1 0 0 0
Γ̄1 1 3 2 0 0 0 2 2 2 0 0 0
Γ2 1 3 0 0 0 0 1 2 0 0 0 1
Γ̄2 1 3 2 0 0 0 2 1 0 0 0 3
Γ3 1 1 0 0 0 0 1 0 0 0 0 3
Γ̄3 1 1 2 0 0 0 1 1 1 0 0 0

Ω1 10 1 1 1 0 2 0 0 0 0 0 0
Ω̄1 1̄0 1 1 0 0 0 2 0 0 0 0 1
Ω2 10 1 1 0 0 0 2 2 2 0 0 0
Ω̄2 1̄0 1 1 1 0 1 0 0 0 0 0 0
Ω3 10 1 1 1 0 2 2 0 0 0 0 3
Ω̄3 1̄0 1 1 1 0 1 1 0 0 0 0 1
Ω4 10 1 1 1 0 1 1 2 2 0 0 2
Ω̄4 1̄0 1 1 1 0 2 2 1 1 0 0 2
Ω5 10 3 1 0 0 1 2 0 1 0 2 0
Ω̄5 1̄0 3 1 0 0 2 1 0 2 0 1 0
Ω6 10 1 1 0 0 1 1 1 1 0 2 3
Ω̄6 1̄0 1 1 0 0 2 2 2 2 0 1 1
Ω7 10 3 1 0 0 1 1 2 0 0 2 0
Ω̄7 1̄0 3 1 0 0 2 2 1 0 0 1 0

Table 6: The Zn charges, SU(5) and A5 representations of the messenger fields for the Yukawa
couplings.
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SU(5) A5 Z4R Z2 Z2 Z3 Z3 Z3 Z3 Z3 Z3 Z4

Υε2 1 1 2 0 0 0 2 0 0 0 0 2
Ῡε2 1 1 0 0 0 0 1 0 0 0 0 2
Υε3 1 1 2 0 0 1 2 0 0 0 0 0
Ῡε3 1 1 0 0 0 2 1 0 0 0 0 0
Υε4 1 1 2 0 0 2 2 2 2 0 0 2
Ῡε4 1 1 0 0 0 1 1 1 1 0 0 2
Υε5 1 1 2 0 0 1 0 2 2 0 0 2
Ῡε5 1 1 0 0 0 2 0 1 1 0 0 2
Υθ1 1 1 2 0 0 0 2 2 1 1 0 0
Ῡθ1 1 1 0 0 0 0 1 1 2 2 0 0
Υθ2 1 1 2 0 0 0 2 1 2 1 0 2
Ῡθ2 1 1 0 0 0 0 1 2 1 2 0 2
Υθ3 1 1 2 0 0 0 0 1 0 1 1 2
Ῡθ3 1 1 0 0 0 0 0 2 0 2 2 2

Λε2 1 1 2 0 0 0 1 0 0 0 0 0
Λ̄ε2 1 1 0 0 0 0 2 0 0 0 0 0
Λε4 1 1 2 0 0 1 1 1 1 0 0 0
Λ̄ε4 1 1 0 0 0 2 2 2 2 0 0 0
Λε5 1 1 2 0 0 2 0 1 1 0 0 0
Λ̄ε5 1 1 0 0 0 1 0 2 2 0 0 0
Λθ2 1 1 2 0 0 0 1 2 1 2 0 0
Λ̄θ2 1 1 0 0 0 0 2 1 2 1 0 0
Λθ3 1 1 2 0 0 0 0 2 0 2 2 0
Λ̄θ3 1 1 0 0 0 0 0 1 0 1 1 0

∆ε2 1 1 2 0 0 0 2 0 0 0 0 0
∆̄ε2 1 1 0 0 0 0 1 0 0 0 0 0
∆ε3 1 1 2 0 0 2 1 0 0 0 0 0
∆̄ε3 1 1 0 0 0 1 2 0 0 0 0 0
∆ε4 1 1 2 0 0 2 2 2 2 0 0 0
∆̄ε4 1 1 0 0 0 1 1 1 1 0 0 0
∆ε5 1 1 2 0 0 1 0 2 2 0 0 0
∆̄ε5 1 1 0 0 0 2 0 1 1 0 0 0
∆θ1 1 1 2 0 0 0 1 1 2 2 0 0
∆̄θ1 1 1 0 0 0 0 2 2 1 1 0 0
∆θ2 1 1 2 0 0 0 2 1 2 1 0 0
∆̄θ2 1 1 0 0 0 0 1 2 1 2 0 0
∆θ3 1 1 2 0 0 0 0 1 0 1 1 0
∆̄θ3 1 1 0 0 0 0 0 2 0 2 2 0

Table 7: The Zn charges, SU(5) and A5 representations of the messenger fields for the flavon
sector.
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Figure 3: The supergraphs before integrating out the heavy messenger field for the up-type
quark sector.
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The renormalizable superpotential for the charged lepton and down-type quark sector is

Wren
d,l = H24FΣ1 + Σ̄1φ2Σ2 + Σ̄2T3H̄5 + FH24Ξ1 + Ξ̄1θ3Ξ2

+ Ξ̄2φ3Ξ3 + Ξ̄3Ξ̄4T1 + Ξ4H̄5H24

+ FH̄5Ω5 + Ω̄5Ω6Γ2 + Ω̄6H24T2 + Γ̄2φ3θ1

+ Ω̄5Ω7Γ1 + Γ̄1θ2φ3 + Ω̄7Ω6φ2 + Ω̄5Ω7ε1 ,

(A.3)

where again coupling constants have been omitted. The charges under the shaping symmetries
are listed in Tab. 6 for the messenger fields and Tab. 3 for the matter and Higgs fields of the
model. The supergraphs for this sector can be found in Fig. 4. There are a few additional
couplings which are not forbidden by shaping symmetries. These are

Wadditional = Γ̄3
3 + Γ̄3Γ2

1 + Γ3Ω5Ω̄7 + Γ1Γ̄2φ2 + Γ̄2ε1φ2 . (A.4)

It is important to note that the vertices above which contain Γ3 or ε1 and any messenger field
of the down-sector are the only allowed couplings that mix messenger fields of the up- and
down-sector. We will discuss the implications of these terms on potential higher dimensional
operators later.

The operator Γ̄2φ2ε1 generates a second leading order diagram for the 3-2 element of Yd
(and the 2-3 element of Ye respectively). Since it generates the same effective operator as the
supergraph shown in Fig. 4 with the same CG coefficient in the charged lepton sector, we
have omitted the diagram. The same reasoning applies to the term Γ1Γ̄2φ2 which generates a
second leading order diagram for the 1-2 element of Yd (and the 2-1 element of Ye respectively).

There are more couplings between the messenger fields of the singlet flavons. These will
be further discussed below, since there are no couplings mixing the singlet messenger fields
with messenger fields from any other sector.

In the flavon sector only the singlet alignment requires the introduction of new messenger
fields, since the superpotential for the flavon fields in the three-, four- and five-dimensional
representations of A5 is already renormalizable. The messenger fields for the flavon sector
and their charges under the various symmetries of the model can be found in Tab. 7. For ε1
the renormalizable superpotential reads

Wren
s3 = ε21Γ̄3 + Pε1Γ3 . (A.5)

The renormalizable superpotentials of ε3 and θ1 are of the form

Wren
s6 = f2

i Υfi + Ῡ2
fi∆fi + P ∆̄fiῩfi , (A.6)

where fi denotes one of the above mentioned flavons. After integrating out the heavy mes-
senger fields we get an effective operator which contains the respective flavon to the power of
six. The remaining singlets have superpotentials of the form

Wren
s12 = f2

i Υfi + Ῡ2
fiΛfi + Λ̄2

fi∆fi + P ∆̄fiΛ̄fi , (A.7)

where fi again denotes one of the mentioned flavons. This superpotential results in an effective
operator containing the singlet flavon to the power of 12. The corresponding supergraphs can
be found in Fig. 5.

As already discussed in the matter sector there are additional couplings among the messen-
ger fields of the flavon sector not forbidden by symmetry. However, note that these messenger
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fields do not couple to any other sector with the exception of one term which will be discussed
in detail later. These terms will not be displayed here, since they do not lead to new leading
order effective operators. We have checked this already on the effective level without resorting
to messenger selection rules.

The only non-trivial operator left to discuss is D
(2)
φ Υθ2∆θ1 which generates an effective

operator D
(2)
φ P 2θ2

1θ
10
2 which nevertheless, due to the vanishing of 〈P 〉, does not have any

effect whatsoever.
We turn now to the additional effective operators for the Yukawa matrices. It is useful

to recall their structure here to leading order. In the down-type quark and charged lepton
sector we have

Y LO
d =

 0 Λ−4 0
Λ−4 Λ−3 0

0 Λ−3 Λ−2

 , (A.8)

and in the up-type quark sector

Y LO
u =

Λ−3 Λ−3 Λ−2

Λ−3 Λ−2 Λ−1

Λ−2 Λ−1 1

 . (A.9)

For both sectors we have checked for possible additional effective operators using only the
symmetries of the model, i.e. without considering messenger fields. In the up-type quark
sector the largest corrections come from operators with a mass dimension at least two higher
than the leading order operator. We therefore have Yu = Y LO

u + Y HO
u , where

Y HO
u .

Λ−6 Λ−6 Λ−5

Λ−6 Λ−5 Λ−4

Λ−5 Λ−4 Λ−3

 . (A.10)

Hence, we can neglect them.
In the down-type quark sector we have as well calculated higher order effective operators

based on symmetry arguments only, where operators containing φ2
2 or φ2

3 where ignored,
because 〈φ2〉2 = 〈φ3〉2 = 0. We find five additional effective operators

WHO =
1

Λ4
H24H̄5FT1φ2ε3ε2 +

1

Λ4
H24H̄5FT1φ2ε5ε1 +

1

Λ4
H24H̄5FT1φ3ε5θ1

+
1

Λ5
H24H̄5FT1φ2φ3θ2ε5 +

1

Λ5
H24H̄5FT3φ3θ1ε1ε1 .

(A.11)

Upon close inspection of the terms in eq. (A.11) it becomes clear, that those terms are
forbidden due to messenger arguments. As stated above there are no couplings other than
to Γ3 and ε1 that mix up-type quark and down-type quark messenger fields. Since ε5 and ε3
do not immediately couple to Γ3 it is impossible to generate the terms containing only those
flavons, since further external legs from the up-sector would arise. The last term in eq. (A.11)
cannot be realised since T3 couples only to Σ̄2, a messenger field in the 5̄ representation of
SU(5). There are no couplings mixing this messenger field with any of the fields in other
representions of SU(5), making the effective operator containing T3 and ε1 impossible.
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In conclusion we found for the down-type Yukawa matrix Yd = Y LO
d + Y HO

d

Y HO
d .

Λ−6 Λ−6 Λ−6

Λ−6 Λ−6 Λ−6

Λ−6 Λ−6 Λ−5

 , (A.12)

which can again be safely neglected.

B A5 Clebsch-Gordan Coefficients

For convenience we give here the Clebsch-Gordan coefficients of the group A5, taken from [13].
We use the notation ai (bi) for elements of the first (second) representation. The subscript a
(s) denotes antisymmetric (symmetric) representations.

3⊗ 3 = 1s ⊕ 3a ⊕ 5s 3′ ⊗ 3′ = 1s ⊕ 3′a ⊕ 5s

1s ∼ a1b1 + a2b3 + a3b2 1s ∼ a1b1 + a2b3 + a3b2

3a ∼

a2b3 − a3b2
a1b2 − a2b1
a3b1 − a1b3

 3a
′ ∼

a2b3 − a3b2
a1b2 − a2b1
a3b1 − a1b3



5s ∼


2a1b1 − a2b3 − a3b2
−
√

3a1b2 −
√

3a2b1√
6a2b2√
6a3b3

−
√

3a1b3 −
√

3a3b1

 5s ∼


2a1b1 − a2b3 − a3b2√

6a3b3
−
√

3a1b2 −
√

3a2b1
−
√

3a1b3 −
√

3a3b1√
6a2b2



3′ ⊗ 3 = 4⊕ 5

4 ∼


a3b2 +

√
2a2b1

−a3b3 −
√

2a1b2
−a2b2 −

√
2a1b3

a2b3 +
√

2a3b1

 5 ∼


√

3a1b1√
2a3b2 + a2b1

−
√

2a3b3 + a1b2
−
√

2a2b2 + a1b3
a3b1 −

√
2a2b3


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3⊗ 4 = 3′ ⊕ 4⊕ 5 3′ ⊗ 4 = 3⊕ 4⊕ 5

3′ ∼

 −
√

2(a2b4 + a3b1)√
2a1b2 − a2b1 + a3b3√
2a1b3 + a2b2 − a3b4

 3 ∼

 −
√

2(a2b3 + a3b2)√
2a1b1 − a2b4 − a3b3√
2a1b4 − a2b2 + a3b1



4 ∼


a1b1 −

√
2a3b2

−a1b2 −
√

2a2b1
a1b3 +

√
2a3b4

−a1b4 +
√

2a2b3

 4 ∼


a1b1 +

√
2a3b3

a1b2 −
√

2a3b4
−a1b3 +

√
2a2b1

−a1b4 −
√

2a2b2



5 ∼


√

6(a1b4 − a3b1)√
22a1b1 + 2a3b2

−
√

2a1b2 + a2b1 + 3a3b3√
2a1b3 − 3a2b2 − a3b4
−2
√

2a1b4 − 2a2b3

 5 ∼


√

6(a2b3 − a3b2)√
2a1b1 − 3a2b4 − a3b3
2
√

2a1b2 + 2a3b4
−2
√

2a1b3 − 2a2b1
−
√

2a1b4 + a2b2 + 3a3b1



3⊗ 5 = 3⊕ 3′ ⊕ 4⊕ 5 3′ ⊗ 5 = 3′ ⊕ 3⊕ 4⊕ 5

3 ∼

−2a1b1 +
√

3a2b5 +
√

3a3b2√
3a1b2 + a2b1 −

√
6a3b3√

3a1b5 −
√

6a2b4 + a3b1

 3 ∼

 a2b4 +
√

3a1b1 + a3b3
−
√

2a2b5 + a1b2 −
√

2a3b4
−
√

2a3b2 −
√

2a2b3 + a1b5



3′ ∼


√

3a1b1 + a2b5 + a3b2
a1b3 −

√
2a2b2 −

√
2a3b4

a1b4 −
√

2(a2b3 + a3b5)

 3′ ∼

−2a1b1 +
√

3a2b4 +
√

3a3b3√
3a1b3 + a2b1 −

√
6a3b5√

3a1b4 −
√

6a2b2 + a3b1



4 ∼


a3b3 −

√
6a2b1 + 2

√
2a1b2

−3a3b4 −
√

2a1b3 + 2a2b2
3a2b3 +

√
2a1b4 − 2a3b5

−a2b4 − 2
√

2a1b5 +
√

6a3b1

 4 ∼


3a2b5 +

√
2a1b2 − 2a3b4

a3b5 −
√

6a2b1 + 2
√

2a1b3
−a2b2 − 2

√
2a1b4 +

√
6a3b1

−3a3b2 −
√

2a1b5 + 2a2b3



5 ∼


√

3(a2b5 − a3b2)

−a1b2 −
√

3a2b1 −
√

2a3b3
−2a1b3 −

√
2a2b2

2a1b4 +
√

2a3b5
a1b5 +

√
2a2b4 +

√
3a3b1

 5 ∼


√

3(a2b4 − a3b3)

2a1b2 +
√

2a3b4
−a1b3 −

√
3a2b1 −

√
2a3b5

a1b4 +
√

2a2b2 +
√

3a3b1
−2a1b5 −

√
2a2b3


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4⊗ 4 = 1s ⊕ 3′a ⊕ 3a ⊕ 4s ⊕ 5s 4⊗ 5 = 3′ ⊕ 3⊕ 4⊕ 51 ⊕ 52

1s ∼ a1b4 + a2b3 + a3b2 + a4b1 3 ∼

2
√

2(a1b5 − a4b2) +
√

2(a3b3 − a2b4)

−
√

6a1b1 + 2a2b5 + 3a3b4 − a4b3
a1b4 − 3a2b3 − 2a3b2 +

√
6a4b1



3a ∼

−a1b4 + a2b3 − a3b2 + a4b1√
2(a2b4 − a4b2)√
2(a1b3 − a3b1)

 3′ ∼


√

2(a1b5 − a4b2)− 2
√

2(a3b3 − a2b4)

−
√

6a2b1 + 2a4b4 + 3a1b2 − a3b5
a2b2 − 3a4b5 − 2a1b3 +

√
6a3b1



3′a ∼

a1b4 + a2b3 − a3b2 − a4b1√
2(a3b4 − a4b3)√
2(a1b2 − a2b1)

 4 ∼


√

3a1b1 +
√

2(a3b4 − a2b5 − 2a4b3)√
2(−a1b2 + a4b4 + 2a3b5)−

√
3a2b1√

2(a1b3 + 2a2b2 − a4b5)−
√

3a3b1√
2(−2a1b4 + a2b3 − a3b2) +

√
3a4b1



4 ∼


a2b4 + a3b3 + a4b2
a1b1 + a3b4 + a4b3
a1b2 + a2b1 + a4b4
a1b3 + a3b1 + a2b2

 51 ∼


√

2(a1b5 − a2b4 − a3b3 + a4b2)

−
√

2a1b1 −
√

3(a3b4 + a4b3)√
2a2b1 +

√
3(a1b2 + a3b5)√

2a3b1 +
√

3(a2b2 + a4b5)

−
√

2a4b1 −
√

3(a1b4 + a2b3)



5s ∼


√

3(a1b4 − a2b3 − a3b2 + a4b1)

−
√

2(a2b4 + a4b2 − 2a3b3)√
2(−2a1b1 + a3b4 + a4b3)√
2(a1b2 + a2b1 − 2a4b4)√

2(−a1b3 + 2a2b2 − a3b1)

 52 ∼


2(a1b5 + a4b2) + 4(a2b4 + a3b3)

2(2a1b1 +
√

6a2b5)

−
√

6(a1b2 + a3b5 − 2a4b5) + 2a2b1√
6(2a1b3 − a2b2 − a4b5) + 2a3b1

2(
√

6a3b2 + 2a4b1)


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5⊗ 5 = 1s ⊕ 3a ⊕ 3′a ⊕ 4s ⊕ 4a ⊕ 51,s ⊕ 52,s

1s ∼ a1b1 + a2b5 + a3b4 + a4b3 + a5b2

3a ∼

 a2b5 − a5b2 + 2(a3b4 − a4b3)√
3(a2b1 − a1b2) +

√
2(a3b5 − a5b3)√

3(a1b5 − a5b1) +
√

2(a2b4 − a4b2)



3′a ∼

 2(a2b5 − a5b2) + a3b4 − a4b3√
3(a1b3 − a3b1) +

√
2(a4b5 − a5b4)√

3(a1b4 − a4b1) +
√

2(a2b3 − a3b2)



4s ∼


3
√

2(a1b2 + a2b1)−
√

3(a3b5 − 4a4b4 + a5b3)

3
√

2(a1b3 + a3b1)−
√

3(−4a2b2 + a4b5 + a5b4)

3
√

2(a1b4 + a4b1)−
√

3(a2b3 + a3b2 − 4a5b5)

3
√

2(a1b5 + a5b1)−
√

3(a2b4 − 4a3b3 + a4b2)



4a ∼


√

2(a1b2 − a2b1) +
√

3(a3b5 − a5b3)√
2(a3b1 − a1b3) +

√
3(a4b5 − a5b4)√

2(a4b1 − a1b4) +
√

3(a3b2 − a2b3)√
2(a1b5 − a5b1) +

√
3(a4b2 − a2b4)



51,s ∼


2(a1b1 − a3b4 − a4b3) + a2b5 + a5b2
a1b2 + a2b1 +

√
6(a3b5 + a5b3)√

6a2b2 − 2(a1b3 + a3b1)√
6a5b5 − 2(a1b4 + a4b1)√

6(a2b4 + a4b2) + a1b5 + a5b1



52,s ∼


2(a1b1 − a2b5 − a5b2) + a3b4 + a4b3√

6a4b4 − 2(a1b2 + a2b1)

a1b3 + a3b1 +
√

6(a4b5 + a5b4)√
6(a2b3 + a3b2) + a1b4 + a4b1√

6a3b3 − 2(a1b5 + a5b1)


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