Quark Mass and Field Anomalous Dimensions to $\mathcal{O}(lpha_s^5)$

P. A. Baikov,^a K. G. Chetyrkin,^b J. H. Kühn,^b

E-mail: baikov@theory.sinp.msu.ru, Konstantin.Chetyrkin@kit.edu, johann.kuehn@kit.edu

Abstract:

We present the results of the first complete analytic calculation of the quark mass and field anomalous dimensions to $\mathcal{O}(\alpha_s^5)$ in QCD.

Keywords: Quantum chromodynamics, Perturbative calculations

^a Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 1(2), Leninskie gory, Moscow 119991, Russian Federation

^bInstitut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 726128 Karlsruhe, Germany

\mathbf{C}	ontents	
1	Introduction	1
2	Technical preliminaries	2
3	Results	3
4	Discussion	4
5	Applications	6
	5.1 RGI mass	6
	5.2 Higgs decay into quarks	7
6	Conclusions	8

1 Introduction

The quark masses depend on a renormalization scale. The dependence is usually referred to as "running" and is governed by the quark mass anomalous dimension, γ_m , defined as:

$$\mu^{2} \frac{d}{d\mu^{2}} m|_{g^{0}, m^{0}} = m \gamma_{m}(a_{s}) \equiv -m \sum_{i \geq 0} \gamma_{i} a_{s}^{i+1}, \qquad (1.1)$$

where $a_s = \alpha_s/\pi = g^2/(4\pi^2)$, g is the renormalized strong coupling constant and μ is the normalization scale in the customarily used $\overline{\rm MS}$ renormalization scheme. Up to and including four loop level the anomalous dimension is known since long [1–5]. In this paper we will describe the results of calculation of γ_m and a related quantity — the quark field anomalous dimension — in the five-loop order.

The evaluation of the quark mass anomalous dimension with five-loop accuracy has important implications. The Higgs boson decay rate into charm and bottom quarks is proportional to the square of the respective quark mass at the scale of m_H and the uncertainty from the presently unknown 5-loop terms in the running of the quark mass is of order 10^{-3} . This is comparable to the precision advocated for experiments e.g. at TLEP [6]. Similarly, the issue of Yukawa unification is affected by precise predictions for the anomalous quark mass dimension.

The paper is organized as follows. The next section deals with the overall set-up of the calculations. Then we present our results (Section 3), and a brief discussion (Section 4) as well as a couple of selected applications (Section 5). Our short conclusions are given Section 6.

2 Technical preliminaries

To calculate γ_m one needs to find the so-called quark mass renormalization constant, Z_m , which is defined as the ratio of the bare and renormalized quark masses, viz.

$$Z_m = \frac{m^0}{m} = 1 + \sum_{i,j}^{0 < j \le i} (Z_m)_{ij} \frac{a_s^i}{\epsilon^j}.$$
 (2.1)

Within the $\overline{\rm MS}$ scheme [7, 8] the coefficients $(Z_m)_{ij}$ are just numbers [9]; $\epsilon \equiv 2-D/2$ and D stands for the space-time dimension. Combining eqs. (1.1,2.1) and using the RG-invariance of m^0 , one arrives at the following formula for γ_m :

$$\gamma_m = \sum_{i>0} (Z_m)_{i1} i \, a_s^i. \tag{2.2}$$

To find Z_m one should compute the vector and scalar parts of the quark self-energy $\Sigma_V(p^2)$ and $\Sigma_S(p^2)$. In our convention, the bare quark propagator is proportional to $\left[\not p\left(1+\Sigma_V^0(p^2)\right)-m_q^0\left(1-\Sigma_S^0(p^2)\right)\right]^{-1}$. Requiring the finiteness of the renormalized quark propagator and keeping only massless and terms linear in m_q , one arrives at the following recursive equations to find Z_m

$$Z_m Z_2 = 1 + K_{\epsilon} \left\{ Z_m Z_2 \Sigma_S^0(p^2) \right\}, \quad Z_2 = 1 - K_{\epsilon} \left\{ Z_2 \Sigma_V^0(p^2) \right\},$$
 (2.3)

where $K_{\epsilon}\{f(\epsilon)\}$ stands for the singular part of the Laurent expansion of $f(\epsilon)$ in ϵ near $\epsilon = 0$ and Z_2 is the quark wave function renormalization constant. Eqs. (2.3) express Z_m through massless propagator-type (that is dependent on one external momentum only) Feynman integrals (FI), denoted as *p-integrals* below.

Eqs. (2.3) require the calculation of a large number¹ the *five*-loop p-integrals to find Z_m and Z_2 to $\mathcal{O}(\alpha_s^5)$.

At present there exists no direct way to analytically evaluate five-loop p-integrals. However, according to (2.1) for a given five-loop p-integral we need to know only its pole part in ϵ in the limit of $\epsilon \to 0$. A proper use of this fact can significantly simplify our task. The corresponding method—so-called Infrared Rearrangement (IRR)—first suggested in [11] and elaborated further in [12–14] allows to effectively decrease number of loops to be computed by one². In its initial version IRR was not really universal; it was not applicable in some (though rather rare) cases of complicated FI's. The problem was solved by elaborating a special technique of subtraction of IR divergences — the R^* -operation [15, 16]. This technique succeeds in expressing the UV counterterm of every L-loop Feynman integral in terms of divergent and finite parts of some (L-1)-loop massless propagators.

In our case L = 5 and, using IRR, one arrives at at around 10^5 four-loop p-integrals. These can, subsequently, be reduced to 28 four-loop masterp-integrals, which are known analytically, including their finite parts, from [17, 18] as well as numerically from [19].

¹ We have used QGRAF [10] to produce around 10⁵ FI's contributing to the quark self-energy at $\mathcal{O}(\alpha_s^5)$.

²With the price that resulting one-loop-less p-integrals should be evaluated up to and *including* their constant part in the small ε-expansion.

We need, thus, to compute around 10^5 p-integrals. Their singular parts, in turn, can be algebraically reduced to only 28 master 4-loop p-integrals. The reduction is based on evaluating sufficiently many terms of the 1/D expansion [20] of the corresponding coefficient functions [21].

All our calculations have been performed on a SGI ALTIX 24-node IB-interconnected cluster of eight-cores Xeon computers using parallel MPI-based [22] as well as thread-based [23] versions of FORM [24].

3 Results

Our result for the anomalous dimension

$$\gamma_m = -\sum_{i=0}^{\infty} (\gamma_m)_i \, a_s^{i+1}$$

reads:

$$(\gamma_m)0 = 1, \quad (\gamma_m)1 = \frac{1}{16} \left\{ \frac{202}{3} + n_f \left[-\frac{20}{9} \right] \right\},$$
 (3.1)

$$(\gamma_m)2 = \frac{1}{64} \left\{ 1249 + n_f \left[-\frac{2216}{27} - \frac{160}{3} \zeta_3 \right] + n_f^2 \left[-\frac{140}{81} \right] \right\}, \tag{3.2}$$

$$(\gamma_m)3 = \frac{1}{256} \left\{ \frac{4603055}{162} + \frac{135680}{27} \zeta_3 - 8800 \zeta_5 + n_f \left[-\frac{91723}{27} - \frac{34192}{9} \zeta_3 + 880 \zeta_4 + \frac{18400}{9} \zeta_5 \right] + n_f^2 \left[\frac{5242}{243} + \frac{800}{9} \zeta_3 - \frac{160}{3} \zeta_4 \right] + n_f^3 \left[-\frac{332}{243} + \frac{64}{27} \zeta_3 \right] \right\}.$$

$$(3.3)$$

$$(\gamma_m)_4 = \frac{1}{4^5} \left\{ \frac{99512327}{162} + \frac{46402466}{243} \zeta_3 + 96800 \zeta_3^2 - \frac{698126}{9} \zeta_4 - \frac{231757160}{243} \zeta_5 + 242000 \zeta_6 + 412720 \zeta_7 + n_f \left[-\frac{150736283}{1458} - \frac{12538016}{81} \zeta_3 - \frac{75680}{9} \zeta_3^2 + \frac{2038742}{27} \zeta_4 + \frac{49876180}{243} \zeta_5 - \frac{638000}{9} \zeta_6 - \frac{1820000}{27} \zeta_7 \right]$$

$$+ n_f^2 \left[\frac{1320742}{729} + \frac{2010824}{243} \zeta_3 + \frac{46400}{27} \zeta_3^2 - \frac{166300}{27} \zeta_4 - \frac{264040}{81} \zeta_5 + \frac{92000}{27} \zeta_6 \right] + \left[n_f^3 \left[\frac{91865}{1458} + \frac{12848}{81} \zeta_3 + \frac{448}{9} \zeta_4 - \frac{5120}{27} \zeta_5 \right] + n_f^4 \left[-\frac{260}{243} - \frac{320}{243} \zeta_3 + \frac{64}{27} \zeta_4 \right] \right] \right\}.$$

Here ζ is the Riemann zeta-function ($\zeta_3 = 1.202056903..., \zeta_4 = \pi^4/90, \zeta_5 = 1.036927755..., \zeta_6 = 1.017343062...$ and $\zeta_7 = 1.008349277...$). Note that in four-loop order we exactly³

³This agreement can be also considered as an important check of all our setup which is completely different from the ones utilized at the four-loop calculations.

reproduce well-known results obtained in [4, 5]. The boxed terms in (3.4) are in full agreement with the results derived previously on the basis of the $1/n_f$ method in [25–27].

For completeness we present below the result for the quark field anomalous dimension $\gamma_2 = -\sum_{i=0}^{\infty} (\gamma_2)_i a_s^{i+1}$:

$$(\gamma_2)_4 = \frac{1}{4^5} \left\{ \frac{2798900231}{7776} + \frac{17969627}{864} \zeta_3 + \frac{13214911}{648} \zeta_3^2 + \frac{16730765}{864} \zeta_4 - \frac{832567417}{3888} \zeta_5 + \frac{40109575}{1296} \zeta_6 + \frac{124597529}{1728} \zeta_7 + n_f \left[-\frac{861347053}{11664} - \frac{274621439}{11664} \zeta_3 + \frac{1960337}{972} \zeta_3^2 + \frac{465395}{1296} \zeta_4 + \frac{22169149}{5832} \zeta_5 + \frac{1278475}{1944} \zeta_6 + \frac{3443909}{216} \zeta_7 \right] + n_f^2 \left[\frac{37300355}{11664} + \frac{1349831}{486} \zeta_3 - \frac{128}{9} \zeta_3^2 - \frac{27415}{54} \zeta_4 - \frac{12079}{27} \zeta_5 - \frac{800}{9} \zeta_6 - \frac{1323}{2} \zeta_7 \right] + n_f^3 \left[-\frac{114049}{8748} - \frac{1396}{81} \zeta_3 + \frac{208}{9} \zeta_4 \right] + n_f^4 \left[\frac{332}{729} - \frac{64}{81} \zeta_3 \right] \right\}.$$

$$(3.5)$$

The above result is presented for the Feynman gauge; the coefficients $(\gamma_2)_i$ with $i \leq 3$ can be found in [28] (for the case of a general covariant gauge and SU(N) gauge group).

4 Discussion

In numerical form γ_m reads

$$\gamma_m = -a_s - a_s^2 (4.20833 - 0.138889n_f)$$

$$-a_s^3 (19.5156 - 2.28412n_f - 0.0270062n_f^2)$$

$$-a_s^4 (98.9434 - 19.1075n_f + 0.276163n_f^2 + 0.00579322n_f^3)$$

$$-a_s^5 (559.7069 - 143.6864n_f + 7.4824n_f^2 + 0.1083n_f^3 - 0.000085359n_f^4)$$
(4.1)

and

$$\gamma_m = \frac{1}{n_f = 3} - a_s - 3.79167 a_s^2 - 12.4202 a_s^3 - 44.2629 a_s^4 - 198.907 a_s^5,
g_m = \frac{1}{n_f = 4} - a_s - 3.65278 a_s^2 - 9.94704 a_s^3 - 27.3029 a_s^4 - 111.59 a_s^5,
g_m = \frac{1}{n_f = 5} - a_s - 3.51389 a_s^2 - 7.41986 a_s^3 - 11.0343 a_s^4 - 41.8205 a_s^5,
\gamma_m = \frac{1}{n_f = 6} - a_s - 3.37500 a_s^2 - 4.83867 a_s^3 + 4.50817 a_s^4 + 9.76016 a_s^5.$$
(4.2)

Note that significant cancellations between n_f^0 and n_f^1 terms for the values of n_f around 3 or so persist also at five-loop order. As a result we observe a moderate growth of the series in a_s appearing in the quark mass anomalous dimension at various values of active quark flavours (recall that even for scales as small as 2 GeV $a_s \equiv \frac{\alpha_s}{\pi} \approx 0.1$).

n_f	3	4	5	6
$(\gamma_m)_4^{\rm exact}$	198.899	111.579	41.807	-9.777
$(\gamma_m)_4^{\text{APAP}}$ [29]	162.0	67.1	-13.7	-80.0
$(\gamma_m)_4^{\text{APAP}}$ [30]	163.0	75.2	12.6	12.2
$(\gamma_m)_4^{\text{APAP}}$ [31]	164.0	71.6	-4.8	-64.6

Table 1: The exact results for $(\gamma_m)_4$ together with the predictions made with the help of the original APAP method and its two somewhat modified versions.

Similar behavior shows up for γ_2 :

$$\gamma_{2} = -0.33333a_{s} - a_{s}^{2} (-1.9583 + 0.08333 n_{f})$$

$$- a_{s}^{3} (-10.3370 + 1.0877 n_{f} - 0.01157 n_{f}^{2})$$

$$- a_{s}^{4} (-53.0220 + 10.1090 n_{f} - 0.27703 n_{f}^{2} - 0.0023 n_{f}^{3})$$

$$- a_{s}^{4} (-310.0700 + 76.3260 n_{f} - 4.6339 n_{f}^{2} + 0.0085 n_{f}^{3} + 0.00048 n_{f}^{4})$$
(4.3)

and

$$\gamma_{2} = \frac{1}{n_{f}=3} - 0.33333 \, a_{s} - 1.7083 \, a_{s}^{2} - 7.1779 \, a_{s}^{3} - 25.2480 \, a_{s}^{4} - 122.5300 \, a_{s}^{5},$$

$$g_{2} = \frac{1}{n_{f}=4} - 0.33333 \, a_{s} - 1.6250 \, a_{s}^{2} - 6.1712 \, a_{s}^{3} - 17.1610 \, a_{s}^{4} - 78.2430 \, a_{s}^{5},$$

$$g_{2} = \frac{1}{n_{f}=5} - 0.33333 \, a_{s} - 1.5417 \, a_{s}^{2} - 5.1877 \, a_{s}^{3} - 9.6824 \, a_{s}^{4} - 42.9240 \, a_{s}^{5},$$

$$\gamma_{2} = \frac{1}{n_{f}=6} - 0.333333 \, a_{s} - 1.4583 \, a_{s}^{2} - 4.2274 \, a_{s}^{3} - 2.8251 \, a_{s}^{4} - 16.4710 \, a_{s}^{5}.$$

$$(4.4)$$

It is instructive to compare our numerical result for $(\gamma_m)_4$

$$(\gamma_m)_4 = 559.71 - 143.6 \, n_f + 7.4824 \, n_f^2 + 0.1083 \, n_f^3 - 0.00008535 \, n_f^4 \tag{4.5}$$

with a 15 years old prediction based on the "Asymptotic Páde Approximants" (APAP) method [29] (the boxed term below was used as the input)

$$(\gamma_m)_4^{\text{APAP}} = 530 - 143 \, n_f + 6.67 \, n_f^2 + 0.037 \, n_f^3 - \boxed{0.00008535 \, n_f^4}$$
 (4.6)

Unfortunately, this impressively good agreement does not survive for fixed values of n_f due to severe cancellations between different powers of n_f as one can see from the Table 1.

The solution of eq. (1.1) reads:

$$\frac{m(\mu)}{m(\mu_0)} = \frac{c(a_s(\mu))}{c(a_s(\mu_0))}, \quad c(x) = \exp\left\{\int dx' \frac{\gamma_m(x')}{\beta(x')}\right\},\tag{4.7}$$

$$c(x) = (x)^{\bar{\gamma_0}} \left\{ 1 + d_1 x + (d_1^2/2 + d_2) x^2 + (d_1^3/6 + d_1 d_2 + d_3) x^3 + (d_1^4/24 + d_1^2 d_2/2 + d_2^2/2 + d_1 d_3 + d_4) x^4 + \mathcal{O}(x^5) \right\},$$

$$(4.8)$$

$$d_1 = -\bar{\beta}_1 \,\bar{\gamma}_0 + \bar{\gamma}_1,\tag{4.9}$$

$$d_2 = \bar{\beta}_1^2 \, \bar{\gamma}_0 / 2 - \bar{\beta}_2 \, \bar{\gamma}_0 / 2 - \bar{\beta}_1 \, \bar{\gamma}_1 / 2 + \bar{\gamma}_2 / 2, \tag{4.10}$$

$$d_3 = -\bar{\beta}_1^3 \, \bar{\gamma}_0 / 3 + 2 \, \bar{\beta}_1 \, \bar{\beta}_2 \, \bar{\gamma}_0 / 3 - \bar{\beta}_3 \, \bar{\gamma}_0 / 3 + \bar{\beta}_1^2 \, \bar{\gamma}_1 / 3 - \bar{\beta}_2 \, \bar{\gamma}_1 / 3 - \bar{\beta}_1 \, \bar{\gamma}_2 / 3 + \bar{\gamma}_3 / 3, \tag{4.11}$$

$$d_4 = \bar{\beta}_1^4 \, \bar{\gamma}_0 / 4 - 3 \, \bar{\beta}_1^2 \, \bar{\beta}_2 \, \bar{\gamma}_0 / 4 + \bar{\beta}_2^2 \, \bar{\gamma}_0 / 4 + \bar{\beta}_1 \, \bar{\beta}_3 \, \bar{\gamma}_0 / 2 - \bar{\beta}_4 \, \bar{\gamma}_0 / 4 - \bar{\beta}_1^3 \, \bar{\gamma}_1 / 4$$

$$+ \bar{\beta}_1 \bar{\beta}_2 \bar{\gamma}_1 / 2 - \bar{\beta}_3 \bar{\gamma}_1 / 4 + \bar{\beta}_1^2 \bar{\gamma}_2 / 4 - \bar{\beta}_2 \bar{\gamma}_2 / 4 - \bar{\beta}_1 \bar{\gamma}_3 / 4 + \bar{\gamma}_4 / 4. \tag{4.12}$$

Here $\bar{\gamma}_i = (\gamma_m)_i/\beta_0$, $\bar{\beta}_i = \beta_i/\beta_0$ and

$$\beta(a_s) = -\sum_{i \ge 0} \beta_i \, a_s^{i+2} = -\beta_0 \left\{ \sum_{i \ge 0} \bar{\beta}_i \, a_s^{i+2} \right\}$$

is the QCD β -function. Unfortunately, the coefficient d_4 in eq. (4.12) does depend on the yet unknown five-loop coefficient β_4 (up to four loops the β -function is known from [14, 32–39]).

Numerically, the c-function reads:

$$c(x) \underset{n_f=3}{===} x^{4/9} c_s(x), \ c(x) \underset{n_f=4}{===} x^{12/25} c_c(x), \ c(x) \underset{n_f=5}{===} x^{12/23} c_b(x), \ c(x) \underset{n_f=6}{===} x^{4/7} c_t(x),$$

with

$$c_s(x) = 1 + 0.8950 x + 1.3714 x^2 + 1.9517 x^3 + (15.6982 - 0.11111 \bar{\beta}_4) x^4,$$

$$c_c(x) = 1 + 1.0141 x + 1.3892 x^2 + 1.0905 x^3 + (9.1104 - 0.12000 \bar{\beta}_4) x^4,$$

$$c_b(x) = 1 + 1.1755 x + 1.5007 x^2 + 0.17248 x^3 + (2.69277 - 0.13046 \bar{\beta}_4) x^4,$$

$$c_t(x) = 1 + 1.3980 x + 1.7935 x^2 - 0.68343 x^3 + (-3.5130 - 0.14286 \bar{\beta}_4) x^4.$$
 (4.13)

5 Applications

5.1 RGI mass

Eq. (4.7) naturally leads to an important concept: the RGI mass

$$m^{\text{RGI}} \equiv m(\mu_0)/c(a_s(\mu_0)), \tag{5.1}$$

which is often used in the context of lattice calculations. The mass is μ and scheme independent; in any (mass-independent) scheme

$$\lim_{\mu \to \infty} a_s(\mu)^{-\bar{\gamma}_0} \ m(\mu) = m^{\text{RGI}}.$$

The function $c_s(x)$ is used, e.g, by the **ALPHA** lattice collaboration to find the $\overline{\text{MS}}$ mass of the strange quark at a lower scale, say, $m_s(2 \text{ GeV})$ from the m_s^{RGI} mass determined from lattice simulations (see, e.g. [40]). For example, setting $a_s(\mu = 2 \text{ GeV}) = \frac{\alpha_s(\mu)}{\pi} = 0.1$, we arrive at (h counts loops):

$$m_s(2 \,\text{GeV}) = m_s^{\text{RGI}} \left(a_s(2 \,\text{GeV}) \right)^{\frac{4}{9}} \left(1 + 0.0895 \, h^2 + 0.0137 \, h^3 + 0.00195 \, h^4 + (0.00157 - 0.000011 \, \overline{\beta}_4) \, h^5 \right)$$
 (5.2)

In order to have an idea of effects due the five-loop term in (5.2) one should make a guess about $\bar{\beta}_4$. By inspecting lower orders in

$$\beta(n_f = 3) = -\left(\frac{4}{9}\right) \left(a_s + 1.777 a_s^2 + 4.4711 a_s^3 + 20.990 a_s^4 + \bar{\beta}_4 a_s^5\right)$$

one can assume a natural estimate of $\overline{\beta}_4$ as laying in the interval 50-100. With this choice we conclude that the (apparent) convergence of the above series is quite good even at a rather small energy scale of 2 GeV.

On the other hand, the authors of [30] estimate $\bar{\beta}_4$ in the $n_f = 3$ QCD as large as -850! With such a huge and negative value of $\bar{\beta}_4$ the five loop term in (5.2) would amount to 0.01092 and, thus, would significantly exceed the four-loop contribution (0.00195).

5.2 Higgs decay into quarks

The decay width of the Higgs boson into a pair of quarks can be written in the form

$$\Gamma(H \to \bar{f}f) = \frac{G_F M_H}{4\sqrt{2}\pi} m_f^2(\mu) R^S(s = M_H^2, \mu)$$
 (5.3)

where μ is the normalization scale and R^S is the spectral density of the scalar correlator, known to α_s^4 from [41]

$$R^{S}(s = M_{H}^{2}, \mu = M_{H}) = 1 + 5.667 a_{s} + 29.147 a_{s}^{2} + 41.758 a_{s}^{3} - 825.7 a_{s}^{4}$$
$$= 1 + 0.2041 + 0.0379 + 0.0020 - 0.00140$$
(5.4)

where we set $a_s = \alpha_s/\pi = 0.0360$ (for the Higgs mass value $M_H = 125$ GeV and $\alpha_s(M_Z) = 0.118$).

Expression (5.3) depends on two phenomenological parameters, namely, $\alpha_s(M_H)$ and the quark running mass m_q . In what follows we consider, for definiteness, the dominant decay mode $H \to \bar{b}b$. To avoid the appearance of large logarithms of the type $\ln \mu^2/M_H^2$ the parameter μ is customarily chosen to be around M_H . However, the starting value of m_b is usually determined at a much smaller scale (typically around 5-10 GeV [42]). The evolution of $m_b(\mu)$ from a lower scale to $\mu = M_h$ is described by a corresponding RG equation which is completely fixed by the quark mass anomalous dimension $\gamma(\alpha_s)$ and the QCD beta function $\beta(\alpha_s)$ (for QCD with $n_f = 5$). In order to match the $\mathcal{O}(\alpha_s^4)$ accuracy of (5.4) one should know both RG functions β and γ_m in the five-loop approximation. Let us proceed, assuming conservatively that $0 \leq \bar{\beta}_4^{n_f=5} \leq 200$.

The value of $m_b(\mu = M_H)$ is to be obtained with RG running from $m_b(\mu = 10 \,\text{GeV})$ and, thus, depends on β and γ_m . Using the Mathematica package RunDec⁴ [43] and eq. (4.13) we find for the shift from the five-loop term

$$\frac{\delta m_b^2(M_H)}{m_b^2(M_H)} = -1.3 \cdot 10^{-4} (\bar{\beta}_4 = 0) |-4.3 \cdot 10^{-4} (\bar{\beta}_4 = 100) |-7.3 \cdot 10^{-4} (\bar{\beta}_4 = 200) |$$

 $^{^4}$ We have extended the package by including the five-loop effects to the running of α_s and quark masses.

If we set $\mu = M_H$, then the combined effect of $\mathcal{O}(\alpha_s^4)$ terms as coming from the five-loop running and four-loop contribution to R^S on

$$\Gamma(H \to \bar{b}b) = \frac{G_F M_H}{4\sqrt{2}\pi} m_f^2(M_H) R^S(s = M_H^2, M_H)$$
 (5.5)

is around -2‰ (for $\bar{\beta}_4 = 100$). This should be contrasted to the parametric uncertainties coming from the input parameters $\alpha_s(M_Z) = 0.1185(6)$ [44] and $m_b(m_b) = 4.169(8)$ GeV [45] which correspond to $\pm 1\%$ and $\pm 4\%$ respectively.

We conclude, that the $\mathcal{O}(\alpha_s^4)$ terms in (5.4), (5.5)) are of no phenomenological relevancy at present. But, the situation could be different if the project of TLEP [6] is implemented. For instance, the uncertainty in $\alpha_s(M_Z)$ could be reduced to $\pm 2\%$ and Higgs boson branching ratios with precisions in the permille range are advertised.

6 Conclusions

We have analytically computed the anomalous dimensions of the quark mass γ_m and field γ_2 in the five loop approximation. The self-consistent description of the quark mass evolution at five loop requires the knowledge of the QCD β -function to the same number of loops. The corresponding, significantly more complicated calculation is under consideration.

K.G.C. thanks J. Gracey and members of the DESY-Zeuthen theory seminar for usefull discussions.

This work was supported by the Deutsche Forschungsgemeinschaft in the Sonderforschungsbereich/Transregio SFB/TR-9 "Computational Particle Physics". The work of P. Baikov was supported in part by the Russian Ministry of Education and Science under grant NSh-3042.2014.2.

References

- [1] R. Tarrach, The pole mass in perturbative qcd, Nucl. Phys. B183 (1981) 384.
- [2] O. V. Tarasov, Anomalous dimensions of quark masses in three loop approximation, . JINR-P2-82-900.
- [3] S. A. Larin, The renormalization of the axial anomaly in dimensional regularization, Phys. Lett. B303 (1993) 113–118, [hep-ph/9302240].
- [4] K. G. Chetyrkin, Quark mass anomalous dimension to O(alpha(s)**4), Phys. Lett. **B404** (1997) 161–165, [hep-ph/9703278].
- [5] J. A. M. Vermaseren, S. A. Larin, and T. van Ritbergen, The 4-loop quark mass anomalous dimension and the invariant quark mass, Phys. Lett. B405 (1997) 327–333, [hep-ph/9703284].
- [6] M. Bicer, H. Duran Yildiz, I. Yildiz, G. Coignet, M. Delmastro, et al., First Look at the Physics Case of TLEP, arXiv:1308.6176.
- [7] G. 't Hooft and M. J. G. Veltman, Regularization and Renormalization of Gauge Fields, Nucl. Phys. B44 (1972) 189–213.

- [8] W. A. Bardeen, A. J. Buras, D. W. Duke, and T. Muta, Deep inelastic scattering beyond the leading order in asymptotically free gauge theories, Phys. Rev. D18 (1978) 3998.
- [9] J. C. Collins, Normal Products in Dimensional Regularization, Nucl. Phys. B92 (1975) 477.
- [10] P. Nogueira, Automatic feynman graph generation, J. Comput. Phys. 105 (1993) 279–289.
- [11] A. A. Vladimirov, Method For Computing Renormalization Group Functions In Dimensional Renormalization Scheme, Theor. Math. Phys. 43 (1980) 417.
- [12] D. I. Kazakov, O. V. Tarasov, and A. A. Vladimirov, Calculation of critical exponents by quantum field theory methods, Sov. Phys. JETP 50 (1979) 521.
- [13] K. G. Chetyrkin, A. L. Kataev, and F. V. Tkachov, New Approach to Evaluation of Multiloop Feynman Integrals: The Gegenbauer Polynomial x Space Technique, Nucl. Phys. B174 (1980) 345–377.
- [14] O. V. Tarasov, A. A. Vladimirov, and A. Y. Zharkov, The gell-mann-low function of qcd in the three loop approximation, Phys. Lett. **B93** (1980) 429–432.
- [15] K. G. Chetyrkin and V. A. Smirnov, R* OPERATION CORRECTED, Phys. Lett. B144 (1984) 419–424.
- [16] K. G. Chetyrkin, Corrections of order alpha(s)**3 to R(had) in pQCD with light gluinos, Phys. Lett. B391 (1997) 402–412, [hep-ph/9608480].
- [17] P. A. Baikov and K. G. Chetyrkin, Four-Loop Massless Propagators: an Algebraic Evaluation of All Master Integrals, Nucl. Phys. B837 (2010) 186–220, [arXiv:1004.1153].
- [18] R. N. Lee, A. V. Smirnov, and V. A. Smirnov, Master Integrals for Four-Loop Massless Propagators up to Transcendentality Weight Twelve, Nucl. Phys. B856 (2012) 95–110, [arXiv:1108.0732].
- [19] A. V. Smirnov and M. Tentyukov, Four Loop Massless Propagators: a Numerical Evaluation of All Master Integrals, Nucl. Phys. B837 (2010) 40–49, [arXiv:1004.1149].
- [20] P. A. Baikov, A practical criterion of irreducibility of multi-loop feynman integrals, Phys. Lett. **B634** (2006) 325–329, [hep-ph/0507053].
- [21] P. A. Baikov, Explicit solutions of the 3-loop vacuum integral recurrence relations, Phys. Lett. B385 (1996) 404-410, [hep-ph/9603267].
- [22] M. Tentyukov et al., ParFORM: Parallel Version of the Symbolic Manipulation Program FORM, cs/0407066.
- [23] M. Tentyukov and J. A. M. Vermaseren, *The multithreaded version of FORM*, hep-ph/0702279.
- [24] J. A. M. Vermaseren, New features of form, math-ph/0010025.
- [25] A. Palanques-Mestre and P. Pascual, The 1/n-f expansion of the gamma and beta functions in qed, Commun. Math. Phys. 95 (1984) 277.
- [26] M. Ciuchini, S. E. Derkachov, J. Gracey, and A. Manashov, Computation of quark mass anomalous dimension at $O(1 / N^{**2}(f))$ in quantum chromodynamics, Nucl. Phys. **B579** (2000) 56–100, [hep-ph/9912221].
- [27] M. Ciuchini, S. E. Derkachov, J. Gracey, and A. Manashov, Quark mass anomalous dimension at $O(1/N(f)^{**2})$ in QCD, Phys.Lett. **B458** (1999) 117–126, [hep-ph/9903410].
- [28] K. G. Chetyrkin and A. Retey, Renormalization and running of quark mass and field in the

- regularization invariant and MS-bar schemes at three and four loops, Nucl. Phys. **B583** (2000) 3–34, [hep-ph/9910332].
- [29] J. R. Ellis, I. Jack, D. Jones, M. Karliner, and M. Samuel, Asymptotic Pade approximant predictions: Up to five loops in QCD and SQCD, Phys.Rev. D57 (1998) 2665–2675, [hep-ph/9710302].
- [30] V. Elias, T. G. Steele, F. Chishtie, R. Migneron, and K. B. Sprague, Pade improvement of QCD running coupling constants, running masses, Higgs decay rates, and scalar channel sum rules, Phys.Rev. D58 (1998) 116007, [hep-ph/9806324].
- [31] A. Kataev and V. Kim, Higgs boson decay into bottom quarks and uncertainties of perturbative QCD predictions, arXiv:0804.3992.
- [32] D. J. Gross and F. Wilczek, Ultraviolet behavior of non-abelian gauge theories, Phys. Rev. Lett. 30 (1973) 1343–1346.
- [33] H. D. Politzer, Reliable perturbative results for strong interactions?, Phys. Rev. Lett. 30 (1973) 1346–1349.
- [34] W. E. Caswell, Asymptotic behavior of nonabelian gauge theories to two loop order, Phys. Rev. Lett. 33 (1974) 244.
- [35] D. R. T. Jones, Two loop diagrams in yang-mills theory, Nucl. Phys. B75 (1974) 531.
- [36] E. Egorian and O. V. Tarasov, Two loop renormalization of the qcd in an arbitrary gauge, Theor. Math. Phys. 41 (1979) 863–867.
- [37] S. A. Larin and J. A. M. Vermaseren, The three loop qcd beta function and anomalous dimensions, Phys. Lett. B303 (1993) 334–336, [hep-ph/9302208].
- [38] T. van Ritbergen, J. A. M. Vermaseren, and S. A. Larin, *The four-loop beta function in quantum chromodynamics*, *Phys. Lett.* **B400** (1997) 379–384, [hep-ph/9701390].
- [39] M. Czakon, The four-loop QCD beta-function and anomalous dimensions, Nucl. Phys. B710 (2005) 485–498, [hep-ph/0411261].
- [40] **ALPHA** Collaboration, M. Della Morte et al., Non-perturbative quark mass renormalization in two-flavor qcd, Nucl. Phys. **B729** (2005) 117–134, [hep-lat/0507035].
- [41] P. A. Baikov, K. G. Chetyrkin, and J. H. Kühn, Scalar correlator at $\mathcal{O}(\alpha_s^4)$, Higgs decay into b- quarks and bounds on the light quark masses, Phys. Rev. Lett. **96** (2006) 012003, [hep-ph/0511063].
- [42] K. Chetyrkin, J. Kühn, A. Maier, P. Maierhofer, P. Marquard, et al., *Charm and Bottom Quark Masses: An Update, Phys.Rev.* **D80** (2009) 074010, [arXiv:0907.2110].
- [43] K. G. Chetyrkin, J. H. Kühn, and M. Steinhauser, RunDec: A Mathematica package for running and decoupling of the strong coupling and quark masses, Comput. Phys. Commun. 133 (2000) 43–65, [hep-ph/0004189].
- [44] Particle Data Group Collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D86 (2012) 010001.
- [45] A. A. Penin and N. Zerf, Bottom Quark Mass from Υ Sum Rules to $\mathcal{O}(\alpha_s^3)$, arXiv:1401.7035.