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1 Introduction

The quark masses depend on a renormalization scale. The dependence is usually referred
to as “running” and is governed by the quark mass anomalous dimension, ~,,, defined as:

9 d

L dTﬁmbO’mO = mym(as) = —mz%- aitl, (1.1)
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where a; = as/7 = g?/(47?), g is the renormalized strong coupling constant and p is
the normalization scale in the customarily used MS renormalization scheme. Up to and
including four loop level the anomalous dimension is known since long [1-5]. In this paper
we will describe the results of calculation of v, and a related quantity — the quark field
anomalous dimension — in the five-loop order.

The evaluation of the quark mass anomalous dimension with five-loop accuracy has
important implications. The Higgs boson decay rate into charm and bottom quarks is pro-
portional to the square of the respective quark mass at the scale of my and the uncertainty
from the presently unknown 5-loop terms in the running of the quark mass is of order 1073,
This is comparable to the precision advocated for experiments e.g. at TLEP [6]. Similarly,
the issue of Yukawa unification is affected by precise predictions for the anomalous quark
mass dimension.

The paper is organized as follows. The next section deals with the overall set-up of
the calculations. Then we present our results (Section 3), and a brief discussion (Section
4) as well as a couple of selected applications (Section 5). Our short conclusions are given
Section 6.



2 Technical preliminaries

To calculate -, one needs to find the so-called quark mass renormalization constant, Z,,,
which is defined as the ratio of the bare and renormalized quark masses, viz.

In="2 214 Y (Zn), 2. (2.1)

Within the MS scheme [7, 8] the coefficients (Zm);; are just numbers [9]; e = 2—D/2 and D
stands for the space-time dimension. Combining egs. (1.1,2.1) and using the RG-invariance

of of mY, one arrives at the following formula for 7,

Y=Y (Zm)iridl. (2.2)
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To find Z,, one should compute the vector and scalar parts of the quark self-energy
Yy (p?) and Xg(p?). In our convention, the bare quark propagator is proportional to
(B (1+39(p?) — my (1 — 22(p?)] - Requiring the finiteness of the renormalized quark
propagator and keeping only massless and terms linear in my, one arrives at the following
recursive equations to find Z,,

ZnZy =1+ KA ZnZo55(p*)}, Zo=1- K A{Z:20(p%)}, (2.3)

where K. {f(€)} stands for the singular part of the Laurent expansion of f(¢) in € near
e = 0 and Zj is the quark wave function renormalization constant. Eqs. (2.3) express
Zm through massless propagator-type (that is dependent on one external momentum only)
Feynman integrals (FI), denoted as p-integrals below.

Egs. (2.3) require the calculation of a large number! the five-loop p-integrals to find
Zym and Zs to O(ad).

At present there exists no direct way to analytically evaluate five-loop p-integrals.
However, according to (2.1) for a given five-loop p-integral we need to know only its pole
part in € in the limit of € — 0. A proper use of this fact can significantly simplify our task.
The corresponding method—so-called Infrared Rearrangement (IRR)—first suggested in
[11] and elaborated further in [12-14] allows to effectively decrease number of loops to
be computed by one?. In its initial version IRR was not really universal; it was not
applicable in some (though rather rare) cases of complicated FI’s. The problem was solved
by elaborating a special technique of subtraction of IR divergences — the R*-operation [15,
16]. This technique succeeds in expressing the UV counterterm of every L-loop Feynman
integral in terms of divergent and finite parts of some (L-1)-loop massless propagators.

In our case L = 5 and, using IRR, one arrives at at around 10° four-loop p-integrals.
These can, subsequently, be reduced to 28 four-loop masterp-integrals, which are known
analytically, including their finite parts, from [17, 18] as well as numerically from [19].

! We have used QGRAF [10] to produce around 10° FT’s contributing to the quark self-energy at O(a?).
2With the price that resulting one-loop-less p-integrals should be evaluated up to and including their
constant part in the small e-expansion.



We need, thus, to compute around 10° p-integrals. Their singular parts, in turn, can
be algebraically reduced to only 28 master 4-loop p-integrals. The reduction is based on
evaluating sufficiently many terms of the 1/D expansion [20] of the corresponding coefficient
functions [21].

All our calculations have been performed on a SGI ALTIX 24-node IB-interconnected
cluster of eight-cores Xeon computers using parallel MPI-based [22] as well as thread-based
[23] versions of FORM [24].

3 Results

Our result for the anomalous dimension

Ym = — Z <7m)i ai—H
=0
reads:
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Here ( is the Riemann zeta-function ((3 = 1.202056903. .., (4 = 74/90, (5 = 1.036927755.. . .,
(6 = 1.017343062. .. and (7 = 1.008349277... ). Note that in four-loop order we exactly®

3This agreement can be also considered as an important check of all our setup which is completely
different from the ones utilized at the four-loop calculations.



reproduce well-known results obtained in [4, 5]. The boxed terms in (3.4) are in full agree-
ment with the results derived previously on the basis of the 1/n; method in [25-27].
For completeness we present below the result for the quark field anomalous dimension

Yo = =ity (v2)ialt

1 [ 2798900231 17969627 . 13214911 ., 16730765 832567417
(72)4 = 45{ 76 T sea T T oas BT T e 4T 3sss O
40109575 124597529
1206 T s ¢
861347053 274621439 . 1960337 , 465395
R e v T TV R o R R DT
22160149 . 1278475 3443909
5832 T T1om T arg 47]
37300355 1349831 128 27415 . 12079 . 800 1323
+”?’_ T66s T as6 T g G a G gy G Gy G
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+ n?c T STas 871{3 + 9C4] —&-n‘} [729 - 81{3] } (3.5)

The above result is presented for the Feynman gauge; the coefficients (v2); with ¢ < 3 can
be found in [28] (for the case of a general covariant gauge and SU(N) gauge group).

4 Discussion
In numerical form -, reads

Ym = — as — a2 (4.20833 — 0.138889n )
a? (19.5156 — 2.28412n; — 0.0270062n%)

ag (98.9434 — 19.1075n + 0.276163n7 + 0.00579322n7)
— a3 (559.7069 — 143.6864 1 + 7.4824 n} + 0.1083 % — 0.000085359 n}) (4.1)

and
Tm ===~ 8s = 3.79167 a? — 12.4202 a3 — 44.2629 a3 — 198.907 a,
gm == — 0s — 3.65278 a? —9.94704 a2 — 27.3029 a? — 111.59 a2,
g == = s = 3.51389 a2 — 7.41986 a> — 11.0343 a — 41.8205 a?,
T == — as — 337500 a? — 4.83867 a2 + 4.50817 a; + 9.76016 a. (4.2)

Note that significant cancellations between n(} and n} terms for the values of ny around 3
or so persist also at five-loop order. As a result we observe a moderate growth of the series
in as appearing in the quark mass anomalous dimension at various values of active quark
flavours (recall that even for scales as small as 2 GeV a; = %= ~ 0.1).



ng 3 4 5 6
(Y ) §F2¢E 198.899 | 111.579 | 41.807 | -9.777

(Y )4 PAP [29] | 162.0 67.1 -13.7 | -80.0
() APAP [30] | 163.0 75.2 126 | 12.2
(v )APAP [31] | 164.0 71.6 4.8 | -64.6

Table 1: The exact results for (v,,)4 together with the predictions made with the help of
the original APAP method and its two somewhat modified versions.

Similar behavior shows up for ~s:

Y2 = — 0.33333a, — a? (—1.9583 + 0.08333 ny)
— a2 (—10.3370 + 1.0877 ny — 0.01157 n})
ag (—53.0220 4 10.1090 ny — 0.27703 n7 — 0.0023 n’})
ay (—310.0700 + 76.3260 n; — 4.6339 n7 + 0.0085n} + 0.00048n})  (4.3)

and
N 0.33333a, — 1.7083aZ — 7.1779 a2 — 25.2480 a; — 122.5300 a2,
92 == = 0.33333 a5 — 1.6250 a2 — 6.1712a2 — 17.1610 a} — 78.2430 a2,
92 == - 0.33333 a5 — 1.5417 a? — 5.1877 a2 — 9.6824 a? — 42.9240 a3,
N= 0.33333 a5 — 1.4583 a? — 4.2274 a? — 2.8251 a} — 16.4710a5. (4.4)

It is instructive to compare our numerical result for (V)4
(Ym)a = 559.71 — 143.6 ny 4 7.4824 n% + 0.1083 n} — 0.00008535 ny (4.5)

with a 15 years old prediction based on the “Asymptotic Pdde Approximants” (APAP)
method [29] (the boxed term below was used as the input)

(Ym)4TA" = 530 — 143 ny + 6.67 n} + 0.037n} —| 0.00008535 n’} (4.6)

Unfortunately, this impressively good agreement does not survive for fixed values of ny due
to severe cancellations between different powers of ny as one can see from the Table 1.
The solution of eq. (1.1) reads:

m) o)
(o)~ earu)) p{/ : mx/)}’ (17)

cx)= () {1+ diz+ (d}/2+d2)2® + (d}/6 + dids + d3) z°
( 1/24 + didy/2 + d3/2 + dids + da) 2* + O(2°) }, (4.8)



di = —B1 % + 1, (4.9)

dy = B3 70/2 — B270/2 — Br /2 + 72/2, (4.10)
d3 = =B} 50/3+ 281 B270/3 — B30/3 + Bi 71/3 — Ba 1 /3 — P172/3 + /3, (4.11)
dy = B{70/4 — 337 BaAo/4 + B3 Jo/4 + B1 B3 Ao/2 — Bao /4 — BT /4

+ B1Pe1/2 — Ba /A + BT Y2/4 — Ba2/A — BrAs/4 + Fa /4 (4.12)

Here %; = (Ym)i/Bo, Bi = Bi/Bo and

Blas) == Biait? = =B > Biait?

i>0 i>0

is the QCD p-function. Unfortunately, the coefficient dy in eq. (4.12) does depend on
the yet unknown five-loop coefficient 4 (up to four loops the S-function is known from

[14, 32-39)).
Numerically, the c-function reads:
c(x) a9 ey(x), c(x) == 2P c(z), c(x) == 2'¥? ¢y(x), c(2) M7 e (x),
ny=3 ny=4 ny=>5 ny=6
with
co(z) = 14 0.8950x + 1.3714 2% + 1.9517 2% + (15.6982 — 0.11111 34) =,

cp(x

+ 1.1755 = 4 1.5007 2% 4 0.17248 23 + (2.69277 — 0.13046 (4) z*,

(z) =1
ce(z) = 1+ 1.0141 2 + 1.3892 2% 4 1.0905 2% + (9.1104 — 0.12000 f34) *,
(x) =1
() = 14 1.3980 2 + 1.7935 22 — 0.68343 2% + (—3.5130 — 0.14286 34) z*. (4.13)
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5 Applications

5.1 RGI mass
Eq. (4.7) naturally leads to an important concept: the RGI mass

mP = m(uo)/e(as(o)), (5.1)

which is often used in the context of lattice calculations. The mass is y and scheme
independent; in any (mass-independent) scheme

lim ag(p) ™7 m(p) = mRCL
H—>00

The function cs(z) is used, e.g, by the ALPHA lattice collaboration to find the MS mass

RGI

7" mass determined from

of the strange quark at a lower scale, say, ms(2 GeV) from the m
lattice simulations (see, e.g. [40]). For example, setting as(u = 2GeV) = e — 01, we

=
arrive at (h counts loops):

ms(2GeV) = mBCT (,(2GeV))? (1 4 0.0895 h? + 0.0137 13 4 0.00195 *

+(0.00157 — 0.000011 B,) h5) (5.2)



In order to have an idea of effects due the five-loop term in (5.2) one should make a guess
about ;. By inspecting lower orders in

4 _
Bng =3) = — <9> (as 177762 + 4471163 +20.990 0 + Gy ai)

one can assume a natural estimate of 3, as laying in the interval 50 — 100. With this choice
we conclude that the (apparent) convergence of the above series is quite good even at a
rather small energy scale of 2 GeV.

On the other hand, the authors of [30] estimate 3,4 in the n = 3 QCD as large as
-850! With such a huge and negative value of 34 the five loop term in (5.2) would amount
to 0.01092 and, thus, would significantly exceed the four-loop contribution (0.00195).

5.2 Higgs decay into quarks
The decay width of the Higgs boson into a pair of quarks can be written in the form

Gr Mg S 2
e M0 R (s = M) (5.3)

where 1 is the normalization scale and R® is the spectral density of the scalar correlator,

L(H — ff) =

known to a? from [41]

RY(s = M%, 1= Mp) = 1+ 5.667 as + 29.147 a2 + 41.758 a® —825.7 a*
= 1+ 0.2041 + 0.0379 + 0.0020—0.00140 (5.4)

where we set a; = as/m = 0.0360 (for the Higgs mass value My = 125 GeV and a4(Myz) =
0.118).

Expression (5.3) depends on two phenomenological parameters, namely, as(Mpy) and
the quark running mass my. In what follows we consider, for definiteness, the dominant
decay mode H — bb. To avoid the appearance of large logarithms of the type In /M3
the parameter y is customarily chosen to be around Mp. However, the starting value of
mp is usually determined at a much smaller scale (typically around 5-10 GeV [42]). The
evolution of my(u) from a lower scale to u = Mj, is described by a corresponding RG
equation which is completely fixed by the quark mass anomalous dimension y(a;) and the
QCD beta function B(as) (for QCD with ny = 5). In order to match the O(a;?) accuracy
of (5.4) one should know both RG functions 5 and ~,, in the five-loop approximation. Let
us proceed, assuming conservatively that 0 < Bzf =5 < 200.

The value of my(u = Mp) is to be obtained with RG running from my(p = 10 GeV)
and, thus, depends on 3 and 7,,. Using the Mathematica package RunDec? [43] and eq.
(4.13) we find for the shift from the five-loop term

omi (M)

=-13-1074(6s = 0)| = 4.3-107"(Bs = 7310743, =
(g 0 (Bs = 0)| — 4.3 - 107(y = 100)| — 7.3 - 1074(By = 200)

4We have extended the package by including the five-loop effects to the running of s and quark masses.



If we set u = Mp, then the combined effect of O(a?) terms as coming from the five-loop
running and four-loop contribution to R on

~ GpMpg
421
is around -2%o (for B4 = 100). This should be contrasted to the parametric uncertainties

coming from the input parameters as(Mz) = 0.1185(6) [44] and my(myp) = 4.169(8) GeV
[45] which correspond to £ 1%0 and £ 4% respectively.

[(H — bb) m$ (M) R%(s = Mp;, My) (5.5)

We conclude, that the O(al) terms in (5.4), (5.5)) are of no phenomenological rel-
evancy at present. But, the situation could be different if the project of TLEP [6] is
implemented. For instance, the uncertainty in «g(Myz) could be reduced to +2%0 and
Higgs boson branching ratios with precisions in the permille range are advertised.

6 Conclusions

We have analytically computed the anomalous dimensions of the quark mass v,, and field v,
in the five loop approximation. The self-consistent description of the quark mass evolution
at five loop requires the knowledge of the QCD S-function to the same number of loops.
The corresponding, significantly more complicated calculation is under consideration.
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