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We evaluate the three-loop corrections to the matching coefficient of the vector current between
Quantum Chromodynamics (QCD) and non-relativistic QCD. The result is presented in the MS
scheme where large perturbative corrections are observed. The implications on the threshold pro-
duction of top quark pairs are briefly discussed.
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I. INTRODUCTION

In the recent years effective field theories constructed
from Quantum Chromodynamics (QCD) have been enor-
mously successful to describe phenomena where masses
and momenta follow certain limits. Among them is non-
relativistic QCD (NRQCD) [1, 2] which is applicable to
a system of two heavy quarks moving with small relative
velocity. Next to properties of the ψ and Υ families also
the threshold production of top quark pairs is among the
prominent examples (see, e.g., Ref. [3] for a review).

The common method to construct an effective theory
is based on the so-called matching procedure: appropri-
ately chosen Green’s functions are computed in the full
and effective theory and equality is required up to power-
suppressed terms. In this way the couplings of the effec-
tive operators (i.e. the matching coefficients) are deter-
mined which completely specifies the effective theory.

A crucial operator both in QCD and NRQCD is the
vector current of a heavy quark-antiquark pair. The
corresponding matching coefficient enters as a building
block in a variety of physical observables, for exam-
ple the bottom-quark mass from Υ sum rules (see, e.g.,
Refs. [4, 5] for recent analyses) and top-quark threshold
production at a future electron positron linear collider [6].
The latter process allows for an extraction of the top-
quark mass with an accuracy below 100 MeV [7–9] —
an improvement of about an order of magnitude as com-
pared to the current results from the Fermilab Tevatron
or the the CERN Large Hadron Collider [10].

Several quantities are needed in order to perform a
third-order analysis of a heavy quark-antiquark system
at threshold. Ultrasoft effects have been considered in
Refs. [11, 12], the three-loop static potential has been
computed in Refs. [13–15] and in Ref. [16, 17] a prelimi-
nary analysis of the top-quark threshold production cross
section has been presented including also third-order po-
tential effects. Details on the potential contributions can
be found in Refs. [18, 19]. In this paper we compute the
three-loop matching coefficient between the vector cur-
rent in QCD and NRQCD. Thus all ingredients are avail-

able to obtain the complete next-to-next-to-next-to lead-
ing order QCD prediction of the cross section e+e− → tt̄
close to threshold or the decay width of the Υ(1S) me-
son to leptons. The results for the latter are presented
in an accompanying paper [20] where all building blocks
are combined to a phenomenological analysis.

II. VECTOR CURRENTS IN QCD AND NRQCD

The vector current in the full theory (QCD) is given
by

jµv = Q̄γµQ , (1)

where Q denotes a generic heavy quark with mass mQ.
On the other hand in the effective theory (NRQCD) the
current is represented by an expansion in 1/mQ where
at each order effective operators have to be considered
which are multiplied by coefficient functions. The leading
contribution involves one operator given by

j̃k = φ†σkχ , (2)

where φ and χ are two-component Pauli spinors for quark
and anti-quark, respectively, and σk (k = 1, 2, 3) are the
Pauli matrices. Hence, the matching coefficient of the
vector current is defined through

jkv = cv(µ)j̃k +O

(
1

m2
Q

)
. (3)

Note that the 0-component of jµv is only relevant for the
power-suppressed contributions.

The purpose of this paper is the evaluation of the
purely gluonic three-loop corrections to cv. The fermionic
contributions have already been considered in Refs. [21,
22].

In order to compute cv it is convenient to consider on-
shell vertex corrections involving the currents jkv and j̃k.
After taking into account the wave function renormaliza-
tion one obtains (see also Ref. [18])

Z2Γv = cvZ̃2Z̃
−1
v Γ̃v + . . . , (4)
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FIG. 1: Feynman diagrams contributing to Γv. Straight and
curly lines denote heavy quarks with mass mQ and gluons,
respectively.

where the quantities with a tilde are defined in the effec-
tive theory and the ellipsis represents terms suppressed
by the heavy-quark mass. Z̃−1v is the renormalization
constant of the current j̃k which is used to subtract the
remaining poles after renormalization. These poles are
due to the separation of long and short distance contri-
butions in the effective theory. In order to evaluate phys-
ical quantities it is important that the same subtraction
scheme is also adopted in the contributions originating
from the effective theory [11, 12]. It is well-known that
in the full theory the renormalization constant of the vec-
tor current is equal to one.

In Eq. (4) Z2 is the on-shell wave function renormaliza-
tion constant which has been computed up to three-loop
accuracy in Refs. [23–25]. Γv denotes the one-particle
irreducible vertex diagrams with on-shell quarks carry-
ing momenta q1 and q2. It incorporates all one-particle
irreducible vertex graphs and the corresponding coun-
terterms for mQ and αs. Sample Feynman diagrams are
shown in Fig. 1.

The counterparts of Γv and Z2 in the effective theory
can be found on the right-hand side of Eq. (4). It is conve-
nient to apply the threshold expansion [26, 27] to Eq. (4).
This requires the identification of the hard, soft, poten-
tial and ultrasoft momentum regions in the integrals con-
tributing to Γv and Γ̃v. Since NRQCD is obtained from
QCD by integrating out the hard modes one has by con-
struction that the soft, potential and ultrasoft modes
agree in Γv and Γ̃v and thus drop out from Eq. (4). As a
consequence Γv is evaluated for q2 = (q1 + q2)2 = 4m2

Q,
which corresponds to the leading term of the hard in-
tegration region, and Γ̃v = 1. Furthermore, we have
Z̃2 = 1.

There are several technical difficulties which one has
to overcome in order to compute the vertex corrections.
Among them are the large number of diagrams which
leads to several thousand Feynman integrals to be eval-
uated in the first place, their reduction to a small set
of about 100 basis integrals, so-called master integrals,
and the evaluation of the latter in an expansion in

ε = (4−D)/2, where D is the space-time dimension. The
last two tasks become more complicated by the additional
condition q2 = 4m2

Q on the external momentum. An au-
tomated setup for the calculation has been described in
Ref. [22] and applied to the fermionic contributions. Its
core parts are a powerful implementation of Laporta’s
algorithm in the program CRUSHER [28], and FIESTA [29–
31] which is based on sector decomposition and is used
for the numerical integration of the master integrals. The
main differences to the gluonic part considered in this pa-
per are the larger number of diagrams and the increased
complexity of the integrals which have to be reduced to
master integrals. Furthermore, the master integrals are
more numerous and more involved.

III. MATCHING COEFFICIENT TO ORDER α3
s

Before discussing the matching coefficient it is instruc-
tive to consider the renormalization constant Z̃v. The
analytical results can be extracted from Refs. [11, 21, 32,
33].

Z̃v =

1 +

(
α
(nl)
s (µ)

π

)2
CFπ

2

ε

(
1

12
CF +

1

8
CA

)

+

(
α
(nl)
s (µ)

π

)3

CFπ
2

×

{
C2
F

[
5

144ε2
+

(
43

144
− 1

2
ln 2 +

5

48
Lµ

)
1

ε

]
+ CFCA

[
1

864ε2
+

(
113

324
+

1

4
ln 2 +

5

32
Lµ

)
1

ε

]
+ C2

A

[
− 1

16ε2
+

(
2

27
+

1

4
ln 2 +

1

24
Lµ

)
1

ε

]
+ Tnl

[
CF

(
1

54ε2
− 25

324ε

)
+ CA

(
1

36ε2
− 37

432ε

)]
+ CFTnh

1

60ε

}
+O(α4

s) , (5)

where CA = Nc, CF = (N2
c − 1)/(2Nc) and T = 1/2

for a SU(Nc) gauge group and Lµ = ln(µ2/m2
Q). Note

that the strong coupling is defined in the effective theory
with nl active quarks where nl + nh is the total number
of quark flavors. In our case we have nh = 1, however,
we keep nh in the formulae for convenience.

From our calculation we can extract the renormaliza-
tion constant Z̃v and compare with Eq. (5). The central
values of our numerical coefficients agree at the per cent
level with the analytical result of Eq. (5) which consti-
tutes a first non-trivial check and provides quite some
confidence in the overall set-up of our calculation.

We write the perturbative expansion of the matching
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coefficient in the form

cv = 1 +
α
(nl)
s (µ)

π
c(1)v +

(
α
(nl)
s (µ)

π

)2

c(2)v

+

(
α
(nl)
s (µ)

π

)3

c(3)v +O(α4
s) , (6)

and decompose c
(3)
v according to the color structures as

c(3)v =

CF
[
C2
F cFFF + CFCAcFFA + C2

AcFAA

+ Tnl (CF cFFL + CAcFAL + TnhcFHL + TnlcFLL)

+ Tnh (CF cFFH + CAcFAH + TnhcFHH)
]

+ singlet terms . (7)

Note that all color factors of the non-singlet part can be
expressed in terms of CF , CA, and T . In this paper we do
not consider the singlet contribution where the external
current does not couple to the fermion line in the final
state. At two-loop order such contributions have been
computed [43] for axial-vector, scalar and pseudo-scalar
currents in Ref. [34]. Their numerical effect in those cases
is below 3% as compared to the non-singlet contributions
and thus quite small.

Whereas the one- [35] and two-loop [32, 34, 36] terms
have been known since long the fermionic three-loop cor-
rections became available only a few years ago [21, 22].
The so-called renormalon contribution, consisting of the
one-loop diagram with arbitrary many massless quark
loop insertions in the gluon propagator, has been com-
puted in Ref. [37]. Supersymmetric one-loop corrections
to cv have been computed in Ref. [38].

In the following we present the results for the indi-
vidual coefficients in Eq. (7) parameterized in terms of

α
(nl)
s (mQ). The reconstruction of the full dependence

on the renormalization scale is straightforward; the cor-
responding expressions can be obtained from [39]. Our
results read [44]

c(1)v = −2CF ,

c(2)v =

(
−151

72
+

89

144
π2 − 5

6
π2 ln 2− 13

4
ζ(3)

)
CACF

+

(
23

8
− 79

36
π2 + π2 ln 2− 1

2
ζ(3)

)
C2
F

+

(
22

9
− 2

9
π2

)
CFTnh +

11

18
CFTnl

− 1

2
π2

(
1

2
CA +

1

3
CF

)
CFLµ ,

cFFF = 36.55(0.53)

+

(
− 9

16
+

3

2
ln 2

)
π2Lµ −

5

32
π2L2

µ ,

cFFA = −188.10(0.83)

+

(
− 59

108
− 3

4
ln 2

)
π2Lµ −

47

576
π2L2

µ ,

cFAA = −97.81(0.38)

+

(
−2

9
− 3

4
ln 2

)
π2Lµ +

1

6
π2L2

µ ,

cFFL = 46.691(0.006) +
25

108
π2Lµ −

1

18
π2L2

µ ,

cFAL = 39.624(0.005) +
37

144
π2Lµ −

1

12
π2L2

µ ,

cFHL = −557

162
+

26

81
π2 ,

cFLL = −163

162
− 4

27
π2 ,

cFFH = −0.846(0.006)− 1

20
π2Lµ ,

cFAH = −0.098(0.051) ,

cFHH = −427

162
+

158

2835
π2 +

16

9
ζ(3) . (8)

All uncertainties originating from the individual master
integrals are added quadratically. In order to obtain a
conservative error estimate we interpret the uncertainty
of the numerical integration as one standard deviation
from a Gaussian distribution and multiply it by a factor
of five which is accounted for in Eq. (8) [45]. The coeffi-
cients of Lµ could be obtained in analytic form since all
renormalization constants are known analytically.

In most applications it is sufficient to know the result
for the matching coefficient with numerically evaluated
color factors. Setting CF = 4/3, CA = 3, T = 1/2
and nh = 1 before inserting the master integrals and
combining the numerical uncertainties we get

cv ≈ 1− 2.667
α
(nl)
s

π
+

(
α
(nl)
s

π

)2

[−44.551 + 0.407nl]

+

(
α
(nl)
s

π

)3

[−2091(2) + 120.66(0.01)nl

− 0.823n2l
]

+ singlet terms , (9)

where µ = mQ has been chosen. Note that the nl-
independent three-loop term contains the contribution
with a closed massive quark loop which amounts to

c
(3)
v |nl=0

nh
≈ −0.93(8) [22]. One observes that for nl = 3, 4

and 5 all coefficients in Eq. (9) have the same sign and
that they grow quite rapidly when going from NLO to
NNNLO. At NNLO and NNNLO the fermionic correc-
tions screen the non-fermionic ones, but even for nl = 5
only a reduction of at most 30% is obtained. A first
glance at Eq. (9) would suggest that for the quantity cv
perturbation theory breaks down even though the mo-
mentum scale involved in the problem, mQ, is quite large.
However, as already mentioned above, cv itself does not
represent a physical quantity. It has to be combined with
contributions originating from soft, potential and ultra-
soft momentum regions which can compensate the large
coefficients in Eq. (9). Further discussions on this topic
can be found in Ref. [20]. It might very well be that the
MS scheme adopted in our calculation is not well suited
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q1

q2

FIG. 2: Typical master integral appearing in our calculation.
The solid lines and dashed lines represent massive and mass-
less lines, respectively. For the external momenta we have the
conditions q21 = q22 = m2

Q and (q1 + q2)2 = 4m2
Q.

for separating the divergences occuring in the different
regimes. In fact, also the ultrasoft contribution studied
in Ref. [11, 12] shows large numerical effects.

We have performed several checks on the correctness of
our result which we want to mention in the following. In
our calculation we allowed for a general gauge parameter
ξ which manifests as a polynomial dependence of the in-
dividual diagrams. After summing the three-loop results
for Z2 and Γv (taking into account the corresponding
quark mass counterterm contribution) we concentrated
on the coefficient of the linear ξ-dependence and have
verified that it vanishes. As a further check we recom-
puted the nl contribution [21] using our automated setup.
In this context we want to mention that in Ref. [21] all
occuring master integrals have been computed either an-
alytically or using a numerical method different from the
one used in the present paper. As already mentioned
above, with our calculation we could also reproduce the
renormalization constant in Eq. (5) with high accuracy
which checks all but the highest ε coefficients of the mas-
ter integrals. We note in passing that we have a similar
accuracy for the cancellation of the spurious poles up to
seventh order occuring due to our reduction procedure.

At this point it is instructive to show a result for a
typical master integral contributing to cv. For the Feyn-
man diagram in Fig. 2, which we need up to order ε, we
obtain with the help of FIESTA [29–31]

M =
e3εγE

m4
Q

(
µ2

m2
Q

)3ε(
+

0.411236(3)

ε2
+

3.4860(1)

ε

+ 34.520(2) + 339.68(4)ε+O(ε2)

)
. (10)

A very powerful check on the correctness of our result
is provided by the change of basis for the master inte-
grals. We employ the integral tables generated during
the reduction procedure in order to re-express the mas-
ter integrals, which are not known analytically, through

default basis (cf. Eq. (8)) alternative basis

cFFF 36.55(0.11) 36.61(2.93)

cFFA −188.10(0.17) −188.04(2.91)

cFAA −97.81(0.08) −97.76(2.05)

c
(3)
v (nl = 4) −1621.7(0.4) −1621(23)

c
(3)
v (nl = 5) −1508.4(0.4) −1507(23)

TABLE I: Comparison of the purely gluonic coefficients of

Eq. (8) and c
(3)
v with nl = 4 and nl = 5 for two different

choices of the master integral basis. For convenience µ = mQ

has been adopted. The given uncertainties are obtained by
combining the numerical uncertainties of each master integral
contribution in quadrature. In contrast to Eqs. (8) and (9)
no factor five has been introduced for this comparison.
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FIG. 3: Residue for the top quark system normalized to
ZLO

t (µS) as a function of the renormalization scale µ. Dotted,
dash-dotted, short-dashed and solid lines correspond to LO,
NLO, NNLO and NNNLO prediction. In the long-dashed

curve only the fermion contributions to c
(3)
v are taken into

account (NNNLO (ferm.)).

different, in general more complicated ones. This trans-
formation is done analytically for general space-time di-
mension D. In a next step the new master integrals are
again evaluated with FIESTA and inserted in the new ex-
pression for cv. In Tab. I we compare the results for
the purely gluonic coefficients and the complete result

for c
(3)
v obtained in the two bases. We observe an ex-

cellent agreement within the uncertainties. In the case
of the “alternative basis” one has to keep in mind that
the integrals to be evaluated numerically are significantly
more complicated which explains the larger uncertainties
for the coefficients in Tab. I.

As a further check on the numerical evaluation of the
master integrals we have used a different momentum as-
signment in the input for FIESTA. As a consequence dif-
ferent expressions are generated in intermediate steps
leading to different numerical integrations. The final re-
sults are in complete agreement with Eq. (9).
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We are now in the position to have a first look to the
phenomenological consequences of our result for cv. We
consider the residue of the two-point function of the vec-
tor currents(
−q2gµν + qµqν

)
Π(q2) = i

∫
dx eiqx〈0|Tjµ(x)j†ν(0)|0〉 ,

(11)

which is obtained by considering Π(q2) close to the QQ̄
threshold. In this limit Π(q2) is dominated by pole con-
tributions originating from bound-state effects

Π(q2)
E→En=

Nc
2m2

Q

Zn
En − (E + i0)

+ . . . , (12)

where the ellipsis denotes contributions from the conti-
nuum. Zn and En are the residue and energy of the nth

resonance which determine the height and position of the
threshold cross section, respectively. In the following we
consider the residue of the 1S (pseudo) bound state of
top quarks and extend the considerations of Ref. [16][46]

by including the non-fermionic contribution of c
(3)
v and

the O(ε) term of the 1/mQ potential [20]. Choosing the
potential subtracted scheme [40] with µf = 20 GeV to
define the top quark mass we obtain mPS

t = 171.4 GeV
which leads to

Zt =
(CFm

PS
t αs)

3

8π
[1 + (−2.131 + 3.661L)αs + (8.38

+ 1.27xf − 7.26 lnαs − 13.40L+ 8.93L2
)
α2
s

+ (5.46 + (−2.23 + 0.78Lf )xf + 2.21a3
+ 21.48b2ε + 37.53cf − 134.8(0.1)cg

+ (−9.79− 44.27L) lnαs − 16.35 ln2 αs

+ (53.17 + 4.66xf )L− 48.18L2 + 18.17L3
)
α3
s

+O(α4
s)
]

=
(CFm

PS
t αs)

3

8π

[
1− 2.13αs + 23.66α2

s

−113.0(0.1)α3
s +O(α4

s)
]
, (13)

where xf = µf/(m
PS
t αs), L = ln (µ/(mPS

t CFαs)), and
Lf = ln(µ2/µ2

f ). We have used αs(MZ) = 0.1184 to

compute αs = αs(µS) ≈ 0.141 where the soft scale
µS = mQCFαs(µS) ≈ 32.16 GeV has been adopted af-
ter the second equality sign. In order to get an impres-
sion about the importance of the individual contributions
we mark the µ-independent coefficients from the three-
loop static potential (a3), from the two-loop O(ε) term

of the 1/(mQr
2) potential (b2ε), and from the three-loop

fermion (cf ) and purely gluonic (cg) contribution to c
(3)
v

separately. For this choice of µ one observes quite big
NNNLO contributions which are dominated by cg. Thus,
it is instructive to investigate the µ-dependence of Zt
which is shown in Fig. 3. Around the soft scale no con-
vergence is observed. Allowing, however, for higher scales
one finds a quite flat behavior of the NNNLO curve. Fur-
thermore, the NNNLO corrections become quite small.
E.g., considering the top quark system for µ ≈ 80 GeV,
the NLO terms amount to about +15% and the NNLO
to roughly +20%. The third-order contribution is practi-
cally zero. Similar observations also hold for the bottom
quark case, see Ref. [20].

IV. CONCLUSIONS

The third-order contribution to the matching coeffi-
cient of the vector current between QCD and NRQCD
has been computed. An automated setup has been devel-
oped where even the occuring master integrals are iden-
tified automatically, processed with the help of the com-
puter program FIESTA, and prepared for the insertion

into the analytic reduction of c
(3)
v .

In the MS scheme the numerical impact of c
(3)
v is quite

big as can be seen from Eq. (9) which constitutes the
main result of this paper. In a dedicated analysis one
has to investigate the consequences for the bottom-quark
mass extracted from Υ sum rules and the top-quark
threshold production cross section at a future linear col-
lider.

An analysis of the residue of the 1S state indicates that
at energy scales around two to three times the soft scale
good convergence of the perturbative series is observed.
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