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Abstract

We analyse the interplay of generalised CP transformations and the non-Abelian discrete
group T ′ and use the semi-direct product Gf = T ′ o HCP, as family symmetry acting
in the lepton sector. The family symmetry is shown to be spontaneously broken in a
geometrical manner. In the resulting flavour model, naturally small Majorana neutrino
masses for the light active neutrinos are obtained through the type I see-saw mechanism.
The known masses of the charged leptons, lepton mixing angles and the two neutrino mass
squared differences are reproduced by the model with a good accuracy. The model allows
for two neutrino mass spectra with normal ordering (NO) and one with inverted ordering
(IO). For each of the three spectra the absolute scale of neutrino masses is predicted with
relatively small uncertainty. The value of the Dirac CP violation (CPV) phase δ in the
lepton mixing matrix is predicted to be δ ∼= π/2 or 3π/2. Thus, the CP violating effects in
neutrino oscillations are predicted to be maximal (given the values of the neutrino mixing
angles) and experimentally observable. We present also predictions for the sum of the
neutrino masses, for the Majorana CPV phases and for the effective Majorana mass in
neutrinoless double beta decay. The predictions of the model can be tested in a variety
of ongoing and future planned neutrino experiments.
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1 Introduction

Understanding the origin of the patterns of neutrino masses and mixing, emerging from
the neutrino oscillation, 3H β−decay, cosmological, etc. data is one of the most challenging
problems in neutrino physics. It is part of the more general fundamental problem in particle
physics of understanding the origins of flavour, i.e., of the patterns of the quark, charged
lepton and neutrino masses and of the quark and lepton mixing.

At present we have compelling evidence for the existence of mixing of three light massive
neutrinos νi, i = 1, 2, 3, in the weak charged lepton current (see, e.g., [1]). The masses mi of
the three light neutrinos νi do not exceed approximately 1 eV, mi ∼< 1 eV, i.e., they are much
smaller than the masses of the charged leptons and quarks. The three light neutrino mixing
is described (to a good approximation) by the Pontecorvo, Maki, Nakagawa, Sakata (PMNS)
3×3 unitary mixing matrix, UPMNS. In the widely used standard parametrisation [1], UPMNS

is expressed in terms of the solar, atmospheric and reactor neutrino mixing angles θ12, θ23 and
θ13, respectively, and one Dirac - δ, and two Majorana [2] - β1 and β2, CP violation phases:

UPMNS ≡ U = V (θ12, θ23, θ13, δ)Q(β1, β2) , (1.1)

where

V =

1 0 0
0 c23 s23

0 −s23 c23

 c13 0 s13e
− i δ

0 1 0
−s13e

i δ 0 c13

 c12 s12 0
−s12 c12 0

0 0 1

 , (1.2)

and we have used the standard notation cij ≡ cos θij , sij ≡ sin θij , 0 ≤ θij ≤ π/2, 0 ≤ δ ≤ 2π.
The matrix Q contains the two physical Majorana CP violation (CPV) phases:

Q = Diag(e− iβ1/2, e− iβ2/2, 1) . (1.3)

The parametrization of the phase matrix Q in Eq. (1.3) differs from the standard one [1]
Q = Diag(1, eiα21/2, eiα31/2). Obviously, one has α21 = (β1 − β2) and α31 = β1. In the case
of the seesaw mechanism of neutrino mass generation, which we are going to employ, the
Majorana phases β1 and β2 (or α21 and α31) vary in the interval [3] 0 ≤ β1,2 ≤ 4π 1. If CP
invariance holds, we have δ = 0, π, 2π, and [5] β1(2) = k(′) π, k(′) = 0, 1, 2, 3, 4.

All compelling neutrino oscillation data can be described within the indicated 3-flavour
neutrino mixing scheme. These data allowed to determine the angles θ12, θ23 and θ13 and the
two neutrino mass squared differences ∆m2

21 and ∆m2
31 (or ∆m2

32), which drive the observed
oscillations involving the three active flavour neutrinos and antineutrinos, νl and ν̄l, l = e, µ, τ ,
with a relatively high precision [6, 7]. In Table 1 we give the values of the 3-flavour neutrino
oscillation parameters as determined in the global analysis performed in [6].

An inspection of Table 1 shows that although θ13 6= 0, θ23 6= π/4 and θ12 6= π/4, the
deviations from these values are small, in fact we have sin θ13

∼= 0.16 � 1, π/4 − θ23
∼= 0.11

and π/4− θ12
∼= 0.20, where we have used the relevant best fit values in Table 1. The value of

θ13 and the magnitude of deviations of θ23 and θ12 from π/4 suggest that the observed values
of θ13, θ23 and θ12 might originate from certain “symmetry” values which undergo relatively
small (perturbative) corrections as a result of the corresponding symmetry breaking. This
idea was and continues to be widely explored in attempts to understand the pattern of mixing

1The interval beyond 2π, 2π ≤ β1,2 ≤ 4π, is relevant, e.g., in the calculations of the baryon asymmetry
within the leptogenesis scenario [3], in the calculation of the neutrinoless double beta decay effective Majorana
mass in the TeV scale version of the type I seesaw model of neutrino mass generation [4], etc.
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Parameter best-fit (±1σ) 3σ

∆m2
21 [10−5 eV2] 7.54+0.26

−0.22 6.99 - 8.18

|∆m2
31| (NO) [10−3 eV2] 2.47+0.06

−0.10 2.19 - 2.62

|∆m2
32| (IO) [10−3 eV2] 2.46+0.07

−0.11 2.17 - 2.61

sin2 θ12 (NO or IO) 0.307+0.018
−0.016 0.259 - 0.359

sin2 θ23 (NO) 0.386+0.024
−0.021 0.331 - 0.637

(IO) 0.392+0.039
−0.022 0.335 - 0.663

sin2 θ13 (NO) 0.0241+0.0025
−0.0025 0.0169 - 0.0313

(IO) 0.0244+0.0023
−0.0025 0.0171 - 0.0315

Table 1: The best-fit values and 3σ allowed ranges of the 3-flavour neutrino oscillation
parameters derived from a global fit of the current neutrino oscillation data (from [6]). If
two values are given, the upper one corresponds to neutrino mass spectrum with normal
hierarchy (NO) and the lower one - to spectrum with inverted hierarchy (IO) (see text for
further details).

in the lepton sector (see, e.g., [8–16]). Given the fact that the PMNS matrix is a product of
two unitary matrices,

U = U †e Uν , (1.4)

where Ue and Uν result respectively from the diagonalisation of the charged lepton and neu-
trino mass matrices, it is usually assumed that Uν has a specific form dictated by a symmetry
which fixes the values of the three mixing angles in Uν that would differ, in general, by per-
turbative corrections from those measured in the PMNS matrix, while Ue (and symmetry
breaking effects that we assume to be subleading) provide the requisite corrections. A variety
of potential “symmetry” forms of Uν , have been explored in the literature on the subject
(see, e.g., [17]). Many of the phenomenologically acceptable “symmetry” forms of Uν , as the
tribimaximal (TBM) [18] and bimaximal (BM) [19,20] mixing, can be obtained using discrete
flavour symmetries (see, e.g., the reviews [21–23] and the references quoted there in). Discrete
symmetries combined with GUT symmetries have been used also in attempts to construct
realistic unified models of flavour (see, e.g., [21]).

In the present article we will exploit the approximate flavour symmetry based on the group
T ′, which is the double covering of the better known group A4 (see, e.g., [23]), with the aim to
explain the observed pattern of lepton (neutrino) mixing and to obtain predictions for the CP
violating phases in the PMNS matrix and possibly for the absolute neutrino mass scale and
the type of the neutrino mass spectrum. Flavour models based on the discrete symmetry T ′

have been proposed by a number of authors [24–26] before the angle θ13 was determined with
a high precision in the Day Bay [27] and RENO [28] experiments (see also [29–31]). All these
models predicted values of θ13 which turned out to be much smaller than the experimentally
determined value.

In [25, 26], in particular, an attempt was made to construct a realistic unified supersym-
metric model of flavour, based on the group SU(5) × T ′, which describes the quark masses,
the quark mixing and CP violation in the quark sector, the charged lepton masses and the
known mixing angles in the lepton sector, and predicts the angle θ13 and possibly the neutrino
masses and the type of the neutrino mass spectrum as well as the values of the CPV phases
in the PMNS matrix. The light neutrino masses are generated in the model by the type I
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seesaw mechanism [32] and are naturally small. It was suggested in [25,26] that the complex
Clebsch-Gordan (CG) coefficients of T ′ [33] might be a source of CP violation and hence that
the CP symmetry might be broken geometrically [34] in models with approximate T ′ symme-
try. Since the phases of the CG coefficients of T ′ are fixed, this leads to specific predictions
for the CPV phases in the quark and lepton mixing matrices. Apart from the incorrect pre-
diction for θ13, the authors of [25,26] did not address the problem of vacuum alignment of the
flavon vevs, i.e., of demonstrating that the flavon vevs, needed for the correct description of
the quark and lepton masses and of the the mixing in both the quark and lepton sectors, can
be derived from a flavon potential and that the latter does not lead to additional arbitrary
flavon vev phases which would destroy the predictivity, e.g., of the leptonic CP violation of
the model.

A SUSY SU(5) × T ′ model of flavour, which reproduces the correct value of the lepton
mixing angle θ13 was proposed in [35], where the problem of vacuum alignment of the flavon
vevs was also successfully addressed 2. In [35] it was assumed that the CP violation in the
quark and lepton sectors originates from the complexity of the CG coefficients of T ′. This
was possible by fixing the phases of the flavon vevs using the method of the so-called “discrete
vacuum alignment”, which was advocated in [37] and used in a variety of other models with
discrete flavour symmetries [38]. The value of the angle θ13 was generated by charged lepton
corrections to the TBM mixing using non-standard GUT relations [13,39,40].

After the publication of [35] it was realised in [41,42] that the requirement of CP invariance
in the context of theories with discrete flavour symmetries, imposed before the breaking
of the discrete symmetry leading to CP nonconservation and generation of the masses of
the matter fields of the theory, requires the introduction of the so-called “generalised CP
transformations” of the matter fields charged under the discrete symmetry. The explicit form
of the generalised CP transformations is dictated by the type of the discrete symmetry. It was
noticed in [41], in particular, that due to a subtle intimate relation between CP symmetry and
certain discrete family symmetries, like the one associated with the group T ′, it can happen
that the CP symmetry does not enforce the Yukawa type couplings, which generate the matter
field mass matrices after the symmetry breaking, to be real but to have certain discrete phases
predicted by the family symmetry in combination with the generalised CP transformations.
In the SU(5) × T ′ model proposed in [35], these phases, in principle, can change or modify
completely the pattern of CP violation obtained by exploiting the complexity of some of the
T ′ CG coefficients.

In the present article we address the problem of the relation between the T ′ symmetry
and the CP symmetry in models of lepton flavour. After some general remarks about the
connection between the T ′ and CP symmetries in Section 2, we present in Section 3 a fully
consistent and explicit model of lepton flavour with a T ′ family symmetry and geometrical
CP violation. We show that the model reproduces correctly the charged lepton masses, all
leptonic mixing angles and neutrino mass squared differences and predicts the values of the
leptonic CP violating phases and the neutrino mass spectrum. We show also that this model
indeed exhibits geometrical CP violation. We clarify how the CP symmetry is broken in the
model by using the explicit form of the constructed flavon vacuum alignment sector; without
the knowledge of the flavon potential it is impossible to make conclusions about the origin of
CP symmetry breaking in flavour models with T ′ symmetry. In the Appendix we give some

2A modified version of the model published in [25,26], which predicts a correct value of the angle θ13, was
constructed in [36], but the authors of [36] left open the issue of the vacuum alignment of the flavon vevs.
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technical details about the group T ′ and present a “UV completion” of the model, which
is necessary in order to to select correctly certain T ′ contractions in the relevant effective
operators.

2 T ′ Symmetry and Generalised CP Transformations

In this Section we would like to clarify the role of a generalised CP transformation combined
with the non-Abelian discrete symmetry group T ′. Let Gf = T ′ o HCP be the symmetry
group acting in the lepton sector such that both T ′ and HCP act on the lepton flavour space.
Motivated by this study we will present in the next section a model where Gf is broken such
that all lepton mixing angles and physical CP phases of the PMNS mixing matrix can be
predicted in terms of two mixing angles and two phases. The breaking of Gf will be achieved
through non zero vacuum expectation values (vevs) of some scalar fields, the so-called flavons.

2.1 The consistency conditions

The discrete non-Abelian family symmetry group T ′ is the double covering of the tetrahedral
group A4 and its complete description in terms of generators, elements and representations
is given in Appendix A. An interesting feature of this group is the fact that it is the smallest
group that admits 1-, 2-, and 3-dimensional representations and for which the three repre-
sentations can be related by the multiplication rule 2 ⊗ 2 = 3 ⊕ 13. T ′ has seven different
irreducible representations: the 1- and 3-dimensional representations 1, 1′, 1′′, 3 are not
faithful, i.e., not injective, while the doublet representations 2, 2′ and 2′′ are faithful. One in-
teresting feature of the T ′ group is related to the tensor products involving the 2-dimensional
representation since the CG coefficients are complex.

We define now the transformation of a field φ(x) under the group T ′ and HCP respectively
as:

φ(x)→ ρr(g)φ(x), φ(x)→ Xrφ
∗(x′), (2.1)

where ρr(g) is an irreducible representation r of the group element g ∈ T ′, x′ ≡ (x0,−~x)
and Xr is the unitary matrix representing the generalised CP transformation. In order to
introduce consistently the CP transformation for the family symmetry group T ′, the matrix
Xr should satisfy the consistency conditions [41,42,44]:

Xrρ
∗
r(g)X−1

r = ρr(g
′) , g, g′ ∈ T ′ . (2.2)

Following the discussion given in [41,42,44] it is important to remark that the consistency
condition corresponds to a similarity transformation between the representation ρ∗r and ρ◦CP.
Since the structure of the group is preserved and an element g ∈ T ′ is always mapped into an
element g′ ∈ T ′, this map defines an automorphism of the group. In general g and g′ might
belong to different conjugacy classes: in this case the map defines an outer automorphism 4.

It is worth noticing that the matrices Xr are defined up to an arbitrary global phase.
Indeed, without loss of generality, for each matrix Xr, one can define different phases θr for

3 The only other 24-element group that has representation of the same dimensions is the octahedral group
O (which is isomorphic to S4). In this case, however, the product of two doublet reps does not contain a
triplet [43].

4For details concerning the group of outer and inner automorphisms, Out(G) and Inn(G), see [41,44].
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different irreducible representations and moreover one can define Xr up to a group transfor-
mation (change of basis): in fact the consistency conditions in Eq. (2.2) are invariant under
Xr → ei θrXr and Xr → ρr(g̃)Xr with g̃ ∈ T ′.

It proves convenient to use the freedom associated with the arbitrary phases θr to define
the generalised CP transformation for which the vev alignments of the flavon fields can be
chosen to be all real. We will show later on that the phases θr are not physical and therefore
the results we present are independent from the specific values we assume. In the context
of the T ′ group this choice however helps us to extract a real flavon vev structure which
is a distinctive feature of some models proposed in the literature where the origin of the
physical CP violation arising in the lepton sector is tightly related to the combination of real
vevs, complex CGs 5 and eventual phases arising from the requirement of invariance of the
superpotential under the generalised CP transformation.

Before going into details of the computations, let us comment that in the analysis pre-
sented in [41] related to the group T ′, the CP transformations are defined as elements of the
outer automorphism group and are derived up to inner automorphisms of T ′ (up to conjugacy
transformations). In the present work we will consider instead all the possible transformations
including the inner automorphism group and we will discuss all the convenient CP transfor-
mations which can be used to clarify the role of a generalised CP symmetry in the context of
the group T ′.

2.2 Transformation properties under generalised CP

We give now all the possible equivalent choices of generalised CP transformations for any
irreducible representation of T ′.

The group T ′ is defined by the group generators T and S, then from the consistency
conditions in Eq. (2.2) it is sufficient to require that

Xrρ
∗
r(S)X−1

r = ρr(Ŝ) , Xrρ
∗
r(T )X−1

r = ρr(T̂ ) . (2.3)

It is easy to show that the CP transformation leaves invariant the order of the element
of the group g meaning that denoting n(g) the order of g, we have n(g) = n(g′). Since
the element S has order four and the element T has order three we have Ŝ ∈ 6C4 and
T̂ ∈ 4′C3 [45]. The latter result is derived using the action of CP on the one-dimensional
representations, i.e. ρ1,1′,1′′(T̂ ) = ρ∗1,1′,1′′(T ) which can be satisfied only if T̂ ∈ 4′C3.

The conjugacy classes 6C4 and 4′C3 contain the group elements

Ŝ ∈ 6C4 =
{
S, S3, TST 2, T 2ST, S2TST 2, S2T 2ST

}
,

T̂ ∈ 4′C3 =
{
T 2, S2TST, S2T 2S, S3T 2

}
.

(2.4)

We recall that we have the freedom to choose arbitrary phases θr, so for instance in the
case of X1, X1′ and X1′′ we are allowed to write the most general CP transformations for the
three inequivalent singlets of T ′ as

1→ ei θ11∗ , 1′ → ei θ1′1′
∗
, 1′′ → ei θ1′′1′′

∗
. (2.5)

Differently from the case of the A4 family symmetry discussed in [44] in which one can
show that the generalised CP transformation can be represented as a group transformation, in

5This idea was pioneered in [25].
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the case of T ′ we will show that this is true only for the singlet and the triplet representations.
For the doublets the action of the CP transformation cannot be written as an action of a group
element (i.e. @ g ∈ T ′ such that Xr = ρr(g) for r = 2,2′,2′′).

We give a list of all the possible forms of Xr, which can be in general different for each
representation: the CP transformations on the singlets, X1,1′,1′′ , are complex phases, as
mentioned above while the CP transformations on the doublets, X2,2′,2′′ , and the triplets
X3, are given respectively in Table 2 and 3. We stress that all the possible forms of Xr are
defined up to a phase, which can be in general different for each representation. Each CP
transformation we found generates a Z2 symmetry.

The generalised CP transformation HCP, acting on the lepton flavour space is given by,
see also [41],

u :

{
T → T 2 ,

S → S2T 2ST .
(2.6)

This definition of the CP symmetry is particularly convenient because it acts on the 3- and
1- dimensional representations trivially. This particular transformation however is related to
any other possible CP transformation by a group transformation.

In other words, different choices of CP are related to each other by inner automorphisms of
the group i.e. the CP transformations listed in Tables 2 and 3 are related to each other through
a conjugation with a group element. For example, another possible CP transformation would
be

v :

{
T → T 2 ,

S → S3 ,
(2.7)

which is related to u via u = conj(T 2) ◦ v. Indeed

S
v7−→ S3 conj(T 2)7−−−−−−→ T 2S3(T 2)−1 = S2T 2ST ,

T
v7−→ T 2 conj(T 2)7−−−−−−→ T 2T 2(T 2)−1 = T 2 .

(2.8)

Without loss of generality we choose as CP transformation the one defined through
Eq. (2.6) and from Eq. (2.1) using the results of Table 2 and Table 3 we can write the
representation of the CP transformation acting on the fields as

1→ ei θ11∗ , 1′ → ei θ1′1′
∗
, 1′′ → ei θ1′′1′′

∗
, 3→ ei θ33∗ , (2.9)

2→ ei θ2

(
ωp̄5 0
0 ω̄p5

)
2∗ , 2′ → ei θ2′

(
ωp̄5 0
0 ω̄p5

)
2′
∗
, 2′′ → ei θ2′′

(
ωp̄5 0
0 ω̄p5

)
2′′
∗
,

where ω = ei 2π/3, p = eiπ/12 and ωp̄5 = eiπ/4. Notice that we did not specify the values of
the phases θr. Further we can check that the CP symmetry transformation chosen generates
a Z2 symmetry group. Indeed it is easy to show that u2 = E, therefore the multiplication
table of the group HCP = {E, u} is obviously equal to the multiplication table of a Z2 group,
from which we can write HCP

∼= Z2.
Since we want to have real flavon vevs – following the setup given in [35] – it turns

out to be convenient to select the CP transformations with θ1 = θ1′ = θ1′′ = θ3 = 0 and
θ2′′ = −θ2′ = π/4 6. With this choice the phases of the couplings of renormalisable operators

6Since in our model later on we do not have fields in a 2 representation of T ′ the phase θ2 is irrelevant in
our further discussion and we do not fix its value. A possible convenient choice might be θ2 = 0 which makes
the mass term of a two-dimensional representation real.
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g, g′ X3 = ρ3(g) = ρ3(g′) T → T̂ S → Ŝ

T , S2T

 1 0 0
0 ω 0
0 0 ω2

 T 2 S3

T 2, S2T 2

 1 0 0
0 ω2 0
0 0 ω

 T 2 S2TST 2

E, S2

 1 0 0
0 1 0
0 0 1

 T 2 S2T 2ST

TS, S2TS

 −1/3 2/3ω 2/3ω2

2/3 −1/3ω 2/3ω2

2/3 2/3ω −1/3ω2

 S2T 2S S

TST 2, S2TST 2

 −1/3 2/3 2/3
2/3 −1/3 2/3
2/3 2/3 −1/3

 S2T 2S T 2ST

S2TST , TST

 −1/3 2/3ω2 2/3ω
2/3 −1/3ω2 2/3ω
2/3 2/3ω2 −1/3ω

 S2T 2S S2TST 2

ST , S3T

 −1/3 2/3ω2 2/3ω
2/3ω2 −1/3ω 2/3
2/3ω 2/3 −1/3ω2

 S2TST S3

S3T 2, ST 2

 −1/3 2/3 2/3
2/3ω2 −1/3ω2 2/3ω2

2/3ω 2/3ω −1/3ω

 S2TST TST 2

S, S3

 −1/3 2/3ω 2/3ω2

2/3ω2 −1/3 2/3ω
2/3ω 2/3ω2 −1/3

 S2TST T 2ST

S3TS, STS 1
9

 4ω2 + 4ω + 1 −2ω2 − 2ω + 4 −2ω2 − 2ω + 4
−2ω2 + 4ω − 2 4ω2 + ω + 4 −2ω2 + 4ω − 2
4ω2 − 2ω − 2 4ω2 − 2ω − 2 ω2 + 4ω + 4

 S3T 2 S

S2T 2S, T 2S

 −1/3 2/3ω 2/3ω2

2/3ω −1/3ω2 2/3
2/3ω2 2/3 −1/3ω

 S3T 2 TST 2

T 2ST , S2T 2ST

 −1/3 2/3ω2 2/3ω
2/3ω −1/3 2/3ω2

2/3ω2 2/3ω −1/3

 S3T 2 S2T 2ST

Table 2: The generalised CP transformation for the triplet representation of the group T ′

derived using the consistency conditions. We have defined ω = ei 2π/3.
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X2, X2′ , X2′′ T → T̂ S → Ŝ X2, X2′ , X2′′ T → T̂ S → Ŝ(
p̄5 0
0 p5

)
T 2 S3

√
2
3

(
p̄5/
√

2 1

1 p̄7/
√

2

)
S2TST S3

(
p̄ 0
0 p

)
T 2 S2TST 2 1√

3

(
p5

√
2q√

2q5 p̄5

)
S2TST TST 2

(
eiπ/4 0

0 e−iπ/4

)
T 2 S2T 2ST

(
eiπ/4

√
2q5

√
2q e−iπ/4

)
S2TST T 2ST(

p
√

2q̄5
√

2q̄ p̄

)
S2T 2S S 1√

3

(
p

√
2q̄√

2q̄5 p̄

)
S3T 2 S

1√
3

(
e−iπ/4 −i

√
2

−i
√

2 eiπ/4

)
S2T 2S T 2ST 1√

3

(
p̄
√

2√
2 p

)
S3T 2 TST 2

√
2
3

(
q4/
√

2 p̄

p5 q̄/
√

2

)
S2T 2S S2TST 2

√
2
3

(
ei 5π/8/

√
2 e−iπ/24

e−i7π/24 e−i7π/8/
√

2

)
S3T 2 S2T 2ST

Table 3: The generalised CP transformation for the doublet representation of the group T ′

derived using the consistency conditions. We have defined ω = ei 2π/3, p = eiπ/12, q = eiπ/6

and note that ωp̄5 = eiπ/4.

is fixed up to a sign by the CP symmetry. In fact, supposing one has a renormalisable operator
of the form λO = λ(A×B ×C) where λ is the coupling constant and A, B, C represent the
fields, then the generalised CP phase of the operator is defined as β ≡ CP[O]/O∗. The phase
of λ is hence given by the equation λ = βλ∗ which is solved by{

arg(λ) = arg(β)/2 or arg(β)/2− π if arg(β) > 0 ,

arg(λ) = arg(β)/2 or arg(β)/2 + π if arg(β) ≤ 0 .
(2.10)

In Table 4 we give a list of the phases of λ for all renormalisable operators without fixing the
θr and with the above choice for θr in Table 5.

Under the choice we made, the CP transformation acting on the fields using the above
choice for the θr reads

1→ 1∗ , 1′ → 1′
∗
, 1′′ → 1′′

∗
, 3→ 3∗ ,

2′ →
(

1 0
0 − i

)
2′
∗
, 2′′ →

(
i 0
0 1

)
2′′
∗
,

(2.11)

where we have again skipped the 2 representation because we will not need it later on.

2.3 Conditions to violate physical CP

In this section we try to clarify the origin of the phases entering the Lagrangian after T ′

breaking which are then responsible for physical CP violation. We will use the choice of the
θr discussed in the previous section, i.e. θ1 = θ1′ = θ1′′ = θ3 = 0 and θ2′′ = −θ2′ = π/4.

We already know that the singlets and triplets do not introduce CP violation, see also [41].
Therefore we only want to consider the doublets. Suppose we couple the doublet flavons ψi
to an operator Or containing matter fields and transforming in the representation r of T ′.
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λO = λ(A×B × C) β ≡ CP[O]/O∗

(2× 2)1 × 1 ei(θ1+2θ2)

(2′ × 2′′)1 × 1 ei(θ1+θ2′+θ2′′ )

(2′ × 2′)1′′ × 1′ ei(θ1′+2θ2′ )

(2× 2′′)1′′ × 1′ ei(θ1′+θ2+θ2′′ )

(2′′ × 2′′)1′ × 1′′ ei(θ1′′+2θ2′′ )

(2× 2′)1′ × 1′′ ei(θ1′′+θ2+θ2′ )

[(2× 2)3 × 3]1 − i ei(2θ2+θ3)

[(2′ × 2′′)3 × 3]1 − i ei(θ2′+θ2′′+θ3)

[(2′ × 2′)3 × 3]1 − i ei(2θ2′+θ3)

[(2× 2′′)3 × 3]1 − i ei(θ2+θ2′′+θ3)

[(2′′ × 2′′)3 × 3]1 − i ei(2θ2′′+θ3)

[(2× 2′)3 × 3]1 − i ei(θ2+θ2′+θ3)

[(3× 3)1 × 1]1 ei(θ1+2θ3)

[(3× 3)1′ × 1′′]1 ei(θ1′′+2θ3)

[(3× 3)1′′ × 1′]1 ei(θ1′+2θ3)

[(3× 3)3S ,3A × 3]1 e3iθ3

[(1× 1)1 × 1]1 ei(3θ1)

[(1′ × 1′)1′′ × 1′]1 ei(3θ1′ )

[(1′′ × 1′′)1′ × 1′′]1 ei(3θ1′′ )

[(1′ × 1′′)1 × 1]1 ei(θ1+θ1′+θ1′′ )

Table 4: List of operators, which form a singlet and constraints on the phase of the coupling
λ from the invariance under the generalised CP transformations Eq. (2.9).
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λO = λ(A×B × C) β ≡ CP[O]/O∗ arg(λ)

(2′ × 2′′)1 × 1 1 0, π
(2′ × 2′)1′′ × 1′ − i ±Ω̄
(2′′ × 2′′)1′ × 1′′ i ±Ω

[2′ × (2′′ × 3)2′′ ]1 1 0, π
[2′′ × (2′ × 3)2′ ]1 1 0, π
[(2′ × 2′′)3 × 3]1 − i ±Ω̄
[(2′ × 2′)3 × 3]1 −1 ±π/2
[(2′′ × 2′′)3 × 3]1 1 0, π

[(3× 3)1 × 1]1 1 0, π
[(3× 3)1′ × 1′′]1 1 0, π
[(3× 3)1′′ × 1′]1 1 0, π
[(3× 3)3S ,3A × 3]1 1 0, π

[(1× 1)1 × 1]1 1 0, π
[(1′ × 1′)1′′ × 1′]1 1 0, π
[(1′′ × 1′′)1′ × 1′′]1 1 0, π
[(1′ × 1′′)1 × 1]1 1 0, π

Table 5: List of some operators, for which it is possible construct a singlet, and constraints
on the phase of the coupling λ from invariance under the generalised CP transformations
Eq. (2.9) with the choice θ1 = θ1′ = θ1′′ = θ3 = 0 and θ2′′ = −θ2′ = π/4. We have omitted the
transformations which include the 2 representation of T ′ because they do not appear in our
model, but they can be read off from Table 4 after choosing θ2.
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This means that the superpotential contains the operator

W ⊃ OrΦr̄ , where Φr̄ =

(∏
i

ψi

)
r̄

. (2.12)

In order to obtain a singlet, the flavons (the doublets) have to be contracted to the represen-
tation r̄ which is the complex conjugate representation of r.

If the operator Or by itself conserves physical CP – by which we mean that it does not
introduce any complex phases into the Lagrangian including the associated coupling constant
– the only possible source of CP violation is coming from the doublet vevs and the complex
CG factors appearing in the contraction with the operator and the doublets. For illustrative
purpose we want to discuss this explicitly if we have two doublets ψ′ ∼ 2′ and ψ′′ ∼ 2′′.

For r = 1 there is only one possible combination using only ψ′ and ψ′′ which is (ψ′ ⊗ ψ′′)1.
Using the tensor products of T ′ —see for example [35]— we find that the combination is real
if the vevs fulfill the following conditions

ψ′ =

(
X1 eiα

X2 eiβ

)
, ψ′′ =

(
Y1 e− iβ

Y2 e− iα

)
, (2.13)

with X1, X2, Y1, Y2, α and β real parameters. For r = 1′ and r = 1′′ the only possible
contractions (ψ′ ⊗ ψ′)1′′ and (ψ′′ ⊗ ψ′′)1′ vanish due to the antisymmetry of the contraction.

For r = 1 there are three possible contractions. Either a flavon with itself or both flavons
together.

• For the selfcontractions (ψ′ ⊗ ψ′)3 and (ψ′′ ⊗ ψ′′)3 the Lagrangian will not contain a
phase if the flavon fields ψ′ and ψ′′ have the following structure

ψ′ =

(
X1 eiα

X2 e− i(α+π/4)

)
, ψ′′ =

(
Y1 e− i(β−π/4)

Y2 eiβ

)
, (2.14)

with X1, X2, Y1, Y2 being real and α, β = 0, ±π/2, π.

• The contraction (ψ′ ⊗ ψ′′)3 does not introduce phases if ψ′, ψ′′ have the following struc-
ture:

ψ′ ∼
(
X1 ei(β−π/4)

X2 ei(α+π/4)

)
, ψ′′ ∼

(
Y1 e−iβ

Y2 e−iα

)
, (2.15)

with X1, X2, Y1, Y2 real and β − α = −π/4.

The previous results allow us to distinguish in a particular model the alignments which
can introduce phases with a specific superpotential in the Yukawa sector. For example, if we
consider a model in which one entry of the Yukawa matrix is filled by a term of the form
(ψ′ ⊗ ψ′′)3 and another entry by (ψ′ ⊗ ψ′′)1 we see that we cannot fulfill both conditions
simultaneously if the doublet vevs do not vanish. That means we would expect CP violation
if both of these contractions are present in a given model.

Later on in our model we will have real doublet alignments with

ψ′ ∼
(

1
0

)
and ψ′′ ∼

(
0
1

)
. (2.16)

These alignments would conserve CP for sure only if the model contains only the contractions
(ψ′ ⊗ ψ′)3, (ψ′′ ⊗ ψ′′)3 and (ψ′ ⊗ ψ′′)1. Adding the contraction (ψ′ ⊗ ψ′′)3 would add a phase
to the Yukawa matrix resulting possibly in physical CP violation.
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3 The Model

In this section we discuss a supersymmetric model of lepton flavour based on T ′ as a family
symmetry. Because it considers only the lepton sector we can consider it as a toy model. The
generalised CP symmetry will be broken in a geometrical way as we will discuss later on and
we can fit all the available data of masses and mixing in the lepton sector.

The gauge symmetry of the model is the Standard Model gauge group GSM = SU(3)c ×
SU(2)L × U(1)Y . The discrete symmetries of the model are T ′ oHCP × Z8 × Z2

4 × Z2
3 × Z2,

where the Zn factors are the shaping symmetries of the superpotential required to forbid
unwanted operators.

There are a few comments about this symmetry in order. First of all, the symmetry
seems to be rather large but in fact compared to the first works on T ′ with geometrical
CP violation [25, 26] we have only added a factor of Z8 × Z2 but included the full flavon
vacuum alignment and messenger sector. This symmetry is also much smaller than the
shaping symmetry we have used before in [35].

One might wonder where this symmetry originates from and it might be embedded into
(gauged) continuous symmetries or might be a remnant of the compactification of extra-
dimensions. But a discussion of such an embedding goes clearly beyond the scope of this
work where we just want to discuss the connection of a T ′ family symmetry with CP and
illustrate it by a toy model which is nevertheless in full agreement with experimental data.

In this section we will only discuss the effective operators generated after integrating out
the heavy messenger fields. The full renormalisable superpotential including the messenger
fields is given in Appendix B.

3.1 The Flavon Sector

We will start the discussion of the model with the flavon sector which is self-contained. How
the flavons couple to the matter sector will be discussed afterwards.

The model contains 14 flavon fields in 1-, 2- and 3-dimensional representations of T ′ and 5
auxiliary flavons in 1-dimensional representations. Before we will discuss the superpotential
which fixes the directions and phases of the flavon vevs we will first define them. We have
four flavons in the 3-dimensional representation of T ′ pointing in the directions

〈φ〉 =

 0
0
1

φ0 , 〈φ̃〉 =

 0
1
0

 φ̃0 , 〈φ̂〉 =

 1
0
0

 φ̂0 , 〈ξ〉 =

 1
1
1

 ξ0 . (3.1)

The first three flavons will be used in the charged lepton sector and the fourth one couples
only to the neutrino sector. These flavon vevs, like all the other flavon vevs, are real.

Further we introduce three doublets of T ′: ψ′ ∼ 2′, ψ′′ ∼ 2′′ and ψ̃′′ ∼ 2′′. We recall
that the doublets are the only representations of the family group T ′ which introduce phases,
due to the complexity of the Clebsh-Gordan coefficients. For the doublets we will find the
alignments

〈ψ′〉 =

(
1
0

)
ψ′0 , 〈ψ′′〉 =

(
0
1

)
ψ′′0 , 〈ψ̃′′〉 =

(
0
1

)
ψ̃′′0 . (3.2)

And finally, we introduce 7 flavon fields in one-dimensional representations of the family
group. In particular, we have (the primes indicate the types of singlet)

〈ζ ′〉 = ζ ′0 , 〈ζ ′′〉 = ζ ′′0 , 〈ζ̃ ′〉 = ζ̃ ′0 , 〈ζ̃ ′′〉 = ζ̃ ′′0 , 〈ζ〉 = ζ0 , 〈ρ〉 = ρ0 , 〈ρ̃〉 = ρ̃0 . (3.3)
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GSM T ′ U(1)R Z8 Z4 Z4 Z3 Z3 Z2

φ (1,1, 0) 3 0 2 0 0 1 0 1

φ̃ (1,1, 0) 3 0 2 0 2 0 1 0

φ̂ (1,1, 0) 3 0 5 0 3 2 0 0
ξ (1,1, 0) 3 0 0 2 2 0 0 0

ψ′ (1,1, 0) 2′ 0 3 2 3 2 0 0
ψ′′ (1,1, 0) 2′′ 0 7 2 1 2 0 1

ψ̃′′ (1,1, 0) 2′′ 0 1 2 3 0 1 1

ζ (1,1, 0) 1 0 5 0 1 2 0 1
ζ ′ (1,1, 0) 1′ 0 4 0 2 0 0 1

ζ̃ ′ (1,1, 0) 1′ 0 2 0 2 0 1 0
ζ ′′ (1,1, 0) 1′′ 0 2 0 0 1 0 1

ζ̃ ′′ (1,1, 0) 1′′ 0 0 0 0 0 1 0
ρ (1,1, 0) 1 0 0 2 2 0 0 0
ρ̃ (1,1, 0) 1 0 0 2 2 0 0 0

ε1 (1,1, 0) 1 0 4 1 0 0 0 0
ε2 (1,1, 0) 1 0 4 2 2 0 0 1
ε3 (1,1, 0) 1 0 4 2 0 0 0 0
ε4 (1,1, 0) 1 0 0 0 0 1 1 0
ε5 (1,1, 0) 1 0 0 0 0 2 2 0

Table 6: List of the flavon fields and their transformation properties. We also list here the
auxiliary flavon fields εi, i = 1, . . . , 5, which are needed to fix the phases of the vevs of the
other flavon fields.
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GSM T ′ U(1)R Z8 Z4 Z4 Z3 Z3 Z2

Dφ (1,1, 0) 3 2 0 2 0 1 0 0

D̃φ (1,1, 0) 3 2 0 3 0 0 1 0

D̂φ (1,1, 0) 3 2 6 0 2 1 2 0
Dψ (1,1, 0) 3 2 2 0 2 2 0 0
D̄ψ (1,1, 0) 3 2 2 0 2 2 0 0

D̃ψ (1,1, 0) 3 2 6 0 2 0 1 0
Dξ (1,1, 0) 3 2 4 2 2 0 0 1

Sζ (1,1, 0) 1 2 6 0 2 2 0 0
S′ζ (1,1, 0) 1′ 2 0 0 0 0 0 0

S̃′ζ (1,1, 0) 1′ 2 4 0 0 0 1 0

P (1,1, 0) 1 2 0 0 0 0 0 0

Table 7: List of the driving fields and their T ′ transformation properties. The field P stands
for the fields S̃ζ , Sξ, Sρ and Sεi , with i = 1, . . . , 5, which all have the same quantum numbers.

The ρ and ρ̃ couple only to the neutrino sector while the other one-dimensional flavons couple
only to the charged lepton sector. Also the five auxiliary flavons εi, i = 1, . . . , 5 get real vevs
which we do not label here explicitly.

The flavon quantum numbers are summarized in Table 6. In this table we have also
included the five auxiliary flavon fields εi which are only needed to fix the phases of the other
flavon vevs and all acquire real vevs by themselves.

We discuss now the superpotential in the flavon sector which “aligns” the flavon vevs. We
will use so-called F -term alignment where the vevs are determined from the F -term conditions
of the driving fields. The driving fields are listed with their quantum numbers in Table 7,
where we have indicated for simplicity P = S̃ζ , Sξ, Sρ and Sεi , with i = 1, . . . , 5, because
they have all the same quantum numbers under the whole symmetry group.

The fields labeled as P play a crucial role in fixing the phases of the flavon vevs. They
are fixed by the discrete vacuum alignment method as it was first proposed in [37]. Having a
flavon ε (for the moment we assume it is a singlet under the family symmetry) charged under
a Zn symmetry the superpotential will contain a term

W ⊃ P
(

εn

Λn−2
∓M2

)
. (3.4)

Remember that the P fields are total singlets. Due to CP symmetry in this simple example
all parameters and couplings are real. The F -term equation for P reads

|FP |2 =

∣∣∣∣ εn

Λn−2
∓M2

∣∣∣∣2 = 0. (3.5)

which gives for the phase of the flavon vev

arg(〈ε〉) =

{
2π
n q , q = 1, . . . , n for “−” in Eq. (3.5),
2π
n q + π

n , q = 1, . . . , n for “+” in Eq. (3.5).
(3.6)
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This method will be used to fix the phases of the singlet and triplet flavon vevs (including the
εi). Note that we have to introduce for every phase we fix in this way a P field and only after
a suitable choice of basis for this fields we end up with the simple structure we show later,
see also the appendix of [37]. For the directions of the triplets we use standard expressions,
cf. also the previous paper [35].

For the doublets, nevertheless, we use here a different method. Take for example the term

Dψ

[
(ψ′′)2 − φ ζ ′

]
. The F -term equations read

|FDψ1 | = (ψ′′2)2 − φ3 ζ
′ = 0 , (3.7)

|FDψ1 | = i(ψ′′1)2 − φ2 ζ
′ = 0 , (3.8)

|FDψ1 | = (1− i)ψ′′1 ψ
′′
2 − φ1 ζ

′ = 0 . (3.9)

Note the phases coming from the complex CG coefficients of T ′. Plugging in the (real) vevs
of φ and ζ ′ it turns out that only the second component of ψ′′ does not vanish and is indeed
real as well.

The full superpotential for the flavon vacuum alignment reads

Wf =
Dφ ε3

Λ

[
φ2 − φ ζ ′′

]
+
D̃φ ε1

Λ

[
φ̃2 − φ̃ ζ̃ ′

]
+
D̂φ

Λ

[
ε4 φ̂ φ̂+ ε5 φ̃ ζ̃

′′ +
ε2

4 ζ̃
′′ φ̃

Λ

]

+Dψ

[(
ψ′′
)2 − φ ζ ′]+ D̄ψ

(
iψ′ ψ′ + φ ζ ′

)
+ D̃ψ

[(
ψ̃′′
)2
− φ̃ ζ̃ ′′ − ε2

4 φ̂ φ̂

Λ2

]

+ S′ζ

(
ζ ′ ζ ′ − ξ ξ − ε2

2 ξ
2

Λ2

)
+ S̃′ζ

(
ζ̃ ′ ζ̃ ′ − φ̃ φ̃

)
+
S̃ζ
Λ

[(
ζ̃ ′′
)3
−M3

ζ̃′′

]
+ Sζ

(
ζ ζ + φ̂ φ̂

)
+
Sε1
Λ2

(
ε4

1 −M4
ε1

)
+ Sε4

(
ε3

4

Λ
−M2

ε4

)
+ Sε3

(
ε2

2 −M2
ε2

)
+ Sε3

(
ε2

3 −M2
ε3

)
+ Sε5

(
ε4 ε5 −M2

ε5

)
+
Dξ ε2

Λ

(
ξ2 + ξρ+ ξρ̃

)
+ Sξ

(
ξ2 −M2

ξ

)
+ Sρ

(
ρ2 + ρ̃2 −M2

ρ

)
.

(3.10)

We will not go through all the details and discuss each F -term condition but this potential
is minimized by the vacuum structure as in Eqs. (3.1), (3.2) and (3.3). Finally, we want
to remark that the F -term equations do not fix the phase of the field ζ. However, the
phase of this field will turn out to be unphysical because it can be canceled out through an
unphysical unitary transformation of the right-handed charged lepton fields as we will show
later explicitly.

3.2 The Matter Sector

Since we have discussed now the symmetry breaking flavon fields we will now proceed with the
discussion on how these fields couple to the matter sector and generate the Yukawa couplings
and right-handed Majorana neutrino masses.

The model contains three generations of lepton fields, the left-handed SU(2)L doublets
are organized in a triplet representation of T ′, the first two families of right-handed charged
lepton fields are organized in a two dimensional representation, 2′′, and the third family sits
in a 1′′. There are two Higgs doublets as usual in supersymmetric models. They are both
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L Ē Ē3 NR Hd Hu

SU(2)L 2 1 1 1 2 2
U(1)Y -1 2 2 0 -1 1

T ′ 3 2′′ 1′′ 3 1 1
U(1)R 1 1 1 1 0 0
Z8 5 7 2 4 7 7
Z4 1 3 1 3 2 2
Z4 1 2 1 3 2 2
Z3 0 0 2 0 0 0
Z3 2 0 0 0 1 1
Z2 0 1 1 0 0 0

Table 8: List of the matter and Higgs fields of the model and their transformation properties
under T ′, U(1)R and the shaping symmetries. We also give the quantum numbers under
SU(2)L × U(1)Y . All fields are singlets of SU(3)C .

singlets, 1 under T ′. The model includes three heavy right-handed Majorana neutrino fields
N , which are organized in a triplet. The light active neutrino masses are generated through
the type I seesaw mechanism [32]. At leading order tri-bimaximal mixing (TBM) is predicted
in the the neutrino sector which is corrected by the charged lepton sector allowing a realistic
fit of the measured parameters of the PMNS mixing matrix. The quantum numbers of the
matter fields are summarized in Table 8.

In this work we use the right-left convention for the Yukawa matrices

− L ⊃ (Ye)ij ēR i eL jHd + H.c. , (3.11)

i.e. there exists a unitary matrix Ue which diagonalizes the product Y†e Ye and contributes to
the physical PMNS mixing matrix.

3.2.1 The Charged Lepton Sector

The Yukawa matrix Ye is generated after the flavons acquire their vevs and T ′ is broken. The
effective superpotential describing the couplings of the matter sector to the flavon sector is
given by

WYe =
y

(e)
33

Λ

(
Ē3Hd

)
1′′

(Lφ)1′ +
y

(e)
32

Λ2

(
Ē3Hd

)
1′′

(
L φ̂
)
1′
ζ +

ŷ
(e)
32

Λ2
Ω̄
(
Ē3Hd

)
1′′

[
L
(
ψ′ ψ′′

)
3

]
1′

+
y

(e)
22

Λ2

(
Ē ψ′

)
1
Hd (Lφ)1 +

y
(e)
21

Λ3
Ω̄
(
Ē ψ′

)
1
Hd

[(
ψ′ ψ′′

)
3
L
]
1

+
y

(e)
11

Λ3
Ω
(
Ē ψ̃′′

)
1′
Hd ζ̃

′
(
L φ̃
)
1′
, (3.12)

where Λ denotes a generic messenger scale. Note the explicit phase factors Ω = (1+i)/
√

2 and
Ω̄ = (1 − i)/

√
2 appearing in some of the operators. They are determined by the invariance

under the generalised CP transformations and they can be evaluated from Table 5. We also
give here explicitly the contraction of T ′ as indices at the brackets. These contractions are
determined by the messenger sector which will be discussed in Appendix B.
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After plugging in the flavon vevs from Eqs. (3.1)-(3.3) we find for the structure of the
Yukawa matrix Ye

Ye =

 Ω a 0 0
i b c 0
0 d+ i k e

 ≡
 Ω a 0 0

i b c 0
0 ρ ei η e

 , (3.13)

where we define ρ =
√
d2 + k2 and η = arg (d+ i k).

The parameters a, b, c, d, e, k depend on the unfixed phase of the vev of ζ, ζ0, which can
be explicitly factorized as

Ye =

Ω ā(ζ0) 0 0

i ζ3
0 b ζ3

0 c 0

0 ζ2
0 (d+ i k) ζ2

0 e

 =

ei arg(Ω ā(ζ0)) 0 0
0 ζ3

0 0
0 0 ζ2

0

|Ω ā(ζ0)| 0 0

i b c 0

0 d+ i k e

 ,

(3.14)
from which it is clear that an eventual phase of ζ0 drops out in the physical combination
Y†eYe and we can choose the parameters in the Yukawa matrix to be real.

We remind that there are in principle three possible sources of complex phases which can
lead to physical CP violation: complex vevs, complex couplings whose phases are determined
by the invariance under the generalised CP symmetry and complex CG coefficients. In our
model all vevs are real due to our flavon alignment and the convenient choice of the θr phases.

Then the (physical) phases in Ye are completely induced by the complex couplings and
complex CG coefficients. In fact the insights we have gained before in Section 2.3 can be used
here. The phase in the 1-1 element is unphysical (it drops out in the combination Y†e Ye. So
the physical CP violation is to leading order given by the phases of the ratios (Ye)21/(Ye)22

and (Ye)32/(Ye)33. Let us study for illustration the second ratio which has two components,
one with a non-trivial relative phase and one without. The real ratio d/e is coming from

the operators with the coefficients y
(e)
32 and y

(e)
33 and from the viewpoint of T ′ oHCP there is

not really any difference between the two because we have only added a singlet which cannot
break CP in our setup as we said before.

For the second ratio i k/e this is different. Using the notation from Section 2.3 we have

O3Φ3 =
(
Ē3Hd

)
1′′

(LΦ3)1′ . If Φ3 = φ (the operator with y
(e)
32 ) we cannot have a phase

because φ is a triplet flavon. For Φ3 = (ψ′ψ′′)3 (the operator with ŷ
(e)
32 ) we can check

if condition (2.15) is fulfilled which is not the case because both vevs are real, while the
condition demands a relative phase difference between the vevs of π/4. This demonstrates
the usefulness of the conditions given in Section 2.3 in understanding the origin of physical
CP violation in this setup.

3.2.2 The Neutrino Sector

The neutrino sector is constructed using a superpotential similar to that used in [35]: the
light neutrino masses are generated through the type I see-saw mechanism, i.e. introducing
right-handed heavy Majorana states which are accommodated in a triplet under T ′. We have
the effective superpotential

WYν = λ1N N ξ +N N (λ2ρ+ λ3ρ̃) +
yν
Λ

(NL)1(Huρ)1 +
ỹν
Λ

(NL)1(Huρ̃)1 . (3.15)
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The Dirac and the Majorana mass matrices obtained from this superpotential are identical
to those described in [35] and we quote them here for completeness

MR =

2Z +X −Z −Z
−Z 2Z −Z +X
−Z −Z +X 2Z

 , MD =

1 0 0
0 0 1
0 1 0

 ρ′

Λ
, (3.16)

where X,Z and ρ′ are real parameters which can be written explicitly as

X =
λ2√

3
ρ0 +

λ3√
3
ρ̃0 , Z =

λ1√
18
ξ0 and ρ′ =

yν√
3
ρ0vu +

ỹν√
3
ρ̃0vu . (3.17)

The right-handed neutrino mass matrix MR is diagonalised by the TBM matrix [18]

UTBM =


√

2/3
√

1/3 0

−
√

1/6
√

1/3 −
√

1/2

−
√

1/6
√

1/3
√

1/2

 , (3.18)

such that the heavy RH neutrino masses read:

UTTBMMR UTBM = DN = Diag(3Z +X,X, 3Z −X)

= Diag(M1 eiφ1 ,M2 eiφ2 , M3 eiφ3) , M1,2,3 > 0 .
(3.19)

Since X and Z are real parameters, the phases φ1, φ2 and φ3 take values 0 or π. A light
neutrino Majorana mass term is generated after electroweak symmetry breaking via the type
I see-saw mechanism:

Mν = −MT
DM

−1
R MD = U∗ν Diag (m1,m2,m3)U †ν , (3.20)

where

Uν = i UTBM Diag
(

eiφ1/2, eiφ2/2, eiφ3/2
)
≡ i UTBM Φν , Φν ≡ Diag

(
eiφ1/2, eiφ2/2, eiφ3/2

)
,

(3.21)
and m1,2,3 > 0 are the light neutrino masses,

mi =

(
ρ′

Λ

)2 1

Mi
, i = 1, 2, 3 . (3.22)

The phase factor i in Eq. (3.21) corresponds to an unphysical phase and we will drop it in
what follows. Note also that one of the phases φk, say φ1, is physically irrelevant since it can
be considered as a common phase of the neutrino mixing matrix. In the following we will
always set φ1 = 0. This corresponds to the choice (X + 3Z) > 0.

3.3 Comments about the θr

At this point we want to comment on the role of the phases θr appearing in the definition
of the CP transformation in Eq. (2.11). These phases are arbitrary and hence they should
not contribute to physical observables. This means, for instance, that these arbitrary phases
must not appear in the Yukawa matrices after T ′ is broken. However it is not enough to look
at the Yukawa couplings alone but one also has to study the flavon vacuum alignment sector.
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We want to show next a simple example for which, as expected, these phases turn out to be
unphysical.

In order to show this we consider as example (Ye)22 and (Ye)21 respectively generated by
the following operators:

(Ye)22 ∼
(
Ē ψ′

)
1

(Lφ)1 ζ Hd , (Ye)21 ∼
(
Ē ψ′

)
1

(Lφ)1′′ ζ
′Hd . (3.23)

The fields together with their charges have been defined before in Table 6. We will now be
more explicit and consider all the possible phases arising in each of the given operators under
the CP transformation of Eq. (2.9) where the θr were included explicitly. For each flavon vev
in the operators we will denote the arising phase with a bar correspondingly, i.e. for the vev
of the flavon φ we will have φ → ei φ̄φ0 where φ0 is the modulus of the vev. Then using the
transformations in Eq. (2.9) and Table 2.9 we get

arg ((Ye)22 − (Ye)21) = ζ̄ − ζ̄ ′ + (θ1 − θ1′)/2 . (3.24)

The vevs of the flavons ζ and ζ ′ are determined at leading order by

Sζ

[
ζ2 − (φ̂ φ̂)1

]
and Sζ′

[
(ζ ′)2 − (ξ ξ)1′′

]
. (3.25)

where Sζ,ζ′ are two of the so-called “driving fields” which in this case are singlet of type

1 and 1′ under T ′. From the F -term equations one gets that ζ̄ =
¯̂
φ + (θ3 − θ1)/2 and

ζ̄ ′ = ξ̄ + (θ3 − θ1′)/2 and thus in the physical phase difference

arg ((Ye)22 − (Ye)21) =
¯̂
φ− ξ̄ . (3.26)

the phases θ1, θ1′ and θ3 cancel out.
This shows how the θr cancel out in a complete model and become unphysical. Including

them only in one sector, for instance, in the Yukawa sector they might appear to be physical
and only after considering also the flavon alignment sector it can be shown that they are
unphysical which is nevertheless quite cumbersome in a realistic model due to the many fields
and couplings involved.

3.4 Geometrical CP violation and residual symmetries

In this section we want to provide a better understanding of the quality of symmetry break-
ing our model exhibits. To be more precise we will argue that our model breaks CP in a
geometrical fashion and then we will discuss the residual symmetries of the mass matrices.

Geometrical CP violation was first defined in [34] and there it is tightly related to the
so-called “calculable phases” which are phases of flavon vevs which do not depend on the
parameters of the potential but only on the geometry of the potential. This applies also to
our model. All complex phases are determined in the end by the (discrete) symmetry group of
our model. In particular the symmetries T ′oHCP and the Zn factors play a crucial role here.
For the singlets and triplets in fact the Zn symmetries (in combination with CP) make the
phases calculable using the discrete vacuum alignment technique [37]. For the doublets then
the symmetry T ′oHCP enters via fixing the phases of the couplings and fixing relative phases
between different components of the multiplets. In particular, all flavon vevs are left invariant
under the generalised CP symmetry and hence protected by it. However the calculable phases
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are necessary but not sufficient for geometrical CP violation. For this we have to see if CP is
broken or not.

For this we will have a look at the residual symmetries of the mass matrices after T ′oHCP

is broken. First of all, we observe that the vev structure mentioned in Section 3 gives a
breaking pattern which is different in the neutrino and in the charged lepton sector, i.e. the
residual groups Gν and Ge are different.

In the charged lepton sector the group T ′ is fully broken by the singlet, doublet and
triplet vevs. If it exists, the residual group in the charged lepton sector is defined through
the elements which leave invariant the flavon vevs and satisfy

ρ†(gei) Y†e Ye ρ(gei) = Y†e Ye with gei ∈ Ge < T ′ oHCP ,

X†e

(
Y†e Ye

)
Xe =

(
Y†e Ye

)∗
with Xe ∈ Ge < T ′ oHCP .

(3.27)

The first condition is the ordinary condition to study residual symmetries while the second
one is relevant only for models with spontaneous CP violation.

In our model this conditions are not satisfied for any ρ(g) or Xe. Hence there is no residual
symmetry group in the charged lepton sector and even more CP is broken spontaneously.
Together with the fact that all our phases are determined by symmetries (up to signs and
discrete choices) we have demonstrated now that our model exhibits geometrical CP violation.

In the neutrino sector we can write similar relations that take into account the symmetrical
structure of the Majorana mass matrix, and in particular as before the residual symmetry is
defined through the elements which leave invariant the flavon vevs and satisfy

ρT (gνi)Mν ρ(gνi) = Mν with gνi ∈ Gν < T ′ oHCP ,

XT
ν Mν Xν = M∗ν with Xν ∈ Gν < T ′ oHCP .

(3.28)

In our model Mν is a real matrix and therefore ρ(gνi) and Xν are defined through the same
conditions. Defining O as the orthogonal matrix which diagonalizes the real symmetric matrix
Mν we find from Eq. (3.28)

(OXT
ν O

T )Mdiag
ν (OXν O

T ) = Mdiag
ν (3.29)

and hence the matrix D = OXν O
T has to be of the form

D =

(−1)p 0 0
0 (−1)q 0
0 0 (−1)p+q

 . (3.30)

The same argument can be applied to the matrix ρ(gνi), because the matrices Xν , ρ(gνi)
and Mν are simultaneously diagonalisable by the same orthogonal matrix O. It is easy to
find that

O =

 1/
√

3 1/
√

3 1/
√

3

0 −1/
√

2 1/
√

2

−
√

2/3 1/
√

6 1/
√

6

 , (3.31)

which is expected since Mν is diagonalized by UTBM and O is just a permutation of UTTBM

which corresponds to a permutation of the eigenvalues.
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The residual symmetry coming from T ′ is generated only by

T S T 2 = OT ·

1 0 0
0 −1 0
0 0 −1

 ·O , (3.32)

which also leaves invariant the vev structure. This symmetry is a Z2 symmetry. In summary
the residual symmetry in the neutrino sector is a Klein group K4

∼= Z2×Z2, in which one Z2

comes from HCP and the other one from T ′. HCP is conserved because in the neutrino sector
Xν can be chosen as the identity matrix and Mν is real.

Combining the two we find

Gf ≡ T ′ oHCP ≡ T ′ o Z2 −→
{
Ge = ∅ ,
Gν = K4 ,

(3.33)

so that T ′ oHCP is completely broken and there is no residual symmetry left.

3.5 Predictions

3.5.1 Absolute Neutrino Mass Scale

Before we consider the mixing angles and phases in the PMNS matrix we first will discuss
the neutrino spectra predicted by the model. We get the same results as in [35] because our
neutrino mass matrix has exactly the same structure. The forms of the Dirac and Majorana
mass terms given in Eq. (3.16) imply that in the model considered by us both light neutrino
mass spectra with normal ordering (NO) and with inverted ordering (IO) are allowed (see
also [35]). In total three different spectra for the light active neutrinos are possible. They
correspond to the different choices of the values of the phases φi in Eq. (3.21)). More specif-
ically, the cases φ1 = φ2 = φ3 = 0 and φ1 = φ2 = 0 and φ3 = π correspond to NO spectra of
the type A and B, respectively. For φ1 = φ2 = 0 and φ3 = π also IO spectrum is possible.
The neutrino masses in cases of the three spectra are given by:

NO spectrum A : (m1,m2,m3) = (4.43, 9.75, 48.73) · 10−3 eV , (3.34)

NO spectrum B : (m1,m2,m3) = (5.87, 10.48, 48.88) · 10−3 eV , (3.35)

IO spectrum : (m1,m2,m3) = (51.53, 52.26, 17.34) · 10−3 eV , (3.36)

where we have used the best fit values of ∆m2
21 and |∆m2

31(32)| given in Table 1. Employing
the 3σ allowed ranges of values of the two neutrino mass squared differences quoted in Table
1, we find the intervals in which m1,2,3 can vary:

• NO spectrum A:
m1 ∈ [4.23, 4.66] · 10−3 eV, m2 ∈ [9.23, 10.17] · 10−3 eV, m3 ∈ [4.28, 5.56] · 10−2 eV;

• NO spectrum B:
m1 ∈ [5.56, 6.20] · 10−3 eV, m2 ∈ [9.83, 11.20] · 10−3 eV, m3 ∈ [4.23, 5.74] · 10−2 eV;

• IO spectrum:
m1 ∈ [4.57, 5.87] · 10−2 eV, m2 ∈ [4.63, 5.96] · 10−2 eV, m3 ∈ [1.53, 1.98] · 10−2 eV.
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Correspondingly, we get for the sum of the neutrino masses:

NO A :
3∑
j=1

mj = 6.29× 10−2 eV , 5.63× 10−2 ≤
3∑
j=1

mj ≤ 7.04× 10−2 eV , (3.37)

NO B :

3∑
j=1

mj = 6.52× 10−2 eV , 5.77× 10−2 ≤
3∑
j=1

mj ≤ 7.48× 10−2 eV , (3.38)

IO :
3∑
j=1

mj = 12.11× 10−2 eV , 10.73× 10−2 ≤
3∑
j=1

mj ≤ 13.81× 10−2 eV , (3.39)

where we have given the predictions using the best fit values and the 3σ intervals of the
allowed values of m1, m2 and m3 quoted above.

3.5.2 The Mixing Angles and Dirac CPV Phase

We will derive next expressions for the mixing angles and the CPV phases in the standard
parametrisation of the PMNS matrix in terms of the parameters of the model. The expres-
sion for the charged lepton mass matrix Ye given in Eq. (3.13) contains altogether seven
parameters: five real parameters and two phases, one of which is equal to π/2. Three (com-
binations of) parameters are determined by the three charged lepton masses. The remaining
two real parameters and two phases are related to two angles and two phases in the matrix
Ue which diagonalises the product Y†e Ye and enters into the expression of the PMNS matrix:
UPMNS = U †eUν , where Uν is of TBM form (see Eq. (3.19)), while Ue ∝ R23R12, R23 and R12

are orthogonal matrices describing rotations in the 2-3 and 1-2 planes, respectively. It proves
convenient to adopt for the matrices Ue and Uν the notation used in [14]:{

Ue = ΨeR
−1
23 (θe23)R−1

12 (θe12)

Uν = R23 (θν23)R12 (θν12) Φν

(3.40)

where Ψe = diag
(
1, eiψe , eiωe

)
, θν23 = −π/4, θν12 = sin−1(1/

√
3), Φν is a diagonal phase matrix

defined in Eq. (3.21), and

R12 (θe12) =

 cos θe12 sin θe12 0
− sin θe12 cos θe12 0

0 0 1

 , R23 (θe23) =

1 0 0
0 cos θe23 sin θe23

0 − sin θe23 cos θe23

 . (3.41)

Using the expression for the charged lepton mass matrix Ye given in Eq. (3.13) and
comparing the right and the left sides of the equation

Y†e Ye = Uediag
(
m2
e,m

2
µ,m

2
τ

)
U †e , (3.42)

we find that m2
e = a2, m2

µ = c2 and m2
τ = e2. For Ue given in Eq. (3.40) this equality holds

only under the condition that sin θe12 and sin θe23 are sufficiently small. Using the leading terms
in powers of the small parameters sin θe12 and sin θe23 we get the approximate relations:

sin θe12 eiψe ' ± i

∣∣∣∣bc
∣∣∣∣ , sin θe23 ei(ψe−ωe) =

e ρ

c2 − e2
ei η '

∣∣∣ρ
e

∣∣∣ ei ξe , (3.43)
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where ψe = ±π/2, ξe = ψe − ωe, ξe ∈ [0, 2π], θe12 ' |b/c| and θe23 ' |ρ/e|.
In the discussion that follows θe12, θe23, ψe and ωe are treated as arbitrary angles and

phases, i.e., no assumption about their magnitude is made.
The lepton mixing we obtain in the model we have constructed, including the Dirac CPV

phase but not the Majorana CPV phases, was investigated in detail on general phenomeno-
logical grounds in ref. [14] and we will use the results obtained in [14]. The three angles θ12,
θ23 and θ13 and the Dirac and Majorana CPV phases δ and β1 and β2 (see Eqs. (1.1) - (1.3)),

of the PMNS mixing matrix UPMNS = U †eUν = R12(θe12)R23(θe23)Ψ∗eR23(θν23)R12(θν12) Φν , can
be expressed as functions of the two real angles, θe12 and θe23, and the two phases, ψe and ωe
present in Ue. However, as was shown in [14], the three angles θ12, θ23 and θ13 and the Dirac
phase δ are expressed in terms of the angle θe12, an angle θ̂23 and just one phase φ, where

sin2 θ̂23 =
1

2
(1− 2 sin θe23 cos θe23 cos(ωe − ψe)) , (3.44)

and the phase φ = φ(θe23, ωe, ψe). Indeed, it is not difficult to show that (see the Appendix
in [14])

R23(θe23) Ψ∗e R23(θν23) = P ΦR23(θ̂23)Q̃ . (3.45)

Here P = diag(1, 1, e− iα), Φ = diag(1, eiφ, 1) and Q̃ = diag
(
1, 1, eiβ

)
, where

α = γ + ψe + ωe , β = γ − φ , (3.46)

and

γ = arg
(
−e− iψe cos θe23 + e− iωe sin θe23

)
, φ = arg

(
e− iψe cos θe23 + e− iωe sin θe23

)
. (3.47)

The phase α is unphysical (it can be absorbed in the τ lepton field). The phase β contributes
to the matrix of physical Majorana phases, which now is equal to Q = Q̃Φν . The PMNS
matrix takes the form:

UPMNS = R12(θe12) Φ(φ)R23(θ̂23)R12(θν12)Q , (3.48)

where θν12 = sin−1(1/
√

3). Thus, the four observables θ12, θ23, θ13 and δ are functions of three
parameters θe12, θ̂23 and φ. As a consequence, the Dirac phase δ can be expressed as a function
of the three PMNS angles θ12, θ23 and θ13, leading to a new “sum rule” relating δ and θ12,
θ23 and θ13 [14]. Using the measured values of θ12, θ23 and θ13, the authors of [14] obtained
predictions for the values of δ and of the rephasing invariant JCP = Im(U∗e1U

∗
µ3Ue3Uµ1), which

controls the magnitude of CP violating effects in neutrino oscillations [46], as well as for the
2σ and 3σ ranges of allowed values of sin θ12, sin θ23 and sin θ13. These predictions are valid
also in the model under discussion.

To be more specific, using Eq. (3.48) we get for the angles θ12, θ23 and θ13 of the standard
parametrisation of UPMNS [14]:

sin θ13 = |Ue3| = sin θe12 sin θ̂23,

sin2 θ23 =
|Uµ3|2

1− |Ue3|2
=

sin2 θ̂23 − sin2 θ13

1− sin2 θ13
, cos2 θ23 =

cos2 θ̂23

1− sin2 θ13
,

sin2 θ12 =
|Ue2|2

1− |Ue3|2
=

1

3

(
2 +

√
2 sin 2θ23 sin θ13 cosφ− sin2 θ23

1− cos2 θ23 cos2 θ13

)
,

(3.49)
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where the first relation sin θ13 = sin θe12 sin θ̂23 was used in order to obtain the expressions
for sin2 θ23 and sin2 θ12. Clearly, the angle θ̂23 differs little from the atmospheric neutrino
mixing angle θ23. For sin2 θ13 = 0.024 and sin2 θ23

∼= 0.39 we have sin θe12
∼= 0.2. Comparing

the imaginary and real parts of U∗e1U
∗
µ3Ue3Uµ1, obtained using Eq. (3.48) and the standard

parametrisation of UPMNS, one gets the following relation between the phase φ and the Dirac
phase δ [14]:

sin δ = − 2
√

2

3

sinφ

sin 2θ12
, (3.50)

cos δ =
2
√

2

3 sin 2θ12
cosφ

(
−1 +

2 sin2 θ23

sin2 θ23 cos2 θ13 + sin2 θ13

)

+
1

3 sin 2θ12

sin 2θ23 sin θ13

sin2 θ23 cos2 θ13 + sin2 θ13
. (3.51)

The results quoted above, including those for sin δ and cos δ, are exact. As can be shown, in
particular, we have: sin2 δ + cos2 δ = 1.

Equation (3.49) allows to express cosφ in terms of θ12, θ23 and θ13, and substituting the
result thus obtained for cosφ in Eqs. (3.50) and (3.51), one can get expressions for sin δ and
cos δ in terms of θ12, θ23 and θ13. We give below the result for cos δ [14]:

cos δ =
tan θ23

3 sin 2θ12 sin θ13

[
1 +

(
3 sin2 θ12 − 2

) (
1− cot2 θ23 sin2 θ13

)]
. (3.52)

For the best fit values of sin2 θ12, sin2 θ23 and sin θ13, one finds in the case of NO and IO
spectra 7 (see also [14]):

cos δ ∼= − 0.069 , sin δ = ±0.998 . (3.53)

These values correspond to
δ = 93.98◦ or δ = 266.02◦ . (3.54)

Thus, our model predicts δ ' π/2 or 3π/2. The fact that the value of the Dirac CPV
phase δ is determined (up to an ambiguity of the sign of sin δ) by the values of the three
mixing angles θ12, θ23 and θ13 of the PMNS matrix, (3.52), is the most striking prediction
of the model considered. For the best fit values of θ12, θ23 and θ13 we get δ ∼= π/2 or 3π/2.
These result implies also that in the model under discussion, the JCP factor, which determines
the magnitude of CP violation in neutrino oscillations, is also a function of the three angles
θ12, θ23 and θ13 of the PMNS matrix:

JCP = JCP(θ12, θ23, θ13, δ(θ12, θ23, θ13)) = JCP(θ12, θ23, θ13) . (3.55)

This allows to obtain predictions for the range of possible values of JCP using the current
data on sin2 θ12, sin2 θ23 and sin2 θ13. For the best fit values of these parameters (see Table
1) we find: JCP ' ±0.034.

The quoted results on δ and JCP were obtained first on the basis of a phenomenological
analysis in [14]. Here they are obtained for the first time within a selfconsistent model of
lepton flavour based on the T ′ family symmetry.

7 Due to the slight difference between the best fit values of sin2 θ23 and sin θ13 in the cases of NO and IO
spectra (see Table 1), the values we obtain for cos δ in the two cases differ somewhat. However, this difference
is equal to 10−4 in absolute value and we will neglect it in what follows.
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In [14] the authors performed a detailed statistical analysis which permitted to determine
the ranges of allowed values of sin2 θ12, sin2 θ23, sin θ13, δ and JCP at a given confidence
level. We quote below some of the results obtained in [14], which are valid also in the model
constructed by us.

Most importantly, the CP conserving values of δ = 0;π; 2π are excluded with respect to
the best fit CP violating values δ ∼= π/2; 3π/2 at more than 4σ. Correspondingly, JCP = 0
is also excluded with respect to the best-fit values JCP ' (−0.034) and JCP ' 0.034 at more
than 4σ. Further, the 3σ allowed ranges of values of both δ and JCP form rather narrow
intervals. In the case of the best fit value δ ∼= 3π/2, for instance, we have in the cases of NO
and IO spectra:

NO : JCP
∼= −0.034 , 0.028 ∼< JCP ∼< 0.039 , or (3.56)

−0.039 ∼< JCP ∼< − 0.028 , (3.57)

IO : JCP
∼= −0.034 , 0.027 ∼< JCP ∼< 0.039 , or (3.58)

−0.039 ∼< JCP ∼< − 0.026 , (3.59)

where we have quoted the best fit value of JCP as well. The positive values are related to the
χ2 minimum at δ = π/2.

The preceding results and discussion are illustrated qualitatively in Fig. 1, where we show
the correlation between the value of sin δ and JCP for the 1σ and 2σ ranges of allowed values
of sin2 θ12, sin2 θ23 and sin2 θ13, which were taken from Table 1. The figure was produced
assuming flat distribution of the values of sin2 θ12, sin2 θ23 and sin2 θ13 in the quoted intervals
around the corresponding best fit values. As can be seen from Fig. 1, the predicted values of
both sin δ and JCP thus obtained form rather narrow intervals 8.

As it follows from Table 1, the angle θ23 is determined using the current neutrino oscillation
data with largest uncertainty. We give next the values of the Dirac phase δ for two values
of sin2 θ23 from its 3σ allowed range, sin2 θ23 = 0.50 and 0.60, and for the best fit values of
sin2 θ12 and sin2 θ13:

sin2 θ23 = 0.50 : cos δ = − 0.123 , δ = 97.09◦ or 262.91◦ ; (3.60)

sin2 θ23 = 0.60 : cos δ = − 0.176 , δ = 100.12◦ or 259.88◦ . (3.61)

These results show that | sin δ|, which determines the magnitude of the CP violation effects
in neutrino oscillations, exhibits very weak dependence on the value of sin2 θ23: for any value
of sin2 θ23 from the interval 0.39 ≤ sin2 θ23 ≤ 0.60 we get | sin δ| ≥ 0.98.

The predictions of the model for δ and JCP will be tested in the experiments searching
for CP violation in neutrino oscillations, which will provide information on the value of the
Dirac phase δ.

3.5.3 The Majorana CPV Phases

Using the expressions for the angles θe12 and θ̂23 and for cosφ in terms of sin θ13, sin θ12 and
sin θ23 and the best fit values of sin θ13, sin θ12 and sin θ23, we can calculate the numerical

8The 2σ ranges of allowed values of sin δ and JCP shown in Fig. 1 match approximately the 3σ ranges of
allowed values of sin δ and JCP obtained in [14] by performing a more rigorous statistical (χ2) analysis.
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Figure 1: Possible values of sin δ and JCP, obtained by using the 1σ (light brown areas)
and 2σ ranges (blue + light brown areas) of allowed values of the mixing angles θ12, θ23 and
θ13 for NO spectrum (left panels) and IO spectrum (right panels), and for sin δ < 0 (upper
panels) and sin δ > 0 (lower panels). The predictions for the best fit values of θ12, θ23 and θ13,
corresponding to δ = 266.02◦ (sin δ < 0) and δ = 93.98◦ (sin δ > 0), are indicated with crosses.
See text for further details.
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form of UPMNS from which we can extract the values of the physical CPV Majorana phases.
We follow the procedure described in [47]. Obviously, there are two such forms of UPMNS

corresponding to the two possible values of δ. In the case of δ = 266.02◦ and φ ' 102.55◦ we
find:

UPMNS =

 0.822 e− i 7.47◦ 0.547 ei 16.04◦ 0.155 ei 102.55◦

0.436 e− i 104.08◦ 0.658 ei 114.67◦ 0.614 ei 102.55◦

0.365 −0.517 0.774

 Q . (3.62)

Recasting this expression in the form of the standard parametrisation of UPMNS we get:

UPMNS = P

 0.822 0.547 0.155 ei 93.98◦

0.436 ei 169.41◦ 0.658 ei 4.65◦ 0.614
0.365 ei 16.04 0.517 ei 172.53 0.774

 Q2 Q , (3.63)

where P = diag(ei(16.04−7.47)◦ , ei 102.55◦ , 1), Q2 = diag(e− i 16.04◦ , ei 7.47◦ , 1) and ei 93.98◦ =
e− i(360−93.98)◦ = e− i 266.02◦ .
Similarly, in the case of δ = 93.98 and φ ' 257.45◦ we obtain:

UPMNS =

 0.822 ei 7.47◦ 0.547 e− i 16.04◦ 0.155 e− i 102.55◦

0.436 ei 104.08◦ 0.658 e− i 114.67◦ 0.614 e− i 102.55◦

0.365 −0.517 0.774

 Q . (3.64)

Extracting again phases in diagonal matrices on the right hand and left hand sides to get the
standard parametrisation of UPMNS we find:

UPMNS = P̃

 0.822 0.547 0.155 e− i 93.98◦

0.436 e− i 169.41◦ 0.658 e− i 4.65◦ 0.614
0.365 e− i 16.04 0.517 e− i 172.53 0.774

 Q̃2 Q , (3.65)

where P = diag(ei(−16.04+7.47)◦ , e− i 102.55◦ , 1) and Q̃2 = diag(ei 16.04◦ , e− i 7.47◦ , 1). The phases
in the matrices P and P̃ can be absorbed by the charged lepton fields and are unphysical. In
contrast, the phases in the matrices Q2 and Q̃2 contribute to the physical Majorana phases.
We can finally write the Majorana phase matrix in the parametrization given in (1.1) (φ1 = 0):

− β1

2
= ∓16.04◦ − β − φ3

2
, sin δ = ∓ 0.976 , (3.66)

− β2

2
= ±7.47◦ − β − φ3 − φ2

2
, sin δ = ∓ 0.976 . (3.67)

In order to calculate the phase β = γ − φ we have to find the value of γ. It follows from
Eqs. (3.44) and (3.47) that

cos γ =
sin θe23 cosωe√

2 sin θ̂23

, sin γ =
± cos θe23 − sin θe23 sinωe√

2 sin θ̂23

, (3.68)

cosφ =
sin θe23 cosωe√

2 cos θ̂23

, sinφ =
∓ cos θe23 − sin θe23 sinωe√

2 cos θ̂23

, (3.69)

where we used the fact that ψe = ±π/2. These equations imply the following relations:

cos γ = cosφ
sin θ̂23

cos θ̂23

, (3.70)

sinφ cos θ̂23 + sin γ sin θ̂23 = − 1√
2

sin θe23 sinωe . (3.71)
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It is clear from Eq. (3.70) that the value of cos γ can be determined knowing the values of
cosφ and sin θ̂23, independently of the values of θe23 and ωe. This, obviously, allows to find also
| sin γ|, but not the sign of sin γ. In the case of sin θe23 sinωe � 1 of interest, Eq. (3.71) allows
to correlate the sign of sin γ with the sign of sinφ and thus to determine γ for a given φ: we
have sin γ < 0 if sinφ > 0, and sin γ > 0 for sinφ < 0. Thus, for φ = 102.5530◦ (corresponding
to δ = 266.02◦) we find γ = − 105.4118 and β = γ − φ = − 207.9648◦ = − (180 + 27.9648)◦,
while for φ = − 102.5530◦ (corresponding to δ = 93.98◦) we obtain γ = + 105.4118 and
β = +207.96◦ = + (180 + 27.96)◦.

The results thus derived allow us to calculate numerically the Majorana CPV phases. For
the best fit values of the neutrino mixing angles we get:

β1 = (23.84 + 360 + φ3)◦ , β2 = (70.88 + 360− φ2 + φ3)◦ for φ = −102.55◦ (δ = 93.98◦) ;
(3.72)

β1 = (−23.84− 360 + φ3)◦ = (−23.84 + 360 + φ3)◦ ,

β2 = (−70.88− 360− φ2 + φ3)◦ = (−70.88 + 360− φ2 + φ3)◦ for φ = 102.55◦ (δ = 266.02◦) ,

(3.73)

where we have used the fact that β1(2) and β1(2) + 4π lead to the same physical results.
In the cases of the three types of neutrino mass spectrum allowed by the model, which are
characterised, in particular, by specific values of the φ2 and φ3 we find:

• NO A spectrum, i.e., φ2 = φ3 = 0:

β1 = (23.84 + 360)◦ , β2 = (70.88 + 360)◦ for φ = −102.55◦ (δ = 93.98◦) ,

β1 = (−23.84 + 360)◦ , β2 = (−70.88 + 360)◦ for φ = 102.55◦ (δ = 266.02◦) ;
(3.74)

• NO B spectrum, i.e., φ2 = 0 and φ3 = π:

β1 = (23.84 + 540)◦ , β2 = (70.88 + 540)◦for φ = −102.55◦ (δ = 93.98◦) ,

β1 = (−23.84 + 540)◦ , β2 = (−70.88 + 540)◦for φ = 102.55◦ (δ = 266.02◦) ;
(3.75)

• IO spectrum, φ3 = 0 and φ2 = π:

β1 = (23.84 + 360)◦ , β2 = (70.88 + 180)◦ for φ = −102.55◦ (δ = 93.98◦) ,

β1 = (−23.84 + 360)◦ , β2 = (−70.88 + 180)◦ for φ = 102.55◦ (δ = 266.02◦) ,
(3.76)

where again we have used the fact that β1(2) and β1(2) + 4π are physically indistinguishable.

3.5.4 The Neutrinoless Double Beta Decay Effective Majorana Mass

Knowing the values of the neutrino masses and the Majorana and Dirac CPV phases we can
derive predictions for the neutrinoless double beta ((ββ)0ν-) decay effective Majorana mass
|〈m〉| (see, e.g., [48]). Since |〈m〉| depends only on the cosines of the CPV phases, we get the
same result for φ = + 102.55◦ (δ = 266.02◦) and φ = − 102.55◦ (δ = 93.98◦).

Thus, for φ = ±102.55◦, using the best fit values of the neutrino mixing angles, we obtain:

|〈m〉| = 4.88× 10−3 eV , NO A spectrum ; (3.77)

|〈m〉| = 7.30× 10−3 eV , NO B spectrum ; (3.78)

|〈m〉| = 26.34× 10−3 eV , IO spectrum . (3.79)
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Figure 2: The 3σ allowed regions of values of the effective Majorana mass |〈m〉| as func-
tions of the lightest neutrino mass mmin for the NO (blue area) and IO (red area) neutrino
mass spectra. The regions are obtained by using the experimentally determined values of the
neutrino oscillation parameters (including the 1σ uncertainties) quoted in Table 1. The black
crosses correspond to the predictions of the model constructed in the present article, Eqs.
(3.77) - (3.79). The horizontal band indicates the upper bound |〈m〉| ∼ 0.2− 0.4 eV obtained
using the 90 % C.L. limit on the half-life of 76Ge reported in [49]. The dotted line represents
the prospective upper limit from the β-decay experiment KATRIN [50].
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In Fig. 2 we show the general phenomenologically allowed 3σ range of values of |〈m〉|
for the NO (blue area) and IO (red area) neutrino mass spectra as a function of the lightest
neutrino mass. The values of |〈m〉| quoted above and corresponding to the three types of
neutrino mass spectrum (NO A, NO B and IO), predicted by the model constructed in the
present article, are indicated with black crosses. The vertical lines in Fig. 2 correspond to
mmin = 8.6×10−4 eV and 1.0×10−2 eV; for a given value of mmin from the interval determined
by these two values, [8.6× 10−4, 1.0× 10−2] eV, one can have |〈m〉| = 0 for specific values of
the Majorana CPV phases.

3.5.5 Limiting Cases

Finally, there are two interesting limiting forms of the charged lepton Yukawa coupling (mass)
matrix Ye: they correspond to i) k = 0, i.e., η = 0 or π, and ii) d = 0, i.e., η = ±π/2. In the
case of k = 0, the TBM prediction for θ12 does not depend on θe23 anymore; if d = 0, even θ23

itself does not depend on θe23 anymore. Up to next-to-leading order we find:

i) sin2 θ12 =
1

3
+

1

3
sin2 θ13 ≈

1

3
for k = 0, η = 0, π ,

ii) sin2 θ23 =
1

2
− 1

2
sin2 θ13 ≈

1

2
for d = 0, η = ±π/2 ,

(3.80)

where we have written the corrections in terms of θ13. Both cases could be realised by choosing
a certain set of messengers. If we remove the messenger pair ΣA

2′ , Σ̄A
2′′ , our model would

correspond to the case i), while if we remove the messenger pair ΣC
1′′ , Σ̄C

1′ , the model would
correspond to the case ii). The model we have constructed, which includes both messenger
pairs, gives a somewhat better description of the current data on the neutrino mixing angles.
This brief discussion shows how important the messenger sector can be for getting meaningful
predictions.

4 Summary and Conclusions

In this work we have analyzed the presence of a generalised CP symmetry, HCP, combined
with the non-Abelian discrete group T ′ in the lepton flavour space, i.e. the possibility of
the existence of a symmetry group Gf = T ′ o HCP acting among the three generations of
charged leptons and neutrinos. The phenomenological implications of the breaking of such a
symmetry group both in the charged lepton and neutrino sectors are thus explored especially
in connection with the CP violation appearing in the leptonic mixing matrix, UPMNS.

First of all we have derived in Section 2 all the possible generalised CP transformations
for all the representations of the T ′ group i.e. we found all possible outer automorphisms
of the group T ′ following the consistency conditions given in [41, 42, 44]. We have chosen as
generalised CP symmetry the transformation u : (T, S) → (T 2, S2T 2S T ) which corresponds
to a Z2 symmetry and it is defined up to an inner automorphism. The transformation u is
particularly convenient since, in the basis chosen for the generators S and T , for the 1 and
3-dimensional representations it is trivially defined as the identity up to a global unphysical
phase θr where the index r refers to the representation. More importantly we found that,
given this specific generalised CP symmetry combined with T ′, it is possible to fix the vevs
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of the flavon fields to real values in such a way that no complex phases, and thus no physical
CP violation, stem from the vevs themselves.

Moreover, for a list of possible renormalisable operators, namely λO = λ(A×B×C) where
λ is the coupling constant and A, B, C are fields, we derived the constraints on the phase
λ under the assumption of invariance under the generalised CP transformation. This list of
possible operators can be used to construct a CP-conserving renormalisable superpotential
for the flavon sector and therefore can be used in order to show that real vev structures can
be achieved.

Motivated by this preliminary study we constructed in Section 3 a supersymmetric flavour
model able to describe the observed patterns and mixing for three generations of charged
lepton fields and the three light active neutrinos.

We have constructed an effective superpotential with operators up to mass dimension
six giving the charged lepton and neutrino Yukawa couplings and the Majorana mass term
for the RH neutrinos. Naturally small neutrino masses are generated by the type I see-
saw mechanism. At leading order, the mixing in the neutrino sector is described by the
tri-bimaximal mixing, which is then perturbed by additional contributions coming from the
charged lepton sector. The latter are responsible for the compatibility of the predictions on
the mixing angles with the experimental values and, in particular, with the non-zero value of
the reactor mixing angle θ13.

Similarly to what was found in [35], we find that both types of neutrino mass spectrum
- with normal ordering (NO) and inverted ordering (IO) - are possible within the model and
that the NO spectrum can be of two varieties, A and B. They differ by the value of the lightest
neutrino mass. Only one spectrum of the IO type is compatible with the model. For each of
the three neutrino mass spectra, NO A, NO B and IO, the absolute scale of neutrino masses is
predicted with relatively small uncertainty. This allows us to predict the value of the sum of
the neutrino masses for the three spectra. The Dirac phase δ is predicted to be approximately
δ ∼= π/2 or 3π/2. More concretely, for the best fit values of the neutrino mixing angles quoted
in Table 1 we get δ = 93.98◦ or δ = 266.02◦. The deviations of δ from the values 90◦ and
270◦ are correlated with the deviation of atmospheric neutrino mixing angle θ23 from π/4.
Thus, the CP violating effects in neutrino oscillations are predicted to be nearly maximal
(given the values of the neutrino mixing angles) and experimentally observable. The values
of the Majorana CPV phases are also predicted by the model. This allows us to predict the
neutrinoless double beta decay effective Majorana mass in each of the three cases of neutrino
mass spectrum allowed by the model, NO A, NO B and IO. The predictions of the model can
be tested in ongoing and future planned i) accelerators experiments searching for CP violation
in neutrino oscillations (T2K, NOνA, etc.), ii) experiments aiming to determine the absolute
neutrino mass scale, and iii) experiments searching for neutrinoless double beta decay.

It is important to comment that in this model the physical CP violation emerging in the
PMNS mixing matrix stems only from the charged lepton sector. Indeed, in the neutrino
sector the Majorana mass matrix and the Dirac Yukawa couplings are real and the CP viola-
tion is caused by the complex CP violating phases arising in the charged lepton sector. The
presence of the latter is a consequence of the requirement of invariance of the theory under
the generalised CP symmetry at the fundamental level and of the complex CGs of the T ′

group.
We also found that the residual group in the charged lepton sector is trivial i.e. Ge = ∅ and

since the phases of the flavon vevs are completely independent of the coupling constants of the
flavon superpotential, the CP symmetry is broken geometrically (according to the definition
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of “geometrical CP violation” given in [34]). In the neutrino sector, the residual subgroup
is instead a Klein group, Gν = K4 = Z2 × Z2 with one Z2 coming from the generalised CP
symmetry HCP.

Concluding, we have shown that the spontaneous breaking of a symmetry group Gf =
T ′ o HCP in the leptonic sector through a real flavon vev structure is possible and, at the
same time, CP violation in the leptonic sector can take place. In this scenario the appearance
of the CP violating phases in the PMNS mixing matrix can be traced to two factors: i) the
requirement of invariance of the Lagrangian of the theory under HCP at the fundamental
level, and ii) the complex CGs of the T ′ group. The model we have constructed allows
for two neutrino mass spectra with normal ordering (NO) and one with inverted ordering
(IO). For each of the three spectra the absolute scale of neutrino masses is predicted with
relatively small uncertainty. The value of the Dirac CP violation (CPV) phase δ in the lepton
mixing matrix is predicted to be δ ∼= π/2 or 3π/2. Thus, the CP violating effects in neutrino
oscillations are predicted to be nearly maximal and experimentally observable. We present
also predictions for the sum of the neutrino masses, for the Majorana CPV phases and for
the effective Majorana mass in neutrinoless double beta decay. The predictions of the model
can be tested in a variety of ongoing and future planned neutrino experiments.

Note added

After the submission of our article to the arXiv, an update of the global fits to the neutrino
oscillation data appeared [51]. The results reported in [51] are in agreement with the predic-
tions of our model. More specifically, the authors of [51] find that the best fit value of δ is
δ ≈ 3π/2, which is one of the two possible values predicted by in our model. Similar results
on δ were obtained in the global analysis of the neutrino oscillation data performed in [52].
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A Technicalities about T ′

The group T ′ is the double covering group of A4 and it is defined through the algebraic
relations:

S2 = R R2 = T 3 = (ST )3 = E RT = TR . (A.1)

The number of the unitary irreducible representations of a discrete group is equal to the
number of the conjugacy classes. For T ′ they are seven, which are classified given the elements
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T , S, because R ≡ S2, we summarize them as

1C1 : {E} , 1′C2 :
{
S2
}

4C3 :
{
T, S3TS, ST, TS

}
, 4′C3 :

{
T 2, S2TST, S2T 2S, S3T 2

}
4′′C6 :

{
S2T, STS, S3T, S2TS

}
, 4′′′C6 :

{
S2T 2, TST, T 2S, ST 2

}
6C4 :

{
S, S3, TST 2, T 2ST, S2TST 2, S2T 2ST

} (A.2)

The representations of T ′ can be expressed as

1 : T = 1 , R = 1 , S = 1 ;

1′ : T = ω , R = 1 , S = 1 ;

1′′ : T = ω2 , R = 1 , S = 1 ;

2 : T =

(
ω2 0
0 ω

)
, R =

(
−1 0
0 −1

)
, S =

 − i√
3
−
√

2
3p√

2
3 p̄

i√
3

 ;

2′ : T =

(
ω3 0
0 ω2

)
, R =

(
−1 0
0 −1

)
, S =

 − i√
3
−
√

2
3p√

2
3 p̄

i√
3

 ;

2′′ : T =

(
ω 0
0 1

)
, R =

(
−1 0
0 −1

)
, S =

 − i√
3
−
√

2
3p√

2
3 p̄

i√
3

 ;

3 : T =

 1 0 0
0 ω 0
0 0 ω2

 , R =

 1 0 0
0 1 0
0 0 1

 , S =

 −1
3

2ω
3

2ω2

3
2ω2

3 −1
3

2ω
3

2ω
3

2ω2

3 −1
3

 .

We use the definition of the representation of T ′ given in [24] in which ω and p are fixed to

be respectively ω = e
2 iπ
3 and p = e

iπ
12 . Finally T ′ has n = 13 subgroups excluding the whole

group:

• Trivial subgroup
E = {E};

• Z2 subgroup
ZS

2

2 =
{
E,S2

}
;

• Z3 subgroups
ZT3 =

{
E, T, T 2

}
, ZS

3TS
3 =

{
E,S3TS, S2TST

}
, ZST3 =

{
E,ST, S2T 2S

}
, ZTS3 ={

E, TS, S3T 2
}

;

• Z4 subgroups
ZS4 =

{
E,S, S2, S3

}
, ZTST

2

4 =
{
E, TST 2, S2, S2TST 2

}
, ZT

2ST
4 =

{
E, T 2ST, S2, S2T 2ST

}
;

• Z6 subgroups
ZS

2T
6 =

{
E,S2T, T 2, S2, T, S2T 2

}
, ZSTS6 =

{
E,STS, S2TST, S2, S3TS, TST

}
,

ZS
3T

6 =
{
E,S3T, S2T 2S, S2, ST, T 2S

}
, ZS

2TS
6 =

{
E,S2TS, S3T 2, S2, TS, ST 2

}
.

A complete table of the CGs coefficients can be found in [35].
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SU(2) U(1)Y T ′ U(1)R Z8 Z4 Z4 Z3 Z3 Z2

Ξ1 , Ξ̄1 2 ,2 1,1 1 ,1 0,2 7,1 0,0 0,0 0,0 1,2 0,0

ΣA
1 ,Σ̄A

1 2 ,2 1,1 1 ,1 1,1 1,7 3,1 3,1 2,1 1,2 1,1
ΣB

1 ,Σ̄B
1 1 ,1 2,2 1 ,1 1,1 2,6 1,3 1,3 2,1 0,0 1,1

ΣA
1′ ,Σ̄A

1′′ 2 ,2 1,1 1′,1′′ 1,1 7,1 3,1 3,1 0,0 2,1 0,0
ΣB

1′ ,Σ̄B
1′′ 1 ,1 2,2 1′,1′′ 1,1 0,0 1,3 1,3 0,0 1,2 0,0

ΣA
1′′ ,Σ̄

A
1′ 2 ,2 1,1 1′′ ,1′ 1,1 1,7 3,1 3,1 2,1 1,2 1,1

ΣB
1′′ ,Σ̄

B
1′ 2 ,2 1,1 1′′ ,1′ 1,1 1,7 3,1 1,3 0,0 0,0 0,0

ΣC
1′′ ,Σ̄

C
1′ 2 ,2 1,1 1′′ ,1′ 1,1 6,2 3,1 0,0 1,2 1,2 0,0

ΣA
2′ ,Σ̄A

2′′ 2 ,2 1,1 2′,2′′ 1,1 0,0 1,3 0,0 1,2 1,2 0,0
ΣA

2′′ ,Σ̄
A
2′ 2 ,2 1,1 2′′ ,2′ 1,1 0,0 1,3 0,0 1,2 1,2 0,0

∆A
1 ,∆̄A

1 1 ,1 0,0 1 ,1 0,2 0,0 2,2 0,0 0,0 0,0 0,0
∆B

1 ,∆̄B
1 1 ,1 0,0 1 ,1 0,2 0,0 0,0 0,0 2,1 2,1 0,0

∆A
1′ ,∆̄A

1′′ 1 ,1 0,0 1′,1′′ 0,2 0,0 0,0 0,0 0,0 2,1 0,0
∆A

2′ ,∆̄A
2′′ 1 ,1 0,0 2′,2′′ 0,2 0,0 0,0 3,1 1,2 1,2 1,1

∆A
3 ,∆̄A

3 1 ,1 0,0 3 ,3 0,2 4,4 0,0 0,0 0,0 0,0 1,1
∆B

3 ,∆̄B
3 1 ,1 0,0 3 ,3 0,2 6,2 2,2 0,0 1,2 0,0 1,1

∆C
3 ,∆̄C

3 1 ,1 0,0 3 ,3 0,2 6,2 1,3 2,2 0,0 1,2 0,0
∆D

3 ,∆̄D
3 1 ,1 0,0 3 ,3 0,2 5,3 0,0 3,1 0,0 1,2 0,0

∆E
3 ,∆̄E

3 1 ,1 0,0 3 ,3 0,2 2,6 0,0 2,2 2,1 0,0 0,0

Table 9: List of the messengers fields and their transformation properties.

B Messenger Sector

The effective model we have considered so far contains only non-renormalisable operators
allowed by the symmetry group Gf × Z2 × Z2

3 × Z2
4 × Z8 × U(1)R. But in fact using only

this symmetry there would be more effective operators allowed which might spoil our model
predictions.

Therefore we discuss in in this section we a so-called ultraviolet completion defining a
renormalisable theory which gives the effective model described in the previous sections after
integrating out the heavy messenger superfields. In this way we can justify why we have chosen
only a certain subset of the effective operators allowed by the symmetries. The quantum
numbers of the messenger fields are given in Table 9. We label them with Σ, Ξ and ∆ for the
charged lepton, neutrino and flavon sector respectively.

For the charged lepton sector we find the renormalisable superpotential Wren
e

Wren
e = LφΣA

1′′ + LφΣA
1 + Ē3Hd Σ̄A

1′ + L φ̂ΣC
1′′ + ζ Σ̄C

1′ Σ
A
1′′ +Hd Σ̄A

1 ΣB
1

+ Ē ψ′ Σ̄B
1 + Lψ′ΣA

2′′ + ψ′′ Σ̄A
2′ Σ

A
1 + L φ̃ΣB

1′ + ζ̃ ′ Σ̄B
1′ Σ

B
1′

+Hd Σ̄B
1′′ Σ

C
1′ + Ē ψ̃′′ Σ̄C

1′′ + Lψ′ΣA
2′ + ψ′′ Σ̄A

2′′ Σ
A
1′′ ,

(B.1)

which through the diagrams of Fig. 3 generates at low energy the non-renormalisable super-
potential WYe of Eq. (3.12).
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Ē3Hd

ΣA
1′′

Σ̄A
1′

ΣA
2′

Σ̄A
2′′

Figure 3: The supergraphs before integrating out the messengers for the charged lepton
sector.

For the neutrino and the flavon sector we obtained similarly to the previous case

Wren
ν = N2ξ +N2ρ+N2ρ̃+ LNΞ1 +HuΞ̄1ρ+HuΞ̄1ρ̃ , (B.2)

Wren
flavon = Dφ φ∆B

3 + ε3 φ ∆̄B
3 +Dφ ζ

′′∆B
3 + D̃φ φ̃∆C

3 + ε1 φ̃ ∆̄C
3 + D̃φ ζ̃

′∆C
3

+ D̂φ φ̂∆D
3 + ε4 φ̂ ∆̄D

3 + D̂φ ζ̃
′′∆E

3 + ε5 φ̃ ∆̄E
3 + S̃ζ ζ̃

′′∆A
1′ + ζ̃ ′′ ζ̃ ′′ ∆̄A

1′′

+ Sε4 ε4 ∆B
1 + ε4 ε4 ∆̄B

1 + ε1 ε1 ∆̄A
1 + Sε1 ∆A

1 ∆A
1 .

(B.3)

The corresponding diagrams that generate the effective operators in the neutrino and flavon
sector in our model are given in Figs. 4 and 5.
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