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Abstract

We compute the contributions to the electron and muon anomalous magnetic
moment induced by heavy leptons up to four-loop order. Asymptotic expansion is
applied to obtain three analytic expansion terms which show rapid convergence.

PACS numbers: 12.20.-m 14.60.Cd 14.60.Ef

1 Introduction

Since decades the anomalous magnetic moments of electron and muon, a. and a,, are used
to perform precision tests of QED.! In fact, in the case of the electron the experimental
measurements and theoretical predictions have reached a precision which allows for the
most precise extraction of the fine structure constant a. In contrast to a. there is a
sizable hadronic contribution to a, which involves as input measurements of the total
cross section o(eTe™ — hadrons) at low energies. Although all ingredients are measured
and computed to high precision there is a discrepancy of about 30 between the measured
and predicted value for a, [4-6]. In this context it is interesting to mention that this
difference is of the same order of magnitude as the four-loop QED contribution which
to date has only been computed by one group [7]. Thus, it is important to provide an
independent cross check for this ingredient. First results have been obtained in Ref. [8-10].
In particular, in Ref. [10] the contribution from Feynman diagrams containing two or
three closed electron loops have been computed. In this letter we provide a further step

1See Refs. [1-3] for comprehensive reviews.



towards the full four-loop QED corrections to a. and a, and compute the part induced
by heavy leptons. In the case of the muon this means that Feynman diagrams have to
be considered which contain closed tau loops and both closed muon and tau loops are
present for a.. Such contributions appear for the first time at two-loop order (cf. Fig. 1)
and have been computed in Refs. [11-13]. Also the three-loop result is known in analytic
form for arbitrary lepton masses [14-19] (see also [12,13]). At four loops, however, only
numerical results are available [7,20-22]. We want to cross-check these results using a
different method which leads to analytic results for a. and a,. It is based on asymptotic
expansion [23] in the ratio of the light and heavy lepton mass, M; and M), which leads to
a factorization of the two-scale integrals into simpler ones with at most one mass scale.
The latter can be computed analytically. We have computed three terms of the expansion
in M?/M?.

For the perturbative expansion of the QED corrections to a. and a, we take over the
commonly used notation from Refs. [7,22] and write (I = e, )

0 - T »

n>1

where al(2") can be written in the form

alm = AP 4 AP (M /M,) + AT (M, /M) + AT (M. /M, M, /M, ),

alf = APY + A (M/M) + AD (M, My) + AS (M /M, My /M) . (2)

H 2,u

In this paper we compute ALY (M,/M,), AT (M./M,), ALY (M,/M,, M./M,) and

A;?Z)(Mu /M) to four-loop order. We have also computed the corresponding two- and
three-loop results and found complete agreement with the literature.

Before starting the actual calculation let us consider the parametrical size of our correc-
tions. Actually, the heavy-lepton contribution decouples in the limit M}, — oo and leads to
a M} /Mj, suppression. Thus the four-loop corrections to a,, have the form (o /m)*x M7 /M?
where M7 /M? is of order 107, On the other hand we have a/m ~ 2107 which is of
the same order of magnitude. Thus, from the parametric point of view the four-loop
corrections induced by heavy leptons could be of the same order as the five-loop results
obtained in Ref. [7]. Note, however, that in practice the contributions involving electron
loops are large (Agg)(]we /M,,) is of order 10%) whereas the heavy-lepton contributions
have coefficients which are at most of order 10.

In the case of a. the ratio of the lepton masses is much smaller than for a, (Note that
MZ /M7 = O(107°), MZ/M? = O(10~")) and thus the corresponding corrections are less
relevant. Nevertheless, for completeness we provide also those results.

The remainder of the paper is structured as follows: In the next Section we briefly discuss
some technical details which are important for our calculation. Section 3 is devoted to
the presentation and discussion of the results. In particular, we compare to the numerical
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Figure 1: Sample Feynman diagrams contributing to the electron and muon (g — 2) con-
taining a heavy lepton at two, three and four loops. Thin and thick solid lines represent
light and heavy leptons, respectively, and wavy lines denote photons. The symbols be-
low the four-loop diagrams label the individual diagram classes and are taken over from

Refs. [7,22].

results of Refs. [7,22]. We conclude in Section 4. In the Appendix we present results for
the on-shell counterterms for the fine structure constant, the lepton mass and the lepton
wave function.



2 Some technical details

Typical Feynman diagrams to be considered for the heavy-lepton contribution of a. and a,,
are shown in Fig. 1. At two-loop order only one diagram has to be considered.? At three
loop-order 60 and at four loops 1169 Feynman diagrams are generated. In the following
discussion we denote the heavy lepton mass by M), and the light one by M.

For the generation of the diagrams we use QGRAF [25] and transform the amplitudes with
the help of q2e [26,27] to a FORM [28] readable output.

In a next step we apply exp [26,27] to perform an asymptotic expansion for M, > M;.
At two-loop order [see Fig. 2(a)] this leads to two so-called sub-diagrams which have to be
Taylor-expanded in their external momenta. The first sub-diagram is given by the whole
two-loop diagram which, after expansion, leads to two-loop vacuum integrals. The second
contribution consists of a product of two one-loop diagrams. After expanding the one-loop
vacuum integral in the external momentum one has to insert the result in the remaining
one-loop on-shell integral and integrate over the second loop momentum. The described
procedure is illustrated in the second line of Fig. 2(a). Fig. 2(b) shows a four-loop example
which demonstrates the typical situation at this order: the original four-loop two-scale
integral is transformed to a sum of products of N-loop vacuum integrals with scale M),
and (4 — N)-loop on-shell integrals with ¢*> = M? where N = 1,2,3 or 4 and ¢ is the
momentum flowing through the external lepton line. All integrals only contain one mass
scale and are thus significantly simpler than the original one.

Both vacuum and on-shell integrals are reduced to master integrals with the help of
FIRE [29,30].> The master integrals are all known analytically and are taken from Refs.
[31-40] and Refs. [41-43], respectively.

We renormalize our results in the on-shell scheme. For this purpose we need the counter-
term for the fine structure constant, the (light) lepton mass and lepton wave function to
three loops. The corresponding analytic results for the case of a massless second lepton
loop can be found in Ref. [44], Refs. [42,45-47] and [47, 48], respectively. In our case
the opposite limit of a heavy lepton is needed which we computed ourselves using the
rules of asymptotic expansion as described above. The analytic expressions are presented
in the Appendix for completeness. Our results for the leading term of the lepton mass
counterterm agrees with Ref. [49] and the one for the charge counterterm is easily obtained
from the general expression presented in Ref. [10]. To our knowledge the three-loop result
for the on-shell wave function renormalization constant is new.

In addition, the heavy-lepton mass has to be renormalized in the two- and three-loop
expression. The corresponding two-loop counterterm can be found in Refs. [50,51]. Note
that the two-loop counterterm which has to be inserted into the two-loop vertex diagram

2Note that the contribution where the photon couples to the closed lepton loop vanishes due to Furry’s
theorem [24].

3We thank A.V. Smirnov and V.A. Smirnov for allowing us to use the unpublished C++ version of
FIRE.
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Figure 2: Graphical examples for the application of the asymptotic expansion at two
(a) and four (b) loops. Thick solid, thin solid and wavy lines represent heavy and light
leptons and photons, respectively. In (b) only four representative sub-diagrams are shown.
Altogether there are eight contributions.

of Fig. 1 involves contributions with a closed light lepton loop. The expansion of this
contribution in M; < M), contains both even and odd powers in M;/M, which is the

reason for the occurrence of odd expansion terms in ASL (cf. Section 3).

There are several checks on the correctness of our result. Besides the obvious ones like
finiteness we have performed two independent calculations. In particular, two independent
routines for the decomposition of the scalar products in the numerator and the preparation
of the FIRE input has been written. Furthermore for our calculation we have used general
QED gauge parameter up to linear terms in £ and have checked that the final result of the



leading term in the inverse heavy lepton expansion, i.e. the one proportional to M?/M?,
is ¢-independent. Due to the complexity of the calculation we have used Feynman gauge
for the higher order expansion terms.

3 Results and discussion

Let us in a first step present the analytic results of our calculation. The four-loop contri-
bution to a, from Feynman diagrams involving a virtual tau lepton loop is given by

A (M, /M)

M,\* (37448693521 . 89603 , N 52, . A2 . 5771 In(2) 7
M. 2986144000 ' 16200 * " 675 ° " 15 32400
385172 25307(C;  376003997%  35590996657(s

3600 1440 27216000 N 508032000

Hn%ﬁ 38801 1972 L 3G 359 . M
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+ -
M, ) 90
M\ [392783023945426851403 3355249339331
M, 73077446697615360000 2575112601600
74184592369 557
Py + Py

14306181120 * " 9450
37868158772  652In(2)72 26783 In(2)7

114307200 1215 226800
725750082915523417¢;  6621172(¢; 425983
10310750856806400 22680 30240
b M; <_ 1922512966823 4789972 . 8178299343)
M2\ 1229031014400 = 816480 = 123863040

T 157208300 " M2 362880 M2
M\ (26717% 7 M)
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_279036576640781177r4 n 711883 In(2) B 148 In(2)m?
11477644738560000 9979200 315
6446695611351419899(3 B 185337%(3 n 1799715
66315280711680000 6048 24192
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I %ﬁ ( 2631561259843654279 . 1795534972
M? 132735349555200000 489888000
314284167899
19818086400 )

+58786560000 o M2 979776000 )
N M, T/ 7952 7T21 ]\42
2. ) \15120 " 60 M2

~ 0.0421670 4 0.0003257 + 0.0000015 , (3)

227103520671 9 Mi 101799017

where P, = 24a4 + In*(2) — In*(2)72, Ps = 120a5 — In°(2) + 2 In*(2)72, a,, = Li,(1/2) and
(, is Riemann’s zeta function. In the last line of Eq. (3) the analytic expression has been
evaluated numerically using M, /M, = 5.94649(54) - 102 [52]. Furthermore the contribu-
tions from (M, /M,)™ and (M, /M,)" ™ (n = 2,4, 6) have been combined. One observes a
rapid convergence of the series in M, /M, which suggests that with each additional order
one gains two significant digits. To be conservative we take 10% of the last term in Eq. (3)
as error estimate which leads to our final result

A (M, /M) =~ 0.0424941(2)(53) (4)

where the second uncertainty reflects the error in the input quantity M, /M.. The result

in (4) agrees with the one from Ref. [7] AS’L(MH/MT) = 0.04234(12), however, our number
is significantly more precise.

For completeness we also provide the numerical results for the two- and three-loop con-
tributions which read*

A (M, /M;) = 7.8079(14) - 1075,

AP (M, /M;) = 3.6063(12) - 107*. (5)
It is interesting to note that the three-loop coefficient is only a factor of ﬁve larger than the

two-loop one whereas A ( M,,/M.) is about 100 times larger than AL ( M, /M.). Using
a =1/137.035999174 [22] one finally obtains for the 7-loop contrlbutlon to a,

10" x a,, = 42.13+0.45+0.12, (6)

Tloops

where the numbers on the right-hand side correspond to the two-, three- and four-loop
contribution. The numbers in Eq. (6) have to be compared with the universal contribu-
tions contained in A;, which read [7]

10" x a,, = 116140973.21 — 177230.51 + 1480.42 — 5.56 + 0.06, (7)

univ.



group 102 - A%(MH/MT)
this work 7]
() 0.00324281(2) | 0.0032(0)
I(b) + I(¢) + II(b) + TI(c) | —0.6292808(6) | —0.6293(1)
I(d) 0.0367796(4) | 0.0368(0)
11 4.5208986(6) | 4.504(14)
I1(a) + IV(d) ~2.316756(5) | —2.3197(37)
IV(a) 3.851967(3) | 3.8513(11)
IV (b) 0.612661(5) | 0.6106(31)
V(c) ~1.83010(1) | —1.823(11)

Table 1: Mass-dependent corrections to a, at four-loop order as obtained in this paper
and the comparison with Refs. [7]. The uncertainties assigned to our numbers correspond
to 10% of the highest available expansion terms, i.e., the ones of order (M, /M,)® and
(M, /M,)". Uncertainties from the muon and tau lepton mass are not shown.

where the individual terms on the right-hand side represent the results from one to five
loops.

The detailed comparison with Tab. I of Ref. [7] is shown in Tab. 1 where our result is split
into eight different groups. In the first column the notation of [7] is used to indicate the
contributions which have to be summed® in order to compare with our numbers. Within
the numerical uncertainties we observe good agreement. Note, however, that our results
based on asymptotic expansion provide at least two more significant digits.

Let us mention that the analytic result for the leading order expansion term of case IV (b)
agrees with the result presented in Ref. [53] which has been obtained by transforming the
result of Ref. [54] to QED.

Let us next turn to the anomalous magnetic moment of the electron. The numerical
values for the two- and three-loop contributions read

AD(M,/M,) = 5.19738668(26) - 107,

A (M,/M,) = —7.37394162(27) - 10,
AD(M,/M,) = 1.83798(33) 107,
AD(M,/M,) = —65830(11)- 1075, ®)

where M. /M, = 4.83633166(12) - 10~ and M, /M, = 2.87592(26) - 10~* [52] have been
used. Inserting these values into Eq. (3) leads to the following four-loop results

AP(M,/M,) =~ (9.161259603 + 0.000711078 +2.2-107%) - 10~

4Since analytic expressions are available the uncertainties for the two- and three-loop results are due
to the errors in the lepton masses.
®We add the uncertainties of Ref. [7] in quadrature when adding results from different groups.
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group 101 - AS) (M, /M,,)
this work [22]
I(a) 0.002264474414(6) | 0.00226456(14)
I(b) + I(c) + II(b) + II(c) || —1.21390182678(6) | —1.21386(24)
1(d) 0.02472687590(2) | 0.024725(7)
11 8.1715251555(1) 8.1792(95)
I(a) + IV(d) —2.6414355180(7) | —2.642(12)
IV (a) 6.3578810372(3) | 6.3583(44)
IV (b) 0.4157367168(5) 0.4105(93)
IV/(c) ~1.954826212(2) | —1.897(64)

Table 2: Muon mass dependent corrections to a. at four-loop order as obtained in this
paper and the comparison with Refs. [22]. The uncertainties assigned to our numbers cor-
respond to 10% of the highest available expansion terms, i.e., the ones of order (M,./M,)°
and (M./M,)". Uncertainties from the electron and muon mass are not shown.

Q

9.161970703(2)(372) - 107,
ASN(M. /M)~ (7.42923268609971 + 2.75209424 - 107° +3.2- 107" - 107
7.42924(0)(118) - 107° (9)

where the uncertainty has again been estimated by 10% of the third term in the expansion
and the parameter uncertainty is displayed separately. In Ref. [22] one finds the results®
AP (M, /M) = 9.222(66) x 10~* and AS)(M./M,) = 7.38(12) x 10~% which agree with
our numerical values.

As far as the growth of the coefficients is concerned we observe the same pattern as for the
muon: there is about one order of magnitude between two and three loops and a factor
100 between three and four loops. Note, however, that the three-loop result is negative
for a..

In Tabs. 2 and 3 our results are shown for the individual classes of Feynman diagrams.
Due to the smallness of the expansion parameters our method provides an accuracy of at
least eight significant digits. The comparison with the results of Ref. [22] demonstrates
good overall agreement. Note that we have applied the methods of Refs. [55-57], where
four- and five-loop contributions to a, from polarization function insertions have been
computed, to cross check our result for case 1(d).

The quantity Az(,fg(Me /M, M./M.) has a more complicated structure since two different
heavy masses are present. However, due to the strong hierarchy M, > M, > M, it is
possible to apply the asymptotic expansion successively which again leads to one-scale

®Note that the entry for Asg (M./M;) in Tab. I of Ref. [22] should be multiplied by a factor 1/100.
This misprint has been confirmed by the authors of Ref. [22].



10° - AS) (M, /M, )

group
this work [22]
I(a) 0.0008024665425029(1) 0.00080233(5)
I(b) + I(c) + 1I(b) + II(c) | —0.9458168451136621(8) | —0.94506(25)
1(d) 0.0087455060010553(1) | 0.008744(1)
11 6.059301961911502(2) | 6.061(12)
II(a) + IV(d) 1.372489352896281(9) | —1.3835(30)
IV(a) 4.510496216222387(2) |  4.5117(69)
TV (b) 0.147081582099596(4) | 0.1431(95)
V(c) —0.97888609657284(3) | —1.02(11)

Table 3: Tau lepton mass dependent corrections to a. at four-loop order as obtained

in this paper and the comparison with Refs. [22].

The uncertainties assigned to our

numbers correspond to 10% of the highest available expansion terms, i.e., the ones of
order (M./M,)® and (M,/M,)". Uncertainties from the electron and tau lepton mass are
not shown. The result of Ref. [22] for the contribution I(d) has been multiplied by 1/100

[see footnote after Eq. (9)].

vacuum and on-shell integrals. Our final result reads
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1 2 I3

N 1423 M? g2
— 1N
38880 M2 420

o Mi 767814079  w*  61849(3
n _ U
M2 \ 750141000 420 80640

3034811 M? 1181 M?
A A
38102400 ~ M2 = 40824 = M2

MZM; 7% MM, (797 7% M2
m + e M 4+ 111 e (1())
M3 90 M3 19600 140  M?
After inserting numerical values for the lepton masses one obtains
A (M, /M, M, /M) =~ (7.4426 +0.0261) - 107"
7.4687(26)(10) - 1077, (11)

which has to be compared with A:(fz(Me/MH, M,./M,) = 7.465(18) - 10~" as obtained in
Ref. [22]. Again good agreement is found, however, our analytic result is more precise by
about an order of magnitude.

It is interesting to note that the three-loop coefficient which is given by
AP (M, /M, M /M) = 1.90982(34) - 10713, (12)

is more than six orders of magnitude smaller than the four-loop one which is due to
the fact that the leading term is suppressed by M_/(M?M?) whereas at four loops the
suppression factor is only M?/M?. Note, however, that the overall contribution is very
small.

Similarly to the three-loop expression also the leading term of the four-loop contribution
where three one-loop heavy lepton bubbles are inserted into the photon propagator (see
class I(a) in Fig. 1) is of order O(MZ/(M}M?)). Thus we compute for this contribution
also the next term of the hard-mass procedure. It is given by

SAG) (M. /M, M, /M)

I(a),MS
MM 1032407~ 1303 M§+ 4 12M§
MS 187535250 ' 297675 M2 ' 945 M?

o M? 1039 4 M
n — =t ——In—7/
M2\ 297675 945 M2

MS [ 204569 166 . M? 1, M?
+—1 + In 2—1——111 5
MAM2 \ 30870000 18375 ~ M2 350 M2
M? (959 31 M? 1 MQ)

e | 2 e
Tz \ 90000 T 5250 U haz U350 T A2
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group 107 - A (M, /M, M,/ M.)
this work ref.
I(a) 0.00001199558(2) | 0.000011994(1)
I(b) + I(c) | 0.172910(24) 0.172874(21)
I1(b) + II(c) | —1.64747(17) —1.64866(67)
IV(a) 8.9432(25) 8.941(17)

Table 4: Lepton mass dependent corrections to a. at four-loop order induced by diagrams
which contain at the same time the muon and tau lepton. The results obtained in this
paper are compared to the ones of Refs. [22]. The uncertainties assigned to our numbers
correspond to 10% of the highest available expansion terms and uncertainties from the
lepton masses are not shown.

MS (M2 [ 2735573 199 M 2, M
+ In — In— 4+ —1In"—=-
MS\ " M2\ 187535250 297675 M2 ' 945 M2

8(s 118286321 . 676036 | Mi
e E A n
315 19691201250 = 31255875 M2

394, M2 2 M?
il N e TR W T 1
o025 " 2 Toas Mz) (13)

This term is included in the numerical values shown in Table 4 where our results are
compared to the ones of Ref. [22]. The quality of the agreement is as in the previous
cases.

4 Conclusions

Four-loop corrections induced by a heavy lepton to the anomalous magnetic moment of
the electron and the muon have been computed. This includes tau lepton contributions
to a, and contributions with virtual muons and tau leptons to a.. With the help of an
asymptotic expansion in the mass ratios we obtained analytic results. Their numerical
evaluation leads to full agreement with the results of Refs. [7,22] which have been obtained
with numerical methods. However, our results are more precise. Actually, the uncertainty
is of the order of or even smaller than the one originating from the imprecise knowledge of
the lepton masses. Due to the decoupling of heavy particles the heavy-lepton contributions
are numerically quite small.
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Appendix: On-shell counterterms

In this appendix we provide analytic results for the on-shell counterterms for «, M; and
where the latter stands for the lepton wave function. We concentrate on the contributions
relevant for our calculation, i.e., the corrections originating from closed heavy lepton loops.

In the formulae below we use the notation L, = In(p?/M?) with x = e, u, 7 and ay =
Lig(1/2) and mark the contributions from closed electron, muon and tau loops by the
labels n, =1, n, = 1 and n, = 1.

In our calculation we renormalize the coupling constant in a first step in the MS scheme
and switch to the on-shell scheme after having obtained a finite result. The relation
between the fine structure constant defined in the MS scheme, a(p) = @, and the corre-
sponding on-shell quantity reads

2
o7 «@ Lin; a2 Ln; 15 L,
c “ i1l (_) i1l ) i .
Loty B (s )y (16+4)n]
=e,u,T =e,u,T =e,u,T
3
a\3 L;n; 311 2 15 5L,
i ini i — 2 T (222
+(3) [(2; 3 ) * _Z ""ﬂ< 1206 18 <16+ 12)
. W< 0

J
+23Lj+7r2 M\ (16T L L\ (M 2+7r2 M;\*
144 6 \ M, 150 45  45) \ M, 6 \ M,

( 23353331 2912 L-< 28967 29Lj)
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88200 420 18 ) \ M,
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5288963  2L? 4609  4L;\  4609L; 2L\ [/ M;\°
+ SRl ARy - - +

62511750 315 99225  315) 99225 ' 315 ) \ M,

77 Ly 57 In(2)7m? (3
I e R R Laa T

37044000 420

i:evﬂ/vT
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695 79L; 5L w2 (s
i 14
2, (648 144+24+9+64) (14)

i=e,[,T

where terms up to O(M;/M?) are included. In the case of the heavy lepton contributions
to a. this formula can immediately be applied, in the case of a, one has to set n, = 0.

The bare and on-shell renormalized lepton mass and wave function are related by
Mlbare — ZOS Ml7
P = Zé?f s (15)

where the renormalization constants for the muon mass and wave function are given by

L 3I2 g2
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where we include terms up to O(1/M?).

The mass and wave function renormalization constants for the electron can be constructed
from the above results by replacing M, by M., L, by L. and n, by n.. Moreover the
terms proportional to n, and n? have to be duplicated and afterwards the replacements
n, — n,, M, — M, and L, — L, have to be performed in one of the expressions.
Furthermore, one has to add the contributions involving simultaneously virtual muon and
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tau loops which are given by
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These formulae include only terms up to quartic order in the inverse heavy mass since
the corresponding contributions to a. are only computed up to this order.
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