
Nikhef 2013-036
TTP13-031
SFB/CPP-13-80
October 2013

Code Optimization in FORM

J. Kuipers a, T. Ueda b and J.A.M. Vermaseren a

aNikhef Theory Group

Science Park 105, 1098 XG Amsterdam, The Netherlands

bInstitut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT)

D-76128 Karlsruhe, Germany

Abstract

We describe the implementation of output code optimization in the open source computer
algebra system Form. This implementation is based on recently discovered techniques of
Monte Carlo tree search to find efficient multivariate Horner schemes, in combination with
other optimization algorithms, such as common subexpression elimination. For systems for
which no specific knowledge is provided it performs significantly better than other methods
we could compare with. Because the method has a number of free parameters, we also show
some methods by which to tune them to different types of problems.



1 Introduction

One of the uses of computer algebra is to prepare potentially large formulas for frequent
numerical evaluation. This is particularly the case in particle physics. The most widespread
way to compute reactions in particle physics is by means of perturbative field theory. Even at
the one loop level (usually the second term in the perturbative expansion) one may encouter
large numbers of Feynman diagrams, each resulting in a lengthy formula1. Such calculations
are undertaken to compare theories with experimental results. Hence such formulas have
to be integrated over the region of sensitivity of the detectors that measure these reactions.
This region is called the experimental acceptance and the only technique that is available to
integrate over it is Monte Carlo integration. One may have to evaluate the formulas millions
of times to obtain accurate results. Hence it is important to have a representation of the
formulas that is as short as possible, even if this involves a non-negligible cost during the
computer algebra phase of the calculation.

Optimizing the output of the formulas can be done in two different ways. The first is
domain specific. This means that specific knowledge about the behavior of the formulas is
provided to make the formulas shorter. An example is an equation in two variables x and
y, but it is known that x + y and x − y are more natural variables and make the formulas
shorter. For the second way either there is no domain specific knowledge, or it is too much
work to obtain it. In that case the formula has to be treated by generic means. It should
be clear that usually the best results are obtained when domain specific knowledge is applied
first, followed by a generic method to clean up what is left.

In computer algebra the challenge is to make a system for the optimization of the output of
expressions in the absence of domain specific knowledge. In addition this system should work
reasonably fast, which we interpret as subquadratic in the length of the input expression. In
the recent past several methods have been published in which two of the authors reported on
new techniques to improve upon existing methods [?, ?, ?]. It turns out that an optimization
method based on Monte Carlo tree search [?, ?], a recent search method from artificial intel-
ligence and game theory, performs best on the benchmarks that were tested. This method
has caused much excitement in the field of game theory, because it has improved the strength
of Go playing computer programs from advanced beginner to medium level players, and on
small (9x9) boards they have reached top level strength. Application of this technique to the
field of formula simplification has led to sufficiently positive results that we have decided to
implement it in the computer algebra language Form [?] in such a way that all its users can
benefit from it.

Since this is such a new field, we do not yet have extensive experience with applications
and how different types of formulas need different values for the controlling parameters. Hence
we have made an implementation in which the user has access to these parameters and can
tune them to whole categories of formulas. This means that at the moment we have a number
of default settings which may be changed by the user. In later versions we may try to have
the program tune these parameters for individual formulas automatically.

The outline of the paper is as follows. In section ?? we explain the algorithms that are
used for the simplification. The syntax of the Form implementation is explained in section ??

including all parameters that can be set. In section ?? we discuss a number of examples.

1In special cases other techniques can be used that lead to surprisingly simple formulas [?], but in general
these are not applicable.

1



Section ?? is dedicated to studying the effects of some parameters and the determination
of good settings for a number of formulas. We finish with remarks about potential future
development. All programs that we use can be obtained from the Form website at ref.[?].

2 Code optimization algorithms

2.1 Horner’s method

For optimizing polynomials in a single variable, the textbook algorithm called Horner’s
method gives an efficient form for evaluating it [?]. It can be written as follows:

a(x) =
n∑

i=0

aix
i = a0 + x(a1 + x(a2 + x(. . .+ x · an))). (1)

If the polynomial is of degree n and dense, this form takes n multiplications and n additions
to calculate its value.

It is possible to generalize Horner’s method for multivariate polynomials, but this general-
ization is not unique. First, one of the variables in the polynomial is selected and Eq. (??) is
applied, thereby treating the other variables as constants. Next, a different variable is chosen
and Horner’s rule is applied again on the parts not containing the first variable. This method
is repeated until all variables have been selected. As an example, we consider the polynomial
a(x, y, z) = y − 3x + 5xz + 2x2yz − 3x2y2z + 5x2y2z2 and chose the variable x first, then y

and finally z. This results in the following representation:

a(x, y, z) = y + x(−3 + 5z + x(y(2z + y(z(−3 + 5z))))). (2)

This representation takes 8 multiplications and 5 additions to evaluate, while the original
form takes 18 multiplications and 5 additions. This behavior is generic: Horner’s method
reduces the number of multiplications and leaves the number of additions constant.

For the multivariate Horner method it is important in which order the variables are
processed. Different orders may lead to huge differences in the number of operations used
to evaluate a polynomial [?]. Classically, simple greedy algorithms like sorting the variables
by number of occurrences are used to determine the order [?]. Recently, two of the authors
of this paper describedan algorithm based on Monte Carlo tree search to determine more
efficient orders [?].

2.1.1 Occurrence order

In the occurrence order all variables are ordered with respect to their number of occurrences
in the polynomial. The variable that appears most often is the first variable in the order [?].
At every step in the multivariate Horner’s method this results in the largest decrease in the
number of operations, because it is the most-occurring variable that is factored out of the
polynomial. This greedy approach usually gives good results.

Another simple order is the reverse occurrence order. As the name suggests, this or-
der contains the variables sorted with resprect to the number of occurrences, but with the
least-occurring variable first. This method usually results in Horner schemes that use more
operations than the normal occurrence order to evaluate the polynomial. However, since the

2


