
TTP13–029
SFB/CPP–13–63

PSI–PR–13–12

MSSM Higgs Self-Couplings: Two-Loop O(αtαs) Corrections
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We analyze the minimal supersymmetric Higgs self-couplings at O(αtαs) within the effective po-
tential approach. The two-loop corrections turn out to be of moderate size in the DR scheme if the
central scale is chosen as half the SUSY scale. The inclusion of the two-loop corrections reduces the
renormalization scale dependence to the per-cent level. These results have a significant impact on
measurements of the trilinear Higgs self-couplings at the LHC and a future e+e− collider.

The Higgs mechanism [1] is a cornerstone of the Stan-
dard Model (SM) and its supersymmetric extensions.
The masses of the fundamental particles, i.e. electroweak
gauge bosons, leptons and quarks, are generated by inter-
actions with Higgs fields. The recently discovered parti-
cle with a mass of ∼125 GeV at the LHC [2] seems to be
the SM Higgs boson, i.e. all tested properties such as its
couplings to the other SM particles, its spin and CP quan-
tum numbers agree with the SM predictions [3]. How-
ever, the errors of the measured couplings to fermions
and vector bosons leave room for deviations from the SM
values, which naturally arise in SM extensions as e.g. the
minimal supersymmetric extension (MSSM).

The MSSM requires the introduction of two Higgs dou-
blets. After electroweak symmetry breaking there are five
elementary Higgs particles, two CP-even (h,H), one CP-
odd (A) and two charged (H±). At lowest order all cou-
plings and masses of the MSSM Higgs sector are fixed by
two independent input parameters, which are generally
chosen as tgβ = v2/v1, the ratio of the two vacuum ex-
pectation values (vevs) v1,2, and the pseudoscalar Higgs
mass MA. Including the one-loop and dominant two-
and three-loop corrections the upper bound on the light
scalar Higgs mass is Mh <∼ 135 GeV [4]. The Higgs boson
couplings to fermions and gauge bosons depend on mix-
ing angles α and β, which are defined by diagonalizing
the neutral and charged Higgs mass matrices.

One of the most important tests of the Higgs sector
in the future is the measurement of the Higgs potential,
i.e. the self-interactions of the Higgs particles. It is pos-
sible that the trilinear Higgs self-coupling could be mea-
sured at the LHC after the high-luminosity upgrade [5],
while a measurement of the quartic Higgs coupling will be
out of reach at any foreseen collider due to the tiny signal
rates [6]. Within the MSSM the prospects for the trilin-
ear Higgs couplings can be better due to the possible ap-
pearance of resonant Higgs decays into lighter Higgs pairs
as e.g. the heavy scalar Higgs decay in gg → H → hh

for values of tgβ <∼ 10 [7]. The proper treatment of the
signal rates within the MSSM requires the determination
of the radiative corrections to the effective trilinear Higgs
couplings supplemented by moderate process-dependent
corrections [8]. Many years ago the one-loop corrections
to the effective trilinear Higgs couplings have been shown
to be large [9, 10]. However, sizable residual uncertainties
of these effective couplings, arising by integrating out the
heavy SUSY particles and the top quark, are left over.
In order to reduce these uncertainties a two-loop calcu-
lation of the trilinear Higgs couplings is required. The
one-loop corrections are dominated entirely by top and
stop loop contributions. Only for large values of tgβ can
the bottom/sbottom loop contributions become relevant
thanks to the large enhancement of the bottom Yukawa
couplings in this regime [9]. In this work we will describe
the two-loop SUSY–QCD corrections to the top/stop-
loop induced corrections [11].
We will parametrize the two MSSM Higgs doublets as
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H0
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, (1)

where H±
1,2 denote the four charged Higgs fields in the

current eigenstate basis. The neutral Higgs fields decom-
pose into v1,2 and scalar/pseudoscalar components as

H0
j =

1√
2
(vj + Sj + iPj) (j = 1, 2) . (2)

The neutral physical Higgs and would-be Goldstone fields
emerge from rotations by the mixing angles α and β,

S1 = Hcα − hsα, P1 = G0cβ −Asβ ,

S2 = Hsα + hcα, P2 = G0sβ +Acβ . (3)

The vevs are defined as v1 = vcβ , v2 = vsβ with v ≈ 246
GeV. The tree-level Higgs potential is given by

V0 = m2
1|H1|2 +m2

2|H2|2 −Bµǫij(H
i
1H

j
2 + h.c.)

+
g2 + g′2

8
(|H1|2 − |H2|2)2 +

g2

2
|H†
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where m2
1,2 = m2

H1,2
+ µ2 with mH1,2 , µ denoting the

soft SUSY-breaking Higgs and Higgsino mass parame-
ters respectively. The object ǫij is the antisymmetric
two-dimensional tensor, while g, g′ are the isospin and
hypercharge gauge couplings. The parameters m1,2 are
eliminated by the minimization condition of the effec-
tive potential, while the parameter Bµ is traded for the
pseudoscalar mass MA. Taking the second derivatives of
V0 with respect to the Higgs fields yields the mass ma-
trices, while the third and fourth derivatives define the
trilinear and quartic Higgs couplings, respectively. Af-
ter rotation to the physical mass eigenstates, the neutral
trilinear Higgs couplings at leading order are given by
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Z

v
c2βcα+β . (5)

One-Loop Corrections. These couplings are subject
to radiative corrections. Using dimensional reduction in
n = 4−2ǫ dimensions, the leading top/stop-induced cor-
rections of O(αt) to the effective potential in Landau
gauge can be cast into the form [12]
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with the field-dependent mass parameters defined as
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where the parameters M̃t̃L/R
include the D-terms,
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,
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The scale Q2 is related to the ’t Hooft mass scale µ0

as Q2 = 4πµ0e
−γE with the Euler-constant γE . The

top Yukawa coupling ht =
√
2mt/(vsβ) defines the cor-

responding coupling αt = h2
t/(4π). Including the loop-

corrected minimization condition and the loop-corrected

pseudoscalar Higgs mass the third derivative of this ef-
fective potential reproduces the results of Ref. [9] for the
trilinear Higgs couplings. Analogously the quartic Higgs
couplings can be derived from the fourth derivatives.
Two-Loop Corrections. The two-loop SUSY–QCD
corrections to the effective potential are given by [13]
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with the additional field-dependent parameters
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(m2
t̃1
−m2

t̃2
)2

,
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The gluino mass is denoted by mg̃ and the two-loop in-
tegrals I, J are defined and calculated in [14]. We have
calculated the derivatives of the two-loop corrected Higgs
potential up to fourth order in the Higgs fields. After
implementing the minimization condition and the pseu-
doscalar Higgs mass at the two-loop level, we have renor-
malized the top mass, stop masses, stop mixing angle and
At parameters of the one-loop corrected Higgs potential
within the DR scheme. This scheme choice ensures the
relation between the stop mixing angle and At,

s2θ =
2mt(At − µ/tgβ)

m2
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−m2
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. (11)

The DR counter terms are given by
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The DR counter term δθ can be derived from the relation
(11). After renormalization we reproduce the known two-
loop results for the Higgs masses [13, 15] and arrive at
finite expressions for the trilinear and quartic Higgs cou-
plings. These are finally rotated to the physical Higgs
mass eigenstates by the radiatively corrected mixing an-
gles α, β, which diagonalize the two-loop corrected scalar
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and pseudoscalar Higgs mass matrices. At two-loop order
we have checked explicitly that the trilinear and quartic
Higgs couplings λhhh, λhhhh approach their two-loop SM
limits for large MA and SUSY masses in analogy with
the one-loop analysis of Ref. [10].
In order to obtain consistent results for the Higgs self-

couplings we used the following expressions for the run-
ning DR parameters at the renormalization scale µR [16],
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where Q0 denotes the input scale for these parameters
and Λ the QCD scale of the strong coupling αs [20].
These expressions are valid up to the next-to-leading-log
level of the renormalization group equations [17]. The
DR stop masses mt̃i

(µR) are obtained from the running

SUSY-breaking parameters as [M̃t̃L/R
= M̃t̃L/R

(µR)]
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Our running DR parameters include the contributions of
all strongly interacting SM and SUSY particles. The top
mass mt, the gluino mass mg̃ and the strong coupling αs

are related to the top pole mass Mt, the gluino pole mass

Mg̃ and the 5-flavor MS coupling α
(5)

s,MS
by
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where Mq̃i denotes the squark pole mass and θq the cor-
responding mixing angle generically (which have been de-
fined via the tree level relations). The finite parts of the
one-loop integrals can be cast into the form [18]

B̄0[1](p
2;m1,m2, Q

2) = ℜe
∫ 1

0

dx [−x]×

log
Q2

m2
1x+m2

2(1− x) − p2x(1− x) − iǫ
, (16)

where the factor −x has to be inserted for B̄1.
The numerical analysis of the Higgs self-couplings is

performed in the “mmod+
h ” MSSM scenario [19] as a rep-

resentative case:

tgβ = 5, MQ̃L/R
= 1 TeV, Mg̃ = 1.5 TeV,

Ab = At = 1.64 TeV, µ = 200 GeV , (17)

where the parameters MQ̃L/R
, At, Ab are defined at the

input scale Q0 = MQ̃L/R
. Within this scenario resonant

Higgs production gg → H → hh occurs with a sizable
cross section. For the Higgs masses and couplings we used
our calculation based on the O(αtαs)-corrected effective
potential. The top quark pole mass has been chosen as
Mt = 173.2 GeV, while the strong coupling constant has

been normalized to α
(5)

s,MS
(MZ) = 0.119.

The scale dependences of the trilinear Higgs couplings
λhhh and λHhh are displayed in Fig. 1 at one- and two-
loop order. The central scale is chosen as half the SUSY
scale, i.e. µR = MQ̃L/R

/2 = 500 GeV. We obtain a sig-

nificant reduction of the scale dependence from O(10%)
at one-loop order to the per-cent level at two-loop or-
der and thus a large reduction of the theoretical uncer-
tainties. Moreover a broad maximum/minimum devel-
ops at about the chosen central scale in contrast to the
monotonous scale dependences at one-loop order. In the
“mmod+

h ” scenario the one-loop corrections are large and
positive, increasing the trilinear self-couplings by about
a factor of 2. The two-loop corrections amount to a few
per cent for the central scale choices. The strong reduc-
tion of the residual scale dependences is also visible in
Fig. 2, which displays the trilinear Higgs couplings λhhh

and λHhh as a function of the pseudoscalar Higgs mass
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FIG. 1: Scale dependence of the trilinear Higgs couplings λhhh

(a) and λHhh (b) at one- and two-loop order in the mmod+

h

scenario for MA = 300 GeV and tgβ = 5.

MA. The one- and two-loop bands show the minimal
and maximal values of the Higgs couplings if the scale is
varied between 1/3 and 3 times the central scale.

In summary, the significant scale dependence of
O(10%) of the one-loop predictions for the trilinear
MSSM Higgs self-couplings requires the inclusion of two-
loop corrections. For the corrected trilinear and quartic
Higgs couplings, we find a reduction of the scale depen-
dence to the per-cent level at O(αtαs). The improved
predictions for these couplings can thus be taken as a
base for experimental analyses at the LHC and the ILC.
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