
May 21, 2013 14:54 WSPC/INSTRUCTION FILE quarkmasses

Modern Physics Letters A
c© World Scientific Publishing Company

PRECISE HEAVY QUARK MASSES ∗

JOHANN H. KÜHN
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Recent theoretical and experimental improvements in the determination of charmed-

and bottom-quark masses are discussed. The final results, mc(3GeV) = 986(13)MeV
and mb(mb) = 4163(16)MeV, are among the most precise determinations of these two
fundamental parameter. A critical analysis of the theoretical and experimental uncer-
tainties is presented and possibilities for further improvements of the experimental input

are discussed.
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1. Introduction

The most striking deficiency of the Standard Model (SM) of particle physics is

its large number of presently uncalculable “fundamental” parameters. The gauge

sector requires three constants only, which in the context of a Grand Unified The-

ory (GUT) might even be reduced to one universal gauge coupling. The quartic

Higgs-boson self-coupling, together with the quadratic terms is sufficient for the de-

scription of spontaneous symmetry breaking and, as a consequence, the generation

of gauge boson and fermion masses. A proliferation of parameters is observed in the

fermion mass matrix, in other words in the Yukawa couplings which parametrize

the strength of the interactions between fermions and the Higgs boson. The deter-

mination of this mass matrix, in turn, is equivalent to the determination of fermion

masses and mixing angles. A large number of detailed experiments is devoted to the

measurement of the Cabbibo-Kobayashi-Maskawa angles in the quark sector and

the corresponding angles characteristic for the lepton mixing. The precise determi-

nation of the quark masses is of similar importance. In contrast to lepton masses the

determination of quarks masses requires not only experimental but also considerable

theoretical effort, as we will see below.

∗Presented at the Workshop on ”Determination of the Fundamental Parameters of QCD”, Singa-
pore, March 18-21, 2013.
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To date no convincing framework exists which would allow to predict these pa-

rameters from first principles, and at best one might hope to find relations between

quark and lepton masses within the third family. Despite this lack of predictive

power there is strong interest in precise quark mass values which are decisive for

numerous phenomenological issues. The u-, d- and s-quark masses are responsible

for the explicit breaking of chiral symmetry and, as a consequence, for the non-

vanishing masses of the pions, interpreted as pseudo-Goldstone bosons. Further-

more, they must be included in any analysis of pion and kaon scattering performed

in the framework of chiral perturbation theory (χPT), (For a detailed discussion

and further references see Ref. 1.) which leads to excellent predictions for a large

variety of phenomena. For the strange quark with its mass of around 100 MeV the

applicability of χPT is at the borderline. Mass determinations based on sum rules

for various correlators 2,3,4 or on the analysis of strangeness violating tau-lepton

decays5,6,7 are based on perturbative QCD (pQCD), (despite the fact that they

employ relatively low scales of order 1.5 to 2 GeV) and are in reasonable agreement

with χPT and with lattice results8,9.

The following discussion will be focused on charm and bottom quarks. With

mass values around one and four GeV, respectively, these are sufficiently heavy to

allow for a perturbative treatment, if suitable correlators are analyzed in well cho-

sen momentum regions. Furthermore, for the observables considered in this paper,

perturbation theory is known to sufficiently high order, such that the theory error

is well under control.

The precise determination of mc and mb is motivated by phenomenological and

conceptual considerations. Let us just recall that the charmed quark mass not only

governs the properties of the charmonium states (See for example Ref. 10.), it is

also a crucial ingredient in predictions11,12 for the decay K → πνν̄. Both charm and

bottom quark masses are required for predictions of Γ(B → Xbℓν) and thus crucial

for the determination of the CKM element Vcb. The bottom quark mass, finally, is

required to predict rates, photon- and lepton-spectra in B-meson decays, it governs

the masses of bottonium states (see e.g. Ref. 13) and determines the rate of the

dominant decay mode of the Higgs boson, Γ(H → bb̄), and hence all experimentally

observable branching ratios. Last not least, once the masses of top and bottom

quark can be related e.g. in the framework of a Grand Unified Theory, the relative

errors δmb/mb and δmt/mt (with both MS masses evaluated at the scale mt)

should be comparable. As we will see below, for mb(mt) = 2.701 ± 0.022GeV and

mt = 161.47 ± 0.85GeV, (based on a pole mass of Mt = 173.20 ± 0.87GeV as

determined by a Tevatrona analysis14 and αs = 0.1189(20)) this requirement is

indeed fulfilled.

aThis value is in very good agreement with the recent ATLAS and CMS results15 of 173.2± 0.6±
0.8GeV and 173.2± 0.6± 0.8GeV respectively.
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2. Quark Mass Definitions

Masses of stable elementary particles are obviously determined by kinematic mea-

surements, and the same is true for unstable particles, as long as their decay rate

is far smaller than the particle mass. This “pole mass” definition Mpole is directly

related to the location of the pole of the corresponding propagator. In practical cal-

culations (For an overview see e.g. Ref 16.) involving fundamental fermions (both

quarks and leptons) it is often useful to use the MS mass m(µ) in intermediate

steps. In the case of leptons, however, the pole mass remains the fundamental ob-

servable that can be measured with arbitrary precision, at least in principle. The

situation is different for quarks which cannot be produced or studied in isolation.

Correspondingly the pole mass cannot be determined through kinematic measure-

ments with arbitrary precision and uncertainties of order ΛQCD necessarily remain.

In perturbative calculations this is reflected in relatively large higher order cor-

rections, indicating the appearance of of a divergent series related to the presence

of ”renomalons”17. Nevertheless, in some cases (e.g. the determination of the top

quark mass from its decay products) it is convenient or even unavoidable to use the

pole mass as primary quantity.

The MS-mass as second and for many cases most convenient choice is directly

related to the mass parameter in the Lagrangian. In perturbation theory a reg-

ularisation and renormalisation prescription is required to arrive at an ultraviolet

finite result, with dimensional regularisation and minimal subtraction as convenient

conventions. To complete the prescription a choice for the renormalisation scale µ

has to be adopted, and the µ-dependence of the MS-mass m(µ) is governed by the

mass anomalous dimension,

µ2 d

dµ2
m(µ) = m(µ)γm(αs) ≡ −m

∑

i≥0

γim

(αs
π

)i+1

, (1)

with γi known18,19 to i = 3, corresponding to four-loop precisionb. Two-, three-

and partial four-loop results 21,22,23,24,25 are available for the conversionc between

Mpole and m(µ). Various other mass definitions, particularly suited for specific

applications, have been suggested in the literature. Examples are “kinetic mass”28,

employed e.g. in weak decays of B mesons, (Note that the kinetic mass has not yet

been related to theMS-mass in O(α3
s) accuracy.) “potential subtracted mass”29 and

“1S-mass”30, used in connection with quarkonium physics. The following discussion

will be restricted to the MS-mass which, as stated above, is closely related to

the Lagrangian and is used, at least in intermediate steps, in most higher order

calculations. Last not least it is best suited for the mass determination based on

moments of the R-ratio as discussed in the following.

bRecently20 even the five-loop result has become available.
cThese relations, together with the solution of Eq. 1 and issues of “matching” at flavour thresholds
are conveniently encoded in the Mathematica and C++ programs RunDec26 and CRunDec27.
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3. Correlators, Moments and Quark Masses

The idea behind this approach relies on the observation that the correlator of the

electromagnetic current jµ

(−q2gµν + qµqν)Π(q
2) ≡ i

∫

dxeiqx〈Tjµ(x)jν(0)〉 (2)

can be evaluated perturbatively in the deep-Euklidean region q2 ≪ 0. As a conse-

quence of the large quark mass the lowest pole of Π(q2) is located at q2 =M2
J/ψ, the

branching cut even starts at (2MD)
2 ≈ (3.739GeV)2. The perturbative evaluation

is, therefore, possible even at q2 = 0 which is already sufficiently far away from the

physical, the threshold region. The same statements apply, a forteriori, to bottom

quark production. However, some caveats must be considered. If perturbative QCD

(pQCD) could be applied to Π(q2) at q2 and all its derivatives, this would corre-

spond to a perturbative description of Π(q2) for arbitrary q2. It has therefore been

argued that pQCD should be applicable only to the lowest terms of the Taylor series

ΠQ(q
2) ≡ Q2

Q

3

16π2

∑

n≥0

C̄nz
n , (3)

with z = q2/4m2
Q(µ) and mQ(µ) being the MS mass at scale µ. As stated before,

the coefficients Cn can be calculated in pQCD and cast into the following generic

form

C̄n = C̄(0)
n +

αs(µ)

π

(

C̄(10)
n + C̄(11)

n lmQ

)

+

(

αs(µ)

π

)2
(

C̄(20)
n + C̄(21)

n lmQ
+ C̄(22)

n l2mQ

)

+

(

αs(µ)

π

)3
(

C̄(30)
n + C̄(31)

n lmQ
+ C̄(32)

n l2mQ

+ C̄(33)
n l3mQ

)

+ . . . .

(4)

with αs ≡ αs(µ), ℓmQ
≡ lnm2

Q/µ
2 and C̄

(ij)
n being pure numbers. The coefficients

C̄
(ij)
n with j = 0 are obtained from increasingly complex calculations, those with

n ≥ 1 can be reconstructed from the lower ones, employing the renormalisation

group with the coefficients of the anomalous mass dimension γm and the β func-

tion to the appropriate order. The two-loop result C
(10)

n can be obtained directly

from the Taylor expansion of the QED polarisation function, evaluated by Kallen

and Sabry long time ago. The three-loop result has been calculated in Ref. 31, 32

up to n = 4, (later33 up to n = 8) in terms of rational and transcendental num-

bers with the help of the FORM program MATAD34, using a recursive algorithm.

(More recently the results even up to n = 30 have become available35,36.) The

four-loop coefficients up to n = 3 for vector, axial vector, scalar and pseudoscalar

correlators were obtained37,38,39,40,41 using Integration-by-Parts identities42 in com-

bination with Laporta’s algorithm43,44 which leads to an algebraic reduction of C40
n
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to a small set of “master integrals”. These have been evaluated first numerically

with high precision45,46, subsequently in a series of papers in terms of rational and

transcendental numbers. (A complete list of references can be found in Ref. 40.)

Numerical results for moments with higher n (with an estimated precision better

than one percent for n = 4) are based on the approximate reconstruction of the

full function Π(q2), using information at q2 = 0, the high energy behaviour and the

threshold region combined with interpolations based on Padè approximations47.

(For an analysis along similar lines see Ref. 48.)

Exploiting the analyticity of Π(q2) around q2 = 0 and using dispersion relations,

the derivatives at q2 = 0 can be expressed as weighted integrals over the imaginary

part of Π(q2), which in turn is given by the cross section for electron-positron

annihilation into hadrons. Let us denote the normalised cross section for heavy

quark production as RQ(s) ≡ σQ(s)/σpoint(s). The moments of RQ, defined as

Mexp
n ≡

∫

ds

sn+1
RQ(s) , (5)

can be directly related to the perturbatively calculated Taylor coefficients. In total

one thus obtains the MS quark mass in terms of experimentally weighted integrals

of RQ and the perturbatively calculable coefficients C̄n,

mQ(µ) =
1

2

(

9Q2
QC̄n

4Mexp
n

)1/(2n)

. (6)

This strategy has been suggested originally in Ref. 49 and applied to a precise charm

and bottom mass determination in Ref. 50 once the three-loop results had become

available. A significantly improved reanalysis based on four-loop moments and with

new data has been performed in Ref. 51, additional updates and improvements from

new data and the precis evaluation of the higher moments can be found in Refs. 52,

53, which are the basis of the subsequent discussion. For the extraction of RQ from

the data the issue of singlet contributions and secondary radiation of heavy quarks

has been discussed in some detail in Ref. 51. Furthermore, the potential influence of

a non-vanishing gluon condensate 〈αs

π GG〉 = 0.006± 0.012GeV4 has been analysed

in Refs. 51, 53, which, for moments with n ≤ 3, leads to shifts of one to two MeV

and an associated uncertainty of three MeV at most.

4. Results

Let us now present the experimental results for the moments, first for charm, later

for bottom. For charm the integration region is split into one covering the narrow

resonances J/ψ and ψ′, the “threshold region” between 2mD and 4.8 GeV and

the perturbative continuum above. Note that we assume the validity of pQCD in

this region with high precision, an assumption that is well consistent with present

measurements (see Table 1) but for the moment remains an assumption, to be

verified e.g. by future BESS experiments.
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Table 1. Comparison of the theory predictions for R(s) with the experimental results at a few selected
values for

√
s.

√
s(GeV) 2.00 3.65 3.732 4.80 9.00 10.52
Rth(s) 2.209(91) 2.161(18) 2.160(17) 3.764(64) 3.564(17) 3.548(12)
Rexp(s) 2.18(7)(18) 2.157(35)(86) 2.156(86)(86) 3.66(14)(19) 3.62(7)(14) 3.56(1)(7)

Experiment BESS BESS BESS BESS MD-1 CLEO

Table 2. Experimental moments in (GeV)−2n as defined in Eq. (5), sepa-
rated according to the contributions from the narrow resonances, the charm
threshold region and the continuum region above

√
s = 4.8 GeV. In the last

column the NLO contribution from the gluon condensate is shown.

n Mres
n Mthresh

n Mcont
n Mexp

n Mnp
n (NLO)

×10(n−1) ×10(n−1) ×10(n−1) ×10(n−1) ×10(n−1)

1 0.1201(25) 0.0318(15) 0.0646(11) 0.2166(31) −0.0002(5)
2 0.1176(25) 0.0178(8) 0.0144(3) 0.1497(27) −0.0005(10)
3 0.1169(26) 0.0101(5) 0.0042(1) 0.1312(27) −0.0008(16)

4 0.1177(27) 0.0058(3) 0.0014(0) 0.1249(27) −0.0013(25)

Table 3. Results for mc(3GeV) in GeV. The errors are from
experiment, αs, variation of µ and the gluon condensate.

n mc(3 GeV) exp αs µ npNLO total

1 0.986 0.009 0.009 0.002 0.001 0.013

2 0.975 0.006 0.014 0.005 0.002 0.016
3 0.975 0.005 0.015 0.007 0.003 0.017
4 0.999 0.003 0.009 0.031 0.003 0.032

The results for the moments from one to four and the error budget are listed

in Table 2, those for the quark mass in Table 3. The moment with n = 1 is most

robust from the theory side, as evident from the relatively smaller coefficient in the

perturbative series. This argument can be made more quantitatively by rewriting

eq. (6) in the form

mc =
1

2

(

9Q2
c

4

C̄Born
n

Mexp
n

)
1

2n

(1 + r(1)n αs + r(2)n α2
s + r(3)n α3

s)

∝ 1−









0.328

0.524

0.618

0.662









αs −









0.306

0.409

0.510

0.575









α2
s −









0.262

0.230

0.299

0.396









α3
s, (7)

where the entries correspond to the moments with n = 1, 2, 3 and 4. Note, that

the coefficients are decreasing with increasing order of αs. Estimating the relative

error through rmax
n (αs(3 GeV))4 leads to 1.4 / 2.3 / 2.7 / 2.9 per mille and thus to

an estimate even smaller than the one based on the µ dependence listed as theory

error in the fifth column of Table 3. Also the contribution from the gluon condensate

is smallest for the lowest values of n. The advantage of n = 2 and even more so

of n = 3 lies in the reduced contribution from the continuum region. Note that all

four results are mutually consistent. In view of the smallest sensitivity to αs and the
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choice of the renormalisation scale µ we adopt the value mc(3GeV) = 986±13MeV

as derived from n = 1 as our final result. This is in very good agreement with the

result mc(3GeV) = 987± 9MeV obtained in Ref. 54, which is based on a different

integration kernel.d

Tables 2 and 3 and also illustrate the path to a further reduction of the error.

Let us restrict the discussion to n = 1,2 and 3. For n = 1 important contributions

arise from all three regions. Improved determinations of Γe(J/ψ) would reduce the

errors of all three moments. Improved measurements of RQ in the threshold region

and at 4.8 GeV would have a strong impact on n = 1 and strengthen our confidence

in the validity of pQCD close to, but above 4.8 GeV. Another interesting option

would be a simultaneous fit to all three moments, taking the proper experimental

correlations into account.

The theory error is presently deduced from a variation of µ between two and four

GeV. Taking, as an alternative, the last calculated perturbative coefficient would

lead to a comparable, somewhat smaller error. An important contribution to the

error budget arises from the uncertainty in the strong coupling, where αs(MZ) =

0.1189 ± 0.002 has been taken from Ref. 55. Taking as an alternative αs(MZ) =

0.1184 ± 0.0007 as obtained from a more recent compilation57 would obviously

lead to a significant reduction of δm. A comparison of selected mc determinations

is shown in Fig. 1. The excellent agreement between lattice58,59 and perturbative

QCD results is particularly encouraging.

Similar statements can be made for the determination of the bottom quark mass.

A recent measurement of the cross section in the threshold region between 10.6 GeV

and 11.2 GeV was employed in Ref. 52 and has lead to a significant reduction of the

experimental error on mb. Still, additional measurements in the region around and

above 11 GeV would be welcome in order to confirm the validity of perturbative

QCD relatively close to threshold. The result for the second moment has been

adopted as our final answer

mb(10GeV) = 3610(16)MeV (8)

and corresponds to mb(mb) = 3610(16)MeV. Our results are in excellent agreement

with a completely independent lattice determination, as shown in Fig. 1.
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Fig. 1. Comparison of recent determinations of mc(3 GeV) and mb(mb).



May 21, 2013 14:54 WSPC/INSTRUCTION FILE quarkmasses

Heavy Quark Masses 9

References

1. Heinrich Leutwyler, these proceedings.
2. M. Jamin, J. A. Oller and A. Pich, Eur. Phys. J. C 24, 237 (2002) [hep-ph/0110194].
3. P. A. Baikov, K. G. Chetyrkin and J. H. Kuhn, Phys. Rev. Lett. 96, 012003 (2006)

[hep-ph/0511063].
4. K. G. Chetyrkin and A. Khodjamirian, Eur. Phys. J. C 46, 721 (2006) [hep-

ph/0512295].
5. K. G. Chetyrkin, J. H. Kuhn and A. A. Pivovarov, Nucl. Phys. B 533, 473 (1998)

[hep-ph/9805335].
6. A. Pich and J. Prades, JHEP 9910, 004 (1999) [hep-ph/9909244].
7. P. A. Baikov, K. G. Chetyrkin and J. H. Kuhn, Phys. Rev. Lett. 95, 012003 (2005)

[hep-ph/0412350].
8. G. Colangelo, S. Durr, A. Juttner, L. Lellouch, H. Leutwyler, V. Lubicz, S. Necco and

C. T. Sachrajda et al., Eur. Phys. J. C 71, 1695 (2011) [arXiv:1011.4408 [hep-lat]].
9. C. McNeile, these proceedings.
10. B. A. Kniehl, A. A. Penin, A. Pineda, V. A. Smirnov and M. Steinhauser, Phys. Rev.

Lett. 92 (2004) 242001 [Erratum-ibid. 104 (2010) 199901] [hep-ph/0312086].
11. A. J. Buras, M. Gorbahn, U. Haisch and U. Nierste, order in QCD,” Phys. Rev. Lett.

95 (2005) 261805 [hep-ph/0508165].
12. J. Brod and M. Gorbahn, pi+ nu anti-nu,” Phys. Rev. D 78 (2008) 034006

[arXiv:0805.4119 [hep-ph]].
13. A. A. Penin, V. A. Smirnov and M. Steinhauser, Nucl. Phys. B 716, 303 (2005)

[hep-ph/0501042].
14. Gianluca Petrillo, Rencontre de Modriond, March 13th, 2013.
15. Efe Yazgan, Rencontre de Modriond, March 13th, 2013.
16. K. G. Chetyrkin, J. H. Kuhn and A. Kwiatkowski, Phys. Rept. 277, 189 (1996).
17. M. Beneke, Phys. Rept. 317, 1 (1999) [hep-ph/9807443], and references therein.
18. K. G. Chetyrkin, Phys. Lett. B 404, 161 (1997) [hep-ph/9703278].
19. J. A. M. Vermaseren, S. A. Larin and T. van Ritbergen, Phys. Lett. B 405, 327 (1997)

[hep-ph/9703284].
20. P. Baikov K. Chetyrkin, Talk presented by K. Chetyrkin at ACAT 2013,16-21 May

2013, Beijing, China.
21. N. Gray, D. J. Broadhurst, W. Grafe and K. Schilcher, Z. Phys. C 48, 673 (1990).
22. J. Fleischer, F. Jegerlehner, O. V. Tarasov and O. L. Veretin, Nucl. Phys. B 539, 671

(1999) [Erratum-ibid. B 571, 511 (2000)] [hep-ph/9803493].
23. K. G. Chetyrkin and M. Steinhauser, Nucl. Phys. B 573, 617 (2000) [hep-ph/9911434].
24. K. Melnikov and T. v. Ritbergen, Phys. Lett. B 482, 99 (2000) [hep-ph/9912391].
25. R. Lee, P. Marquard, A. V. Smirnov, V. A. Smirnov and M. Steinhauser, JHEP 1303,

162 (2013) [arXiv:1301.6481 [hep-ph]].
26. K. G. Chetyrkin, J. H. Kuhn and M. Steinhauser, Comput. Phys. Commun. 133, 43

(2000) [hep-ph/0004189].
27. B. Schmidt and M. Steinhauser, Comput. Phys. Commun. 183, 1845 (2012)

[arXiv:1201.6149 [hep-ph]].
28. I. I. Y. Bigi, M. A. Shifman, N. Uraltsev and A. I. Vainshtein, Phys. Rev. D 56, 4017

(1997) [hep-ph/9704245].
29. M. Beneke, Phys. Lett. B 434, 115 (1998) [hep-ph/9804241].
30. A. H. Hoang, Z. Ligeti and A. V. Manohar, Phys. Rev. Lett. 82, 277 (1999) [hep-

ph/9809423].
31. K. G. Chetyrkin, J. H. Kuhn and M. Steinhauser, Phys. Lett. B 371, 93 (1996) [hep-

ph/9511430].



May 21, 2013 14:54 WSPC/INSTRUCTION FILE quarkmasses

10 Johann H. KÜHN
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