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Abstract

In the context of inter-jet energy flow, we present the first quantitative result of the resummation of

non-global logarithms at finite Nc. This is achieved by refining Weigert’s approach in which the problem

is reduced to the simulation of associated Langevin dynamics in the space of Wilson lines. We find that,

in e+e− annihilation, the exact result is rather close to the result previously obtained in the large–Nc

mean field approximation. However, we observe enormous event–by–event fluctuations in the Langevin

process which may have significant consequences in hadron collisions.

1 Introduction

In certain search channels of the Higgs boson and new particles at the Large Hadron Collider

(LHC), it is often desirable to be able to control QCD radiation from tagged jets in order to

suppress large backgrounds. A prime example is the Higgs boson production in association

with di-jets. The two competing production mechanisms, the gluon fusion and the vector boson

fusion processes, have different patterns of soft gluon radiation due to the difference in their

color structure. Discriminating these processes quantitatively using some measure of radiation

is therefore a useful strategy to determine the Higgs couplings [1,2].

A related class of observables which are particularly sensitive to soft radiation is the cross

section with a veto on unwanted jets in the full or partial region of the phase space. This gen-

erally requires the resummation of logarithms in pvetoT , the threshold transverse momentum of

vetoed jets. Steady progress in this direction has been made for global observables which in-

volve all the particles and jets in the final state including those close to the beam axis. The

state–of–the–art is that one can resum the leading logarithms (LL) (αs ln
2 pvetoT )n, the next–

to–leading logarithms (NLL) (αs ln p
veto
T )n and even the next–to–next–to–leading logarithms

(NNLL) (α2
s ln p

veto
T )n [3–5].
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However, in contrast to such progress, there exists a severe limitation in our ability to resum

non-global logarithms [6,7] which arise when measurements are restricted to a part of the phase

space excluding the beam and jet regions. In this case, double–logarithms (αs ln
2 pvetoT )n are

absent due to the lack of the collinear singularity. The leading contribution is then comprised

of single–logarithms (αs ln p
veto
T )n which originate from the soft singularity. The problem is

that these logarithms do not exponentiate, and because of this difficulty their resummation has

been hitherto done only in the large–Nc limit [6–9]. In other words, even the leading logarithms

cannot be fully satisfactorily resummed. This could be a potentially serious drawback in ac-

tual experiments considering the fact that, strictly speaking, any vetoed cross section at hadron

colliders is inevitably non-global due to the finite acceptance of detectors.

In fact, there is a single work by Weigert [10] which did discuss the resummation of non-

global logarithms at finite Nc in a simpler setup of e+e− annihilation where complicacies from

the initial state radiation do not arise. His approach is based on an analogy with another, seem-

ingly unrelated resummation in QCD, namely, that of the small–x (or ‘BFKL’) logarithms in

Regge scattering. In this context, a very similar issue arises as to how one can generalize the

equation which resums small–x logarithm in the large–Nc limit to one at finite Nc. It turns

out that these equations bear a striking resemblance to the equation which resums non-global

logarithms in the large–Nc limit. Since technologies to solve the former problem are well–

developed, they may be suitably adapted to address the latter problem as well. Somewhat sur-

prisingly, however, Weigert’s approach has not been pursued for a decade. Part of the reason of

this may perhaps be that, as we shall point out, there is actually a flaw in his formulation which

deters a straightforward numerical implementation. In this paper we overcome this difficulty

and present the first quantitative results of the resummation of non-global logarithms at finite

Nc.

In Section 2, we quickly review the nonlinear evolution equations which resum the small–x
logarithms in high energy QCD. The subject may seem utterly unfamiliar to the readers whose

primary interest is jet physics. However, the similarity (or even equivalence) to the resumma-

tion of non-global logarithms will soon become apparent in Section 3 where we introduce the

relevant evolution equations. Using this similarity, we discuss how to solve the equation for

non-global logs at finite Nc in Section 4, and present numerical results in Section 5. Finally, we

examine the results and conclude in Section 6.

2 B–JIMWLK equation

Consider a ‘dipole’ consisting of a quark and an antiquark located at transverse coordinates

x and y, respectively. The S–matrix of the dipole moving in the x− = 1√
2
(x0 − x3) direction

and scattering off some target in the eikonal approximation is

〈Sxy〉τ =
1

Nc

〈tr(UxU
†
y
)〉τ , (1)

where Ux is the Wilson line in the fundamental representation
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(Ux)ij = P exp
(

i
∫ ∞

−∞
dx−A+

a (x
−,x)ta

)

ij
, 1 ≤ i, j ≤ Nc , (2)

and τ is the rapidity of the dipole. The expectation value 〈· · · 〉 is taken in the target wavefunc-

tion. In deep inelastic scattering (DIS), τ is essentially the logarithm of the Bjorken–x variable

τ ≡ αs

π
ln

1

x
. (3)

The dipole S–matrix (1) (more precisely, 1 − 〈S〉) then measures the total cross section of

the subprocess γ∗p → qq̄p → X at the corresponding values of x and the photon virtuality

Q ∼ 1/|x− y|.
The B–JIMWLK 1 equation [11–13] resums the small–x logarithms τn ∼ (αs ln 1/x)

n

which arise in the high energy evolution of 〈S〉. It reads

∂τ 〈Sxy〉τ = Nc

∫

d2z

2π
Mxy(z)

(

〈SxzSzy〉τ − 〈Sxy〉τ
)

, (4)

where the dipole kernel is given by

Mxy(z) =
(x− y)2

(x− z)2(z − y)2
. (5)

The equation (4) is not closed because the right–hand–side contains the double dipole S–matrix

〈SS〉. This non-linearity reflects the gluon saturation effect in the target. The consequence is

that (4) is actually the first equation of an infinite hierarchy of coupled equations. However, it

becomes a closed equation—the Batlisky–Kovchegov (BK) equation [11,14]—if one truncates

the hierarchy and assumes factorization 〈SS〉 → 〈S〉〈S〉

∂τ 〈Sxy〉τ = Nc

∫

d2z

2π
Mxy(z)

(

〈Sxz〉τ〈Szy〉τ − 〈Sxy〉τ
)

. (6)

While the BK equation (6) can be solved numerically in a straightforward manner, solving

the B–JIMWLK equation (4) had been difficult until the ingenious reformulation of the problem

as random walk [15]. To explain this, it is essential to write the equation in the operator form

∂τ 〈Sxy〉τ = −〈ĤSxy〉τ . (7)

The effective Hamiltonian Ĥ takes the form

Ĥ =
∫

d2xd2y
d2z

2π
Kxy(z)∇a

x

(

1 + Ũ †
x
Ũy − Ũ †

x
Ũz − Ũ †

z
Ũy

)ab ∇b
y

=
∫

d2xd2y
d2z

2π
Kxy(z)(1− Ũ †

x
Ũz)

ac(1− Ũ †
z
Ũy)

cb∇a
x
∇b

y
−
∫

d2x σa
x
∇a

x
, (8)

1 Acronym for Balitsky, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov and Kovner.
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where Ũab = (Ũ †)ba is the Wilson line in the adjoint representation and K is the gluon emission

kernel

Kxy(z) =
(x− z) · (z − y)

(x− z)2(z − y)2
. (9)

In the last line of (8), we defined

σa
x
= −i

∫ d2z

2π

1

(x− z)2
tr(T aŨ †

x
Ũz) . (10)

The derivative ∇ acts on the Wilson line in the fundamental representation as

∇a
x
Uy = iUxt

aδ(2)(x− y) , ∇a
x
U †
y
= −itaU †

x
δ(2)(x− y) , (11)

and also on the adjoint Wilson line with (T a)bc = −ifabc

∇a
x
Ũy = iŨxT

aδ(2)(x− y) , ∇a
x
Ũ †
y
= −iT aU †

x
δ(2)(x− y) . (12)

The latter operation has been used in obtaining the σ–term in (8). An important observation

is that (7) may be viewed as the Fokker–Planck equation treating Wilson lines U as dynami-

cal variables. As is well–known, there is an associated Langevin equation which describes the

random walk of these variables. The latter can be simulated numerically on a lattice, and the

solution of the B–JIMWLK equation has thus been obtained in [16]. We shall later discuss this

approach in detail.

Before leaving this section, it is useful to show another form of the Hamiltonian derived in

[17]

Ĥ =
1

2

∫

d2xd2y
d2z

2π
Mxy(z)∇a

x

(

1 + Ũ †
x
Ũy − Ũ †

x
Ũz − Ũ †

z
Ũy

)ab ∇b
y

=
1

2

∫

d2xd2y
d2z

2π
Mxy(z)

(

1 + Ũ †
x
Ũy − Ũ †

x
Ũz − Ũ †

z
Ũy

)ab ∇a
x
∇b

y
. (13)

This Hamiltonian can be used only when it acts on ‘gauge invariant’ operators of the form

tr(UxU
†
y
) , tr(UxU

†
y
UzU

†
w
· · · ) , tr(UxU

†
y
) tr(UzU

†
w
) , · · · (14)

and generates the same equations as those obtained from (8). Eq. (13) features the dipole kernel

(5) instead of the gluon emission kernel (9). The following relation between the two kernels is

worth noting

Mxy(z) = 2Kxy(z)−Kxx(z)−Kyy(z) . (15)
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Fig. 1. Back–to–back jets.

3 Non-global logs at finite Nc

We now turn to the resummation of non-global logarithms which is our primary interest.

Consider, as in the final state of e+e− annihilation, a pair of jets that is overall color singlet

and pointing in the direction of the solid angle Ωα,β = (θα,β, φα,β) measured with respect to

the positive z–axis (see Fig. 1). Let Cin be the region inside a pair of back–to–back cones with

opening angle θin which include the jets, and let Cout be its complementary region. We then ask

what is the probability P (Ωα,Ωβ) that the total flow of energy into Cout is less than Eout. In

the perturbative calculation of P in the regime Q ≫ Eout ≫ ΛQCD where Q is the hard scale,

logarithms of the form (αs lnQ/Eout)
n appear which have to be resummed. These logarithms

are non-global because the measurement is done only in Cout. To leading logarithmic accuracy,

one may identify Eout with the jet veto scale pvetoT mentioned in the introduction.

It has been shown by Banfi, Marchesini and Smye (BMS) that P satisfies the following

evolution equation [8]

∂τPαβ = Nc

∫

dΩγ

4π
Mαβ(γ)

(

Θin(γ)PαγPγβ − Pαβ

)

, (16)

where we abbreviated Pαβ = P (Ωα,Ωβ) and the parameter τ is defined as

τ =







αs

π
ln Q

Eout
, (fixed coupling)

6
11Nc−2nf

ln
(

lnQ/ΛQCD

lnEout/ΛQCD

)

. (running coupling)
(17)

The equation (16) resums logarithms τn ∼ (αs lnEout)
n to all orders. The integral kernel
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Mαβ(γ)≡
1− cos θαβ

(1− cos θαγ)(1− cos θγβ)

=
1− nα · nβ

(1− nα · nγ)(1− nγ · nβ)

=
nα · nβ

(nα · nγ)(nγ · nβ)
, (18)

is composed of null vectors nµ = (1, sin θ cos φ, sin θ sin φ, cos θ) = (1,n) proportional to the

four–vector of hard partons. The ‘step function’

Θin(γ) ≡






1 (Ωγ ∈ Cin) ,
0 (Ωγ ∈ Cout) ,

(19)

ensures that real gluons are emitted only in Cin. 2 A trivial rewriting of (16)

∂τPαβ = −Nc

∫

dΩγ

4π
Mαβ(γ)Θout(γ)Pαβ +Nc

∫

dΩγ

4π
Mαβ(γ)Θin(γ)

(

PαγPγβ − Pαβ

)

,

(20)

where Θout(γ) ≡ 1−Θin(γ) illuminates the physical meaning of the right–hand–side. The first

term represents the familiar Sudakov suppression, whereas non-global logarithms are resummed

by the second term describing the emission of an arbitrary number of gluons into Cin which then

coherently emit the softest gluons into Cout.
For the purpose of the present work, it is indispensable to note that the equation (16) has

been derived in the large–Nc limit. Its finite–Nc generalization was discussed by Weigert [10]

and the result reads

∂τ 〈Pαβ〉τ =Nc

∫ dΩγ

4π
Mαβ(γ)

〈

Θin(γ)

(

PαγPγβ −
Pαβ

N2
c

)

− 2CF

Nc
Pαβ

〉

τ

=−2CF

∫

dΩγ

4π
Mαβ(γ)Θout(γ)〈Pαβ〉τ

+Nc

∫

dΩγ

4π
Mαβ(γ)Θin(γ)

〈

PαγPγβ − Pαβ

〉

τ
, (21)

where CF = N2
c−1
2Nc

. However, (21) itself is highly formal in that the meaning of the averaging

〈· · · 〉 can be specified only indirectly, as a proxy of certain complicated functional integrals

[10]. Nevertheless, putting this qualification aside, the striking similarity between Eqs. (16),

(21) and Eqs. (4), (6) is unmistakable. In fact, it is possible to establish a rigorous mathematical

equivalence between the two problems. As shown in [18,19], a conformal transformation known

as the stereographic projection

2 In principle, real gluons can be directly emitted from hard partons into Cout provided their energy is

less than Eout. However, to leading logarithmic accuracy such contributions may be omitted [8].
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x = (x1, x2) =

(

sin θ cos φ

1 + cos θ
,
sin θ sinφ

1 + cos θ

)

, (22)

exactly maps the respective kernels onto each other

d2z

2π

(x− y)2

(x− z)2(z − y)2
=

dΩγ

4π

1− cos θαβ
(1− cos θαγ)(1− cos θγβ)

. (23)

Aside from the kinematical constraint factor Θin, the map (23) dispels any structural difference

between the two sets of equations. 3 This equivalence probably has a deep geometrical origin

which goes beyond the perturbative framework. Indeed, such a correspondence persists even in

the strong coupling limit of N = 4 supersymmetric Yang–Mills theory [18].

Fortunately, a powerful machinery to solve the JIMWLK problem (4) is available, and this

brings hope that the jet problem (21) can be solved in a similar manner. For this purpose, one

seeks the operator form of (21) with a formal identification

Pαβ ↔ 1

Nc
tr(UαU

†
β) . (24)

Here the Wilson lines Uα,β represent eikonal (jet) lines starting from the space-time origin and

extending to infinity in the direction of Ωα,β . 4 Eq. (21) can then be written as a Fokker–Planck

equation in group space

∂τ 〈Pαβ〉τ = −〈ĤPαβ〉 , (25)

where [10]

Ĥ =
1

2

∫

dΩαdΩβ
dΩγ

4π
Mαβ(γ)∇a

α

(

1 + Ũ †
αŨβ −Θin(γ)

(

Ũ †
αŨγ + Ũ †

γ Ũβ

))ab ∇b
β

=
1

2

∫

dΩαdΩβ
dΩγ

4π
Mαβ(γ)

(

1 + Ũ †
αŨβ −Θin(γ)

(

Ũ †
αŨγ + Ũ †

γŨβ

))ab ∇a
α∇b

β . (26)

In (26), the derivative ∇ is defined by (δ(Ω− Ω′) ≡ δ(cos θ − cos θ′)δ(φ− φ′))

∇a
αUβ = iUαt

aδ(Ωα − Ωβ) , ∇a
αU

†
β = −itaU †

αδ(Ωα − Ωβ) , (27)

and similarly to (12) in the adjoint case (ta → T a).

3 Note that if one sets Θin → 1, (21) becomes identical to (4) under the map (23).
4 Given the probabilistic nature of P , one should more properly consider U as the product of a Wilson

line in the amplitude and that in the complex–conjugate amplitude [10]. In practice, however, this does

not matter in the equivalent Langevin approach.
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4 Equivalent Langevin dynamics

The Fokker–Planck equations (7) and (25) can be solved by making use of an equivalent

Langevin formulation. To illustrate the idea, consider the following Fokker–Planck equation for

some probability distribution Pτ (x) of dynamical variables {xa}

dPτ (x)

dτ
=

1

2
∂a
(

χab(x)∂bPτ (x)
)

(28)

=
(

1

2
χab(x)∂a∂b + σa∂a

)

Pτ (x) (29)

= ∂a

[

1

2
∂b
(

χab(x)Pτ (x)
)

− σaPτ (x)
]

, (30)

where χab = χba and σa ≡ 1
2
∂bχ

ba. We assume that χ is factorized in the form χab = EacE cb.

The equivalent Langevin equation is then

d

dτ
xa(τ) = σa(x) + Eac(x)ξc(τ) , (31)

where ξ is the Gaussian white noise characterized by the correlator

〈ξa(τ)ξb(τ ′)〉 = δabδ(τ − τ ′) . (32)

The distribution can then be obtained by averaging over an ensemble {xa(τ)} of random walk

trajectories

Pτ (x) = 〈δ(x− x(τ))〉 . (33)

To be more precise, the equation (31) makes sense only in a τ–discretized form. There is

a well–known ambiguity in how we discretize the equation, the so–called Itô–Stratonovich

dilemma. The appropriate choice corresponding to (30) is the Itô scheme

xa(τ + ε) = xa(τ) + εσa(x) +
√
εEac(x(τ))ξc(τ) , (34)

where ε is the time step and the argument of E is evaluated at the previous time τ , respecting

causality [20]. In (34), we have rescaled the noise as
√
εξ → ξ in order to make explicit the

fact that the typical variation ∆x is O(
√
ε) in a random walk. With this normalization, the noise

correlator in discrete time reads

〈ξa(τ)ξb(τ ′)〉 = δabδττ ′ . (35)

The operator form of the B–JIMWLK equation (7) has precisely the structure (30) with a

factorized kernel (8). It can thus be described by the Langevin dynamics (34), with the SU(3)

matrices Ux,y playing the role of {xa} [15]. One can simulate the random walk in group space
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on a transverse lattice, and this is how the solution to B–JIMWLK equation has been originally

obtained [16].

In [10], Weigert suggested to follow the same strategy in solving (25). A comparison of (26)

and (30) implies that σ = 0. The kernel of (26)

1 + Ũ †
αŨβ −Θin(γ)

(

Ũ †
αŨγ + Ũ †

γŨβ

)

= Θout(γ) + Θout(γ)Ũ
†
αŨβ +Θin(γ)(1− Ũ †

αŨγ)(1− Ũ †
γŨβ) , (36)

can be written as a sum of three factorized terms. [Note that (Θin)
2 = Θin.] Exploiting the

factorized form of M as seen in the last line of (18), Weigert deduced an analog of the stochastic

term Eacξc in (31) by introducing three independent noises ξ(I), (I = 1, 2, 3)

Eacξc ∼
∫

dΩγ
nµ
α

nα · nγ

{

Θout(γ)
(

δacξ(1)γcµ + (Ũ †
α)

acξ(2)γcµ

)

+Θin(γ)(1− Ũ †
αŨγ)

acξ(3)γcµ

}

,

(37)

which generates a random walk U → Ueit
aEacξc in group space. However, the fact that M is

factorized in four–vector space means that the noises must have the correlator

〈ξ(I)µa ξ
(J)ν
b 〉 ∼ δabδ

IJgµν , (38)

which is negative for the spatial components µ, ν = 1, 2, 3, hence they cannot be simulated in

practice.

The resolution of this problem again comes from the correspondence with the B–JIMWLK

evolution. Firstly, the identity (23) clearly shows the two–dimensional nature of the dipole ker-

nel, so introducing four–vectors is an excess. We then notice the close similarity between (26)

and (13), the latter being equivalent to (8). This suggests that we can rewrite the effective Hamil-

tonian in a form analogous to (8) also for the jet problem. We thus look for a kernel K satisfying

(cf. (15))

Mαβ(γ) = 2Kαβ(γ)−Kαα(γ)−Kββ(γ) . (39)

The solution is found to be (cf. (9))

Kαβ(γ) =
cos θαγ + cos θγβ − cos θαβ − 1

2(1− cos θαγ)(1− cos θγβ)
=

(nα − nγ) · (nγ − nβ)

2(1− nα · nγ)(1− nγ · nβ)
, (40)

which has a factorized structure on the unit sphere (|n| = 1) embedded in three spatial dimen-

sions. Reversing the argument in [17] which led (8) to (13), we arrive at an effective Hamiltonian

equivalent to (26)
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Ĥ =
∫

dΩαdΩβ
dΩγ

4π
Kαβ(γ)∇a

α

(

1 + Ũ †
αŨβ −Θin(γ)

(

Ũ †
αŨγ + Ũ †

γ Ũβ

))ab ∇b
β

=
∫

dΩαdΩβ
dΩγ

4π
Kαβ(γ)

(

1 + Ũ †
αŨβ −Θin(γ)

(

Ũ †
αŨγ + Ũ †

γŨβ

))ab ∇a
α∇b

β

−
∫

dΩασ
a
α∇a

α , (41)

where

σa
α =−i

∫

dΩγ

4π

Θin(γ)

(1− nα · nγ)
tr(T aŨ †

αŨγ) . (42)

Moreover, differently from (36), we write the expression in the brackets as a sum of two factor-

ized terms

1 + Ũ †
αŨβ −Θin(γ)

(

Ũ †
αŨγ + Ũ †

γŨβ

)

= (1−Θin(γ)Ũ
†
αŨγ)(1−ΘinŨ

†
γŨβ) + Θout(γ)Ũ

†
αŨβ . (43)

This reduces the number of independent noises from three to two ξ(I) (I = 1, 2). They are

characterized by the following correlator (in discretized ‘time’ τ , cf. (35))

〈ξ(I)kαa (τ)ξ
(J)l
βb (τ ′)〉 = δττ ′δ(cos θα − cos θβ)δ(φα − φβ)δ

IJδabδ
kl , (44)

where k, l = 1, 2, 3 are the spatial indices. The problem of negative metric has been circum-

vented. We can now write down the associated Langevin evolution for Uα with Ωα ∈ Cin (cf.

(34))

Uα(τ + ε) = Uα(τ) exp
{

ita
(√

ε
∫

dΩγ

(

E
(1)ac
αγ · ξ(1)

γc + E
(2)ac
αγ · ξ(2)

γc

)

+ εσa
α

)}

, (45)

where

(E (1)ac
αγ )k =

1√
4π

(nα − nγ)
k

1− nα · nγ
[1−Θin(γ)Ũ

†
αŨγ ]

ac , (46)

(E (2)ac
αγ )k =

1√
4π

(nα − nγ)
k

1− nα · nγ
Θout(γ)(Ũ

†
α)

ac . (47)

All the matrices on the right–hand–side of (45) are evaluated at τ according to the Itô scheme.

Expanding the exponential up to O(ε), we get

Uα(τ + ε)≈Uα(τ) + i
√
εUα(τ)t

a
∫

dΩγ

(

E
(1)ac
αγ · ξ(1)

γc + E
(2)ac
αγ · ξ(2)

γc

)

+εUα(τ)

{

itaσa
α − 1

2

(

ta
∫

dΩγ

(

E
(1)ac
αγ · ξ(1)

γc + E
(2)ac
αγ · ξ(2)

γc

)

)2
}

. (48)
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The second line of (48) can be simplified as follows. In the σ–term, we use the identities Ũabtb =
U †taU and taUta = 1

2
(trU)− 1

2Nc
U to obtain

Uαt
a tr(T aŨ †

αŨγ)=−Uα[t
b, tc](Ũ †

α)
cd(Ũγ)

db

=
1

2
tr(UαU

†
γ)Uγ −

1

2
tr(UγU

†
α)UαU

†
γUα . (49)

To the accuracy of O(ε), the terms quadratic in noise ξξ may be replaced by their expectation

values using (44). After these manipulations, (48) takes the form

Uα(τ + ε) = Uα(τ)

+i

√

ε

4π

∫

dΩγ
(nα − nγ)

k

1− nα · nγ

(

Uαt
aξ(1)kγa −Θin(γ)Uγt

aU †
γUαξ

(1)k
γa +Θout(γ)t

aUαξ
(2)k
γa

)

+ε
∫

dΩγ

4π

1

1− nα · nγ

(

−2CFUα +Θin(γ)
(

tr(UαU
†
γ)Uγ −

1

Nc
Uα

))

. (50)

Note that there is no singularity at Ωγ = Ωα ∈ Cin. By computing the difference

1

Nc

tr(Uα(τ + ε)U †
β(τ + ε))− 1

Nc

tr(Uα(τ)U
†
β(τ)) , (51)

to O(ε) and using (44), (39) and the relation Kαα(γ) = −1/(1−nα ·nγ), one can recover (21)

after the identification (24).

For the sake of numerical simulations, it is more economical to express the evolution (50) in

a left–right symmetric form 5

Uα(τ + ε) = eiA
L
αUα(τ)e

iAR
α , (52)

where

AL
α =

√

ε

4π

∫

dΩγ
(nα − nγ)

k

1− nα · nγ

(

−Θin(γ)Uγt
aU †

γξ
(1)k
γa +Θout(γ) t

aξ(2)kγa

)

, (53)

AR
α =

√

ε

4π

∫

dΩγ
(nα − nγ)

k

1− nα · nγ
taξ(1)kγa . (54)

In this representation only the terms proportional to noise are kept in the exponential. It is easy

to check that (52) and (50) are equivalent to O(ε) under the identification ξξ ≈ 〈ξξ〉. Eqs. (44)

and (52) will serve as the starting point of our numerical simulation.

5 See Ref. [21] for a similar rewriting of the JIMWLK evolution. As noted in this paper, the right–

multiplication rule such as (45) is related to the choice of the Hamiltonian (8) or (26) being expressed

in terms of ‘right–derivatives’ ∇a
RU ∼ Uta. The σ–term can be eliminated in the process of converting

one of the right–derivatives into a left–derivative ∇a
LU ∼ taU .
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5 Numerical simulation

We simulate the random walk (52) of Wilson lines living on the unit sphere by discretizing

the coordinates 1 ≥ cos θ ≥ −1 and 2π > φ ≥ 0 with lattice spacings ac and aφ, respectively.

The SU(3) matrices Uα are defined only at the grid points belonging to Cin, whereas the noises

ξ(I)α are defined at all grid points. 6 The initial condition at τ = 0 is simply given by

Uα = 1 , (unit matrix) (55)

for all Ωα ∈ Cin, or equivalently, Pαβ = 1 for all pairs (Ωα,Ωβ) corresponding to no radiation

before evolution. 7 We then update {Uα} after each time step ε according to the formula (52)

with noises ξ(I) (I = 1, 2) randomly generated from the Gaussian distribution

∏

γ,a,k

√

acaφ
2π

exp
(

−acaφ
2

ξ(I)kγa ξ(I)kγa

)

, 〈ξ(I)kαa ξ
(J)l
βb 〉 = 1

acaφ
δIJδabδ

klδαβ . (56)

In order to ensure that U’s remain unitary during the evolution, we need to evaluate the expo-

nential of matrices eiAL/R accurately (although the equation (52) makes sense only to O(ε)). In

practice, we use an approximation eiA = (eiA/2n)2
n ≈

(

1 + iA
2n

+ · · ·+ 1
m!

(

iA
2n

)m)2n

with m,n
large enough. On top of this, we perform the ‘reunitarization’ of U’s using polar decomposition

method after every 100 steps of evolution. The effect of this latter operation is actually very

small due to our accurate evaluation of eiAL/R .

The above procedure is repeated a desired number of times N = τ/ε, and at the end of this

random walk trajectory we compute the trace

1

Nc

tr(Uα(τ)U
†
β(τ)) . (57)

We then average it over many such trajectories and identify the result with 〈Pαβ〉τ . In practice,

we choose ε = 10−5 and average over 500 independent trajectories.

Fig. 2 shows the evolution of Pτ (Ωα,Ωβ) for cos θα = 1 and cos θβ = −1, corresponding to

back–to–back jets in the beam direction. 8 The opening angle of the cones (see Fig. 1) is fixed to

cos θin = 1
2
. The simulation was done on a lattice with 80 grid points in the cos θ direction, and

40 grid points in the φ direction. The exact Nc = 3 solution to (21) (solid red line) is compared

6 At cos θα = ±1, Uα and ξα are independent of φ, as they should. In the case of Uα, this is guaranteed

by our initial condition (55) and the structure of the evolution (50) which preserves this property.
7 In the JIMWLK case, the initial condition is the value of the S–matrix (1) at small, but not too small

value of x. This is model dependent and its initial sampling is non-trivial [16].
8 We actually plot the real part of the average 〈trUαU

†
β〉. trUαU

†
β is in general complex–valued for each

trajectory, but we have checked that the imaginary part of the average is consistent with zero within

errors.
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 (exact)cfinite-N

3
π = inθ

Fig. 2. Solid line (red): exact Nc = 3 solution to (21). The band indicates the standard error. Dashed line

(blue): Nc = 3, mean–field solution to (58). Dotted line (green): solution to the BMS equation (16) from

[22]. Dash–dotted line (yellow): result with only the Sudakov term.

with the solution of the large–Nc BMS equation (16) (dotted green line) previously obtained in

[22], 9 and also with the solution of the ‘mean field approximation’ to (21) (dashed blue line)

∂τ 〈Pαβ〉τ =−2CF

∫

dΩγ

4π
Mαβ(γ)Θout(γ)〈Pαβ〉τ

+Nc

∫

dΩγ

4π
Mαβ(γ)Θin(γ)

(

〈Pαγ〉τ 〈Pγβ〉τ − 〈Pαβ〉τ
)

, (58)

which differs from the BMS equation only by the coefficient of the Sudakov term Nc = 3 ↔
2CF = 8/3. The latter serves as an indicator of the quality of the mean field approximation

〈PP 〉 → 〈P 〉〈P 〉. For the sake of reference, we also plot the solution obtained by keeping only

the Sudakov term (first term on the right–hand–side) in (58) (dash–dotted yellow line).

9 Note that the definition of τ in [22] differs from (17) by a factor of Nc.
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6 Discussion

A comparison of the solid (red) and dashed (blue) lines in Fig. 2 shows that the exact solution

is rather close to the mean field solution with the finite–Nc corrected Sudakov term for all

values of τ explored in this work. This may come as no surprise to those who are acquainted

with the solution of the JIMWLK equation which agrees well with the BK solution [16,23].

Nevertheless, we find the present result quite intriguing because we actually observed enormous

trajectory–by–trajectory fluctuations. In Fig. 3 we show 50 (out of 500) individual random walk

trajectories used in the computation of the average. It turns out that the fluctuations are so large

that the standard deviation δP ≡
√

〈PP 〉 − 〈P 〉〈P 〉 is of the order of 〈P 〉 itself for not–so–

small values of τ . Actually, this is the reason why we needed to run O(100) trajectories to

obtain a reasonably stable result. Such large fluctuations have not been seen in the previous

simulation of the JIMWLK equation where ‘already one trajectory gives a good estimate of the

final result’ [16].

In our opinion, the crucial difference between the two problems which has resulted in such

different behaviors of fluctuations is the initial condition. In the jet problem, the initial condition

〈P 〉τ=0 = 1 means that there are no partons besides the qq̄ pair. In the parlance of saturation

physics, the system is initially very ‘dilute’. The evolution then produces soft gluons which

multiply exponentially in τ according to the BFKL formula [9,18]. It has been demonstrated

that these gluons have very strong number fluctuations [24] and spatial correlations [25,26,19].

We thus find it natural to attribute the observed large values of δP to such fluctuations and

correlations. On the other hand, when solving the JIMWLK equation, one often uses ‘dense’ or

‘classically saturated’ initial conditions; 〈Sxy〉τ=0 ≪ 1 for |x−y| larger than some value. Since

there are many uncorrelated gluons in the system from the beginning, there is little room left for

pure–BFKL evolution, i.e., it is suppressed by the saturation effect. Accordingly, fluctuations

and correlations can develop only weakly, and this is consistent with what has been found in the

previous simulations.

In conclusion, we have demonstrated for the first time the resummation of non-global log-

arithms at finite Nc to leading logarithmic accuracy. Our study shows that, at least in e+e−

annihilation and for phenomenologically interesting values of τ . 0.2 ∼ 0.3, event–averaged

non-global observables may be reliably computed in the mean field approximation by solving

the (modified) BMS equation (58), or equivalently, by Monte Carlo simulations [6]. However,

the observed large fluctuations imply that the situation may be drastically different for hadron–

hadron collisions (cf. [27]). Since four partons are involved in hard scattering, one has to deal

with multiple products of Wilson lines such as tr(UU †)tr(UU †) and tr(UU †UU †) (cf. [28]).

Moreover, if there are gluons in the initial and final states, each of them picks up an adjoint Wil-

son line Ũ which further increases the number of (fundamental) Wilson lines. [Roughly, Ũ acts

like the square of U .] The proper treatment of fluctuations laid out in this paper is potentially

very important for such observables. We leave this problem for future work.
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Fig. 3. Thin lines (pink): 50 random walk trajectories used in the computation of the average (thick red

line).
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