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1 Introduction

Renormalization Group functions, i.e. β-functions and anomalous dimensions, are of great

importance in quantum field theory. Recently most of these functions have been computed

at three-loop accuracy in the Standard Model (SM). The results for the gauge couplings

have first been derived in [1, 2] and have been confirmed independently in [3]. For the

top-Yukawa coupling and the Higgs self-interaction λ the QCD, top-Yukawa and Higgs

contributions have been derived in [4]. The result for the top-Yukawa β-function has been

extended to include the electroweak and all third generation Yukawa couplings in [5] where

also the β-functions for bottom and τ -Yukawa have been presented. The one-loop and

two-loop results for all SM couplings have been known for a long time [6–20] as have been

partial three-loop results [21–26]. Four-loop β-functions are available for QCD [27, 28] and

the purely scalar part of the SM [29–31]. In this paper we present the extension of our result

for the Higgs self-interaction and the anomalous dimension of the Higgs mass parameter to

include the electroweak and all third generation Yukawa couplings as well. Especially the

β-function for the Higgs self-coupling is interesting because of its close connection to the

question of vacuum stability in the Standard Model. It has been shown that the stability of

the SM vacuum up to some energy scale Λ is approximately equivalent to the requirement

that the running coupling λ(µ) > 0 for µ ≤ Λ [32–34]. Many analyses of this question

have been performed [4, 35–41] during the last years. The main uncertainty stems from

the experimental error on the top mass followed by the uncertainty in αs. But future linear

colliders could greatly reduce these uncertainties and a possible Higgs mass of about 126

GeV [42, 43] allows for both scenarios, a stable and an unstable (or to be more precise

metastable) SM vacuum, within the present experimental and theoretical errors. For this

reason we think that the present work will reduce the theoretical uncertainty connected to

the running of λ even further than our previous calculation [4].

In the following section the setup and the technical details of the calculation are discussed.

After that we present our results and some numerics in order to determine the significance

of the new terms.
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2 Calculation

The gauge group of the SM is an SUC(3) × SU(2) × UY (1) which is spontaneously broken

to an SUC(3) × UQ(1) at the Fermi scale. Our calculation is performed in the unbroken

phase of the SM which is justified by the fact that the UV behaviour and therefore the

renormalization constants for fields and vertices do not depend on masses in the MS-scheme

[44].

The Lagrangian of the SM can be decomposed into the following pieces:

L = LQCD + LEW + LY ukawa + LΦ. (2.1)

The QCD and electroweak (EW) part are implemented in the usual way with the gauge

fields Aa
µ (SUC(3), a = 1, . . . , 8), W a

µ (SU(2), a = 1, 2, 3) and Bµ (UY (1)). These appear in

the covariant derivative

Dµ = ∂µ − ig1Yf Bµ − i
g2

2
σaW a µ − igsT

aAa µ (2.2)

with the Pauli matrices σa and the hypercharge Yf of the field f on which the covariant

derivative acts. In the Yukawa part we neglect the first two generations and the mixing of

generations. The W-fermion-vertices are taken to be diagonal in the generations as well,

i.e. we set the CKM matrix to the unit matrix. Light quarks and leptons are present in

the QCD and electroweak sector however. This leads to the Lagrangian

LY ukawa = − yt

{

t̄RΦ† cQL + Q̄LΦctR

}

− yb

{

b̄RΦ†QL + Q̄LΦtR

}

− yτ

{

τ̄RΦ†LL + L̄LΦtR

} (2.3)

for the Yukawa sector. The complex scalar field Φ and the left-handed quarks and leptons

are doublets under SU(2):

Φ =

(

Φ1

Φ2

)

, Φc = iσ2Φ∗, QL =

(

t

b

)

L

, LL =

(

ντ

τ

)

L

. (2.4)

The indices L and R indicate the left- and right-handed part of the fields as obtained by

the projectors

PL =
1

2
(1 − γ5) PR =

1

2
(1 + γ5) . (2.5)

Finally, we have the Higgs sector with

LΦ = (DµΦ)†(DµΦ) − m2Φ†Φ − λ
(

Φ†Φ
)2

. (2.6)

For every field and vertex a counterterm is introduced and the corresponding renormal-

ization constant is calculated order by order in perturbation theory. The left-handed and

right-handed parts of fermion fields, quark-gluon-vertices and fermion-B-vertices are renor-

malized with different counterterms. The renormalization constant for the gauge, Yukawa

and Higgs couplings can be obtained in different ways, e.g.

Zg1 =
Z

(ττB)
1,L

Z
(2τ)
2,L

√

Z
(2B)
3

=
Z

(ttB)
1,R

Z
(2t)
2,R

√

Z
(2B)
3

= . . . (2.7)
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where Zf1...fn

1 is the renormalization constant for the vertex of the (renormalized) fields

f1, . . . , fn, Z
(2f)
2,L/R the field strength renormalization constant for the left-handed (L)/ right-

handed (R) part of the fermion field f and Z
(2g)
3 the field strength renormalization constant

for the gauge field g.

Likewise, the renormalization constant for Yukawa couplings can be computed from the

renormalization constant for any vertex proportional to this coupling and the renormaliza-

tion constants for the external legs of this vertex, e.g.

Zyt =
Z

(ttΦ)
1

√

Z
(2t)
2,L Z

(2t)
2,R Z

(2Φ)
2

, (2.8)

where Z
(2Φ)
2 is the field strength renormalization constant for the scalar doublet. All

renormalization constants are defined in a minimal way as

Z = 1 + δZ, (2.9)

with δZ containing only poles in the regulating parameter ε = (4 − D)/2 where D is

the engineering space-time dimension. The Higgs self-coupling λ is renormalized with a

counterterm δZλ that is not proportional to λ but also has terms proportional to four

Yukawa couplings. Consequently, this is a feature of the corresponding β-function as well.

We find

−λB

(

Φ†
BΦB

)2
=(−λ + δZ

(4Φ)
1 )

(

Φ†Φ
)2

⇒ −(λ + δZλ)
(

Z
(2Φ)
2

)2
=(−λ + δZ

(4Φ)
1 )

⇒ δZλ =
(

Z
(2Φ)
2

)−2
(λ − δZ

(4Φ)
1 ) − λ ,

(2.10)

with the counterterm δZ
(4Φ)
1 for the four-Φ-vertices and the index B marking bare quan-

tities. The β-function for any coupling X is defined as

βX = µ2 dX

dµ2
=

∞∑

n=1

1

(16π2)n
β

(n)
X (2.11)

and is given as a power series in all considered couplings of the SM, i.e. gs, g2, g1, yt, yb, yτ

and λ. The mass parameter m2 of the scalar field is neglected in the calculation as it has

no influence on the UV behaviour of the couplings in the MS-scheme.

The β-function (or anomalous dimension) describing the running of this mass parameter

m2 in eq. (2.6) can be computed from the renormalization constant of the local operator

O2Φ := Φ†Φ. An insertion of O2Φ into a Green’s function, e.g. with two external Φ-fields,

is renormalized as [O2Φ] = ZΦ2O2Φ where [O2Φ] is the corresponding finite operator. From

[O2Φ] = Zm2Obare
2Φ and Obare

2Φ = Z
(2Φ)
2 O2Φ it follows that

Zm2 =
(

Z
(2Φ)
2

)−1
ZΦ2 . (2.12)

– 3 –



For this project we need the renormalization constants δZ
(4Φ)
1 , ZΦ2 and Z

(2Φ)
2 at three-loop

level and all other counterterms at two-loop accuracy or less. We perform our calculation

in a general Rξ-gauge with different gauge parameters ξ1, ξ2 and ξ for the gauge fields B,

W and A. The β-functions for all couplings are independent of the gauge parameters which

serves as an important check for the result. In order to compute all counterterms up to

two-loop level and the one and two-loop diagrams with counterterm insertions contributing

to the three-loop result it has been convenient to use a setup where different isospin con-

figurations of a field and different fermion generations (in our case the distinction between

third generation and light is enough) are implemented as separate fields as many countert-

erms depend on those. Additionally, the UY (1) hypercharge depends on the isospin and

differs for the left-handed and right-handed part of the field. So we use the set of fields

t, b, u, d
︸ ︷︷ ︸

quarks

, e−, νe, τ, ντ
︸ ︷︷ ︸

leptons

, Aaµ, Bµ, W 1µ, W 2µ, W 3µ

︸ ︷︷ ︸

gauge bosons

, ca, c1
W , c2

W , c3
W

︸ ︷︷ ︸

ghosts

, Φ1, Φ2

and their anti-fields. The fermion fields have to be split up in a left-handed and a right-

handed part during the calculation. The price we pay, however, is that many diagrams are

produced which look the same in momentum space if no counterterms. are inserted. For

the 1PI process with four external Φ-legs ∼ 2.3 × 106 diagrams are generated at three-loop

level. In order to reduce this number and because we do not need three-loop diagrams with

counterterm insertions anyway we have chosen a second smaller set of fields for this part

of the calculation

qi
︸︷︷︸

quarks

, li
︸︷︷︸

leptons

, Aaµ, Bµ, W aµ

︸ ︷︷ ︸

gauge bosons

, ca, ca
W

︸ ︷︷ ︸

ghosts

, Φi.

Here the index i marks the isospin of Φ and the left-handed fermions. For the right-handed

fermions i = 1, 2 is just a label to mark the flavour, e.g. q1,R = tR, q2,R = bR. Fermion loops

without Yukawa interactions are multiplied by the number of generations Ng in order to

include the light fermions. The indices of external particles can be explicitly chosen. Using

this setup only 573692 diagrams are produced for the four-Φ1-process at three loops. The

computation of the SU(2) × UY (1) group factors has been implemented with Mathematica

using labels for the left-handed and right-handed part at each quark-Yukawa-vertex and

B-fermion-vertex as well as for the three different structures in the four-W -vertex. With

the help of these labels we can completely factorize the SU(2) × UY (1) part from the

momentum space diagram. The QCD colour factors have been calculated with the FORM

package COLOR [45]. All Feynman diagrams have been automatically generated with

QGRAF [46].

In order to check our setup we have computed all Yukawa and gauge coupling renormaliza-

tion constants at two-loop level from at least two different vertices with the first set of fields

and compared the result to the literature. The same has been done for the renormalization

constants of the gauge, ghost and scalar fields. We also explicitly checked that we get

the same renormalization constants for Φ1 and Φ2 as well as for the left-handed fermion

flavours of the same generation at two loops. Another check has been the finiteness of the

three-B-vertex up to two loops.
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The renormalization constant for Φ has been computed with both sets of fields at three-

loop level which yields the same result as in [2]. The renormalization constants for the

W , cW , Φ1 and Φ2 fields as well as for the W -c̄W -cW -vertex, the O2Φ-Φ1-Φ1-vertex, the

O2Φ-Φ1-Φ1-vertex and the 4-Φ1-vertex have been computed with both sets of fields up to

two loops with the same result.

As explained in detail in [4] some diagrams with four external Φ-fields where two external

momenta are set to zero suffer from IR divergences which mix with the UV ones in dimen-

sional regularization. We therefore use the same method as in [4] and introduce the same

auxiliary mass parameter M2 in every propagator denominator. Subdivergences ∝ M2 are

canceled by counterterms

M2

2
δZ

(2g)
M2 Aa

µAa µ,
M2

2
δZ

(2W )
M2 W a

µ W a µ,
M2

2
δZ

(2B)
M2 BµBµ and

M2

2
δZ

(2Φ)
M2 Φ†Φ. (2.13)

Counterterms ∝ M that would arise for fermions cannot appear because there are no M in

the numerators of propagators. Ghost mass terms M2

2 δZ
(2c)
M2 c̄aca for the SU(3) and SU(2)

ghosts do not appear because of the momentum dependence of the ghost-gauge boson-

vertex. The remaining divergences are the mass-independent UV ones we are looking for.

This method has been suggested in [47] and has been elaborated on in the context of three-

loop calculations in [48]. The resulting massive tadpole integrals can be computed with

the FORM-based program MATAD [49].

Φ Φ

Φ Φ

(a)

Φ Φ

Φ Φ

(b)

Φ Φ

Φ Φ

(c)

Φ Φ

Φ Φ

(d)

Φ Φ

Φ Φ

(e)

Φ Φ

Φ Φ

(f)

Figure 1: Some diagrams contributing to the renormalization of the 4-Φ-vertices

As opposed to the case of the Yukawa coupling β-functions (see [4, 5]) a completely naive

treatment of γ5 in dimensional regularization is possible for βλ and βm2 . In four dimensions

we define

γ5 = iγ0γ1γ2γ3 =
i

4!
εµνρσγµγνγργσ with ε0123 = 1 = −ε0123. (2.14)

In order to have a non-naive contribution from a fermion loop with a γ5 matrix in it at

least four free Lorentz indices or momenta on the external lines of the minimal subgraph
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containing this fermion loop are required. These can be indices from the gauge boson

vertices or the internal momenta from other loops which act as external momenta to the

minimal subgraph containing the fermion loop in question. External momenta of the

whole diagram can be set to zero as the renormalization constants in the MS-scheme do

not depend on those. In four dimensions the trace of such a fermion line will produce a

result ∝ εµ1µ2µ3µ4 where µ1, . . . , µ4 are the aforementioned free Lorentz indices. If there is

a second fermion line the trace of which also yields an ε-tensor these two ε-tensors can be

contracted and we can get a non-naive contribution from γ5.

Let us consider two examples. The diagram in Fig.1 (c) has two fermion loops. If we take

one of the fermion loops with the momenta on the two external Φ-legs set to zero we have

two indices from the gluon lines attached to the fermion loop and one loop momentum going

through the two gluons and acting as an external momentum to the subgraph containing

only this fermion loop. This is not enough to have a non-naive γ5 contribution from this

graph.

The fermion loop in Fig.1 (f) has three Lorentz indices and two external loop momenta

but there is no second fermion line to produce a second ε-tensor. Furthermore - as we

set all external momenta to zero - there are no free Lorentz indices or momenta in the

final result to support an ε-tensor there. Therefore any contribution with an ε-tensor from

this fermion loop (which is the only antisymmetric Lorentz structure) must vanish after

contraction with the Lorentz structures from the W-bosons.

3 Results

In this section we give the results for the three-loop β-functions for the couplings λ and

the mass parameter m2 setting all gauge group factors to their SM values. All results of

this work can found at

http://www-ttp.particle.uni-karlsruhe.de/Progdata/ttp13/ttp13-008/.1

We denote the number of generations by Ng.

1There we also present the results in a form where the QCD colour factors are not set to numbers but

generically expressed through the quadratic Casimir operators CF and CA of the quark and the adjoint

representation of the corresponding Lie algebra, the dimension of the quark representation dR and the trace

TF defined through TF δ
ab = Tr

(
T

a
T

b
)

with the group generators T
a of the quark representation.
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β
(1)
λ = − y4

τ
− y4

b
3 + g4

2

9

16
+ g2

1g2
2

3

8
+ g4

1

3

16
+ λy2

τ
2 + λy2

b
6 − λg2

2

9

2
− λg2

1

3

2

+ λ212 + y2
t λ6 − y4

t 3 ,

β
(2)
λ =y6

τ 5 + y6
b 15 − g4

2y2
τ

3

8
− g4

2y2
b

9

8
+ g6

2

(
497

32
− 2Ng

)

− g2
1y4

τ 2 + g2
1y4

b

2

3

+ g2
1g2

2y2
τ

11

4
+ g2

1g2
2y2

b

9

4
− g2

1g4
2

(
97

96
+

2

3
Ng

)

− g4
1y2

τ

25

8
+ g4

1y2
b

5

8

− g4
1g2

2

(
239

96
+

10

9
Ng

)

− g6
1

(
59

96
+

10

9
Ng

)

− λy4
τ

1

2
− λy4

b

3

2

+ λg2
2y2

τ

15

4
+ λg2

2y2
b

45

4
+ λg4

2

(

−313

16
+ 5Ng

)

+ λg2
1y2

τ

25

4
+ λg2

1y2
b

25

12

+ λg2
1g2

2

39

8
+ λg4

1

(
229

48
+

25

9
Ng

)

− λ2y2
τ 24 − λ2y2

b 72 + λ2g2
254

+ λ2g2
118 − λ3156 − y2

t
y4

b
3 − y2

t
g4

2

9

8
+ y2

t
g2

1g2
2

21

4
− y2

t
g4

1

19

8

− y2
t λy2

b 21 + y2
t λg2

2

45

4
+ y2

t λg2
1

85

12
− y2

t λ272 − y4
t y2

b 3 − y4
t g2

1

4

3

− y4
t λ

3

2
+ y6

t 15 − g2
s y4

b 16 + g2
s λy2

b 40 + g2
s y2

t λ40 − g2
s y4

t 16.

(3.1)

β
(3)
λ =y8

τ

(

−143

8
− 12ζ3

)

− y2
b
y6

τ

297

8
− y4

b
y4

τ
72 − y6

b
y2

τ

297

8
+ y8

b

(

−1599

8
− 36ζ3

)

+ g2
2y6

τ

(
1137

32
− 9ζ3

)

+ g2
2y6

b

(
3411

32
− 27ζ3

)

+ g4
2y4

τ

(
4503

128
− 273

16
ζ3 − 13

4
Ng

)

+ g4
2y2

b
y2

τ

9

8
+ g4

2y4
b

(
13653

128
− 819

16
ζ3 − 39

4
Ng

)

+ g6
2y2

τ

(

−5739

256
+

99

4
ζ3 +

9

2
Ng

)

+ g6
2y2

b

(

−17217

256
+

297

4
ζ3 +

27

2
Ng

)

+ g8
2

(
982291

3072
− 2781

128
ζ3 − 14749

192
Ng

−45Ngζ3 − 5

3
N2

g

)

+ g2
1y6

τ

(
135

32
+ 33ζ3

)

+ g2
1y6

b

(
5111

96
− 25ζ3

)

+ g2
1g2

2y4
τ

(

−15

64
− 381

8
ζ3

)

− g2
1g2

2y2
b y2

τ

5

4
+ g2

1g2
2y4

b

(

−3239

192
− 311

8
ζ3

)

+ g2
1g4

2y2
τ

(
1833

256
− 3

2
ζ3 − 1

2
Ng

)

+ g2
1g4

2y2
b

(
4179

256
+ 9ζ3 +

5

2
Ng

)

+ g2
1g6

2

(

−54053

3456
− 405

32
ζ3 − 8341

864
Ng − 10

27
N2

g

)

+ g4
1y4

τ

(
5697

128
+

375

16
ζ3 +

65

12
Ng

)

+ g4
1y2

b y2
τ

41

24
+ g4

1y4
b

(
15137

3456
− 2035

144
ζ3 − 415

36
Ng

)

+ g4
1g2

2y2
τ

(
6657

256
− 15

2
ζ3 − 5

6
Ng

)

+ g4
1g2

2y2
b

(
4403

256
+

9

2
ζ3 +

25

6
Ng

)

+ g4
1g4

2

(

−64693

3456
+

873

64
ζ3 +

149

648
Ng + 7Ngζ3

−50

81
N2

g

)

+ g6
1y2

τ

(
3929

256
− 15

4
ζ3 +

55

6
Ng

)

+ g6
1y2

b

(
12043

2304
+

5

4
ζ3 +

95

18
Ng

)

+ g6
1g2

2

(

−29779

6912
+

75

32
ζ3 − 18001

2592
Ng +

61

9
Ngζ3 − 250

243
N2

g

)
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1 (−183 − 81ζ3

−235

3
Ng

)

+ λ3y2
τ 291 + λ3y2

b 873 + λ3g2
2 (−474 + 72ζ3) + λ3g2

1 (−158 + 24ζ3)

+ λ4 (3588 + 2016ζ3) + y2
t y6

τ

(

−297

8

)

+ y2
t y2

b y4
τ 12 + y2

t y4
b y2

τ

45

8
+ y2

t y6
b

(

−717

8

−36ζ3) + y2
t
g2

2y4
b

477

32
+ y2

t
g4

2y2
τ

9

8
+ y2

t
g4

2y2
b

(

−351

64
+

117

2
ζ3 − 12Ng

)

+ y2
t g6

2

(

−17217

256
+

297

4
ζ3 +

27

2
Ng

)

+ y2
t g2

1y4
b

(

−2299

96
+ 26ζ3

)

+ y2
t
g2

1g2
2y2

τ

29

4
+ y2

t
g2

1g2
2y2

b

(
1001

96
+

31

2
ζ3

)

+ y2
t
g2

1g4
2

(
3103

256
+

27

4
ζ3 +

1

2
Ng

)

+ y2
t g4

1y2
τ

701

24
+ y2

t g4
1y2

b

(

−709

64
− ζ3

)

+ y2
t g4

1g2
2

(
23521

768
− 3ζ3 +

5

6
Ng

)

+ y2
t
g6

1

(
42943

2304
− 5

2
ζ3 +

215

18
Ng

)

+ y2
t
λy4

τ
240 + y2

t
λy2

b
y2

τ
21

+ y2
t λy4

b

(
6399

8
+ 144ζ3

)

− y2
t λg2

2y2
τ 27 + y2

t λg2
2y2

b

(

−531

4
+ 54ζ3

)

+ y2
t
λg4

2

(

−3933

64
− 351

2
ζ3 − 63

4
Ng

)

− y2
t
λg2

1y2
τ
9 + y2

t
λg2

1y2
b

(

−929

12
− 2ζ3

)

+ y2
t λg2

1g2
2

(

−6509

32
+ 177ζ3

)

+ y2
t λg4

1

(

−112447

1728
− 449

6
ζ3 − 635

36
Ng

)

− y2
t
λ2y2

τ
216 + y2

t
λ2y2

b
(117 − 864ζ3) + y2

t
λ2g2

2

(
639

4
− 432ζ3

)
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+ y2
t λ2g2

1

(

−195

4
− 48ζ3

)

+ y2
t λ3873 − y4

t y4
τ 72 + y4

t y2
b y2

τ

45

8
+ y4

t y4
b 72ζ3

+ y4
t
g2

2y2
b

477

32
+ y4

t
g4

2

(
13653

128
− 819

16
ζ3 − 39

4
Ng

)

+ y4
t
g2

1y2
b

(
1337

96
− 28ζ3

)

+ y4
t g2

1g2
2

(

−1079

192
− 743

8
ζ3

)

+ y4
t g4

1

(
100913

3456
+

2957

144
ζ3 − 115

36
Ng

)

+ y4
t
λy2

τ
240 + y4

t
λy2

b

(
6399

8
+ 144ζ3

)

+ y4
t
λg2

2

(

−4977

8
+ 513ζ3

)

+ y4
t λg2

1

(

−2485

24
+ 57ζ3

)

+ y4
t λ2

(
1719

2
+ 756ζ3

)

− y6
t y2

τ

297

8

+ y6
t
y2

b

(

−717

8
− 36ζ3

)

+ y6
t
g2

2

(
3411

32
− 27ζ3

)

+ y6
t
g2

1

(
3467

96
+ 17ζ3

)

+ y6
t λ

(
117

8
− 198ζ3

)

+ y8
t

(

−1599

8
− 36ζ3

)

+ g2
s y6

b (−38 + 240ζ3)

+ g2
s
g2

2y4
b

(

−31

2
+ 24ζ3

)

+ g2
s
g4

2y2
b

(
651

8
− 54ζ3

)

+ g2
s
g6

2

(

−153

8
Ng + 18Ngζ3

)

+ g2
s g2

1y4
b

(

−641

18
+

136

3
ζ3

)

+ g2
s g2

1g2
2y2

b

(
233

4
− 36ζ3

)

+ g2
s g2

1g4
2

(

−51

8
Ng + 6Ngζ3

)

+ g2
s
g4

1y2
b

(
683

24
− 18ζ3

)

+ g2
s
g4

1g2
2

(

−187

24
Ng +

22

3
Ngζ3

)

+ g2
s
g6

1

(

−187

24
Ng

+
22

3
Ngζ3

)

+ g2
s λy4

b (895 − 1296ζ3) + g2
s λg2

2y2
b

(

−489

2
+ 216ζ3

)

+ g2
s
λg4

2

(
135

2
Ng − 72Ngζ3

)

+ g2
s
λg2

1y2
b

(

−991

18
+ 40ζ3

)

+ g2
s
λg4

1

(
55

2
Ng

−88

3
Ngζ3

)

+ g2
s λ2y2

b (−1224 + 1152ζ3) + g2
s y2

t y4
b (−2 − 48ζ3)

+ g2
s y2

t g2
2y2

b (−8 + 96ζ3) + g2
s y2

t g4
2

(
651

8
− 54ζ3

)

+ g2
s y2

t g2
1g2

2

(
249

4
− 36ζ3

)

+ g2
s
y2

t
g4

1

(
587

24
− 18ζ3

)

+ g2
s
y2

t
λy2

b
(82 − 96ζ3) + g2

s
y2

t
λg2

2

(

−489

2
+ 216ζ3

)

+ g2
s y2

t λg2
1

(

−2419

18
+ 136ζ3

)

+ g2
s y2

t λ2 (−1224 + 1152ζ3) + g2
s y4

t y2
b (−2 − 48ζ3)

+ g2
s
y4

t
g2

2

(

−31

2
+ 24ζ3

)

+ g2
s
y4

t
g2

1

(
931

18
− 56

3
ζ3

)

+ g2
s
y4

t
λ (895 − 1296ζ3)

+ g2
s y6

t (−38 + 240ζ3) + g4
s y4

b

(

−626

3
+ 32ζ3 + 40Ng

)

+ g4
s λy2

b

(
1820

3

−48ζ3 − 64Ng) + g4
s
y2

t
y2

b
192 + g4

s
y2

t
λ

(
1820

3
− 48ζ3 − 64Ng

)

+ g4
s y4

t

(

−626

3
+ 32ζ3 + 40Ng

)

. (3.2)

The purely λ-dependent part of eq. (3.2) has been derived before in [29, 30], the full

one-loop and two-loop results in eq. (3.1) are in agreement with [18–20] and in the limit

g1, g2, yb, yτ → 0 we reproduce the result [4] at three-loop level.
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The running of the m2 parameter is given by

β
(1)
m2

m2
=y2

τ
+ y2

b
3 − g2

2

9

4
− g2

1

3

4
+ λ6 + y2

t
3,

β
(2)
m2

m2
= − y4

τ

9

4
− y4

b

27

4
+ g2

2y2
τ

15

8
+ g2

2y2
b

45

8

+ g4
2

(

−385

32
+

5

2
Ng

)

+ g2
1y2

τ

25

8
+ g2

1y2
b

25

24
+ g2

1g2
2

15

16

+ g4
1

(

+
157

96
+

25

18
Ng

)

− λy2
τ
12 − λy2

b
36 + λg2

236 + λg2
112

− λ230 − y2
t
y2

b

21

2
+ y2

t
g2

2

45

8
+ y2

t
g2

1

85

24
− y2

t
λ36

− y4
t

27

4
+ g2

s
y2

b
20 + g2

s
y2

t
20,

(3.3)
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β
(3)
m2

m2
=y6

τ

(

−233

16
+ 15ζ3

)

+ y2
b y4

τ 72 + y4
b y2

τ 72 + y6
b

(
1605

16
+ 45ζ3

)

+ g2
2y4

τ

(

−987

16
+ 54ζ3

)

− g2
2y2

b
y2

τ

27

2
+ g2

2y4
b

(

−3177

16
+ 162ζ3

)

+ g4
2y2

τ

(

−255

128
− 81

4
ζ3 − 21

8
Ng

)

+ g4
2y2

b

(

−765

128
− 243

4
ζ3 − 63

8
Ng

)

+ g6
2

(

−39415

576
+

711

16
ζ3 +

2867

72
Ng + 45Ngζ3 +

35

9
N2

g

)

+ g2
1y4

τ

(
291

16
− 36ζ3

)

− g2
1y2

b y2
τ

9

2
+ g2

1y4
b

(

−1067

16
+ 72ζ3

)

+ g2
1g2

2y2
τ

(

−2331

64
+ 45ζ3

)

− g2
1g2

2y2
b

865

64

+ g2
1g4

2

(
2691

64
− 405

16
ζ3 +

21

4
Ng − 3Ngζ3

)

+ g4
1y2

τ

(

−3607

128
− 15

4
ζ3 − 65

8
Ng

)

+ g4
1y2

b

(

−79207

3456
− 35

12
ζ3 − 155

72
Ng

)

+ g4
1g2

2

(
1053

32
− 207

16
ζ3 +

55

8
Ng − 3Ngζ3

)

+ g6
1

(
839

108
− 51

16
ζ3 +

4375

324
Ng − 95

9
Ngζ3 +

875

243
N2

g

)

+ λy4
τ

(
261

4
+ 72ζ3

)

− λy2
b
y2

τ
108 + λy4

b

(
351

4
+ 216ζ3

)

+ λg2
2y2

τ

(
189

8
− 108ζ3

)

+ λg2
2y2

b

(
567

8
− 324ζ3

)

+ λg4
2

(
11511

32
− 162ζ3 − 153

2
Ng

)

+ λg2
1y2

τ

(

−549

8
+ 36ζ3

)

+ λg2
1y2

b

(
393

8
− 132ζ3

)

+ λg2
1g2

2

(

−1701

16
+ 36ζ3

)

+ λg4
1

(

−1077

32
− 18ζ3 − 85

2
Ng

)

+ λ2y2
τ

99

2
+ λ2y2

b

297

2

+ λ2g2
2 (−63 − 108ζ3) + λ2g2

1 (−21 − 36ζ3) + λ31026 + y2
t
y4

τ
72 + y2

t
y2

b
y2

τ

21

2

+ y2
t
y4

b

(
4047

16
+ 36ζ3

)

+ y2
t
g2

2y2
τ

(

−27

2

)

+ y2
t
g2

2y2
b

(

−243

8
− 27ζ3

)

+ y2
t g4

2

(

−765

128
− 243

4
ζ3 − 63

8
Ng

)

− y2
t g2

1y2
τ

9

2
+ y2

t g2
1y2

b

(

−929

24
− ζ3

)

+ y2
t
g2

1g2
2

(

−3277

64
+

117

2
ζ3

)

+ y2
t
g4

1

(

−123103

3456
− 149

12
ζ3 − 635

72
Ng

)

− y2
t
λy2

τ
108

+ y2
t λy2

b

(

−315

2
− 216ζ3

)

+ y2
t λg2

2

(
567

8
− 324ζ3

)

+ y2
t λg2

1

(

−219

8
− 60ζ3

)

+ y2
t
λ2 297

2
+ y4

t
y2

τ
72 + y4

t
y2

b

(
4047

16
+ 36ζ3

)

+ y4
t
g2

2

(

−3177

16
+ 162ζ3

)

+ y4
t
g2

1

(

−431

16
+ 12ζ3

)

+ y4
t
λ

(
351

4
+ 216ζ3

)

+ y6
t

(
1605

16
+ 45ζ3

)

+ g2
s y4

b

(
447

2
− 360ζ3

)

+ g2
s g2

2y2
b

(

−489

4
+ 108ζ3

)

+ g2
s g4

2

(
135

4
Ng − 36Ngζ3

)

+ g2
s
g2

1y2
b

(

−991

36
+ 20ζ3

)

+ g2
s
g4

1

(
55

4
Ng − 44

3
Ngζ3

)

+ g2
s
λy2

b
(−612 + 576ζ3)

+ g2
s y2

t y2
b (41 − 48ζ3) + g2

s y2
t g2

2

(

−489

4
+ 108ζ3

)

+ g2
s y2

t g2
1

(

−2419

36
+ 68ζ3

)

+ g2
s
y2

t
λ (−612 + 576ζ3) + g2

s
y4

t

(
447

2
− 360ζ3

)

+ g4
s y2

b

(
910

3
− 24ζ3 − 32Ng

)

+ g4
s y2

t

(
910

3
− 24ζ3 − 32Ng

)

.

(3.4)
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The one-loop and two-loop parts of this result are in agreement with [19, 20]. The purely

λ-dependent part can be found in [29, 30]. and for g1, g2, yb, yτ → 0 we reproduce the result

[4] again.

Now we want to give a numerical evaluation of the β-functions at the scale of the top mass

in order to get an idea of the size of the new terms. For Mt ≈ 173.5 GeV, MH ≈ 126 GeV

and αs = 0.1184 [50] we get the couplings in the MS-scheme at this scale using one-loop

matching relations [51–53]:2 yt(Mt) ≈ 0.94, gs(Mt) ≈ 1.16, g2(Mt) ≈ 0.65, g1(Mt) ≈ 0.36

and λ(Mt) ≈ 0.13. The lighter Yukawa couplings can be estimated from the MS-masses

mb ≈ 4.18 GeV and mτ ≈ 1.777 GeV [50] to be yb ≈
√

2mb

v ≈ 0.02 and yτ ≈
√

2mτ

v ≈ 0.01

For βλ(µ = Mt) we find at one-loop order

β
(1)
λ (µ = Mt)

(16π2)
= −1.5 × 10−2
︸ ︷︷ ︸

y4
t

+4.4 × 10−3
︸ ︷︷ ︸

λy2
t

−1.6 × 10−3
︸ ︷︷ ︸

g2
2λ

+1.3 × 10−3
︸ ︷︷ ︸

λ2

+6.3 × 10−4
︸ ︷︷ ︸

g4
2

−1.6 × 10−4
︸ ︷︷ ︸

λg2
1

+1.3 × 10−4
︸ ︷︷ ︸

g2
2g2

1

2. × 10−5
︸ ︷︷ ︸

g4
1

+2. × 10−6
︸ ︷︷ ︸

λy2
b

+1.6 × 10−7
︸ ︷︷ ︸

λy2
τ

−3. × 10−9
︸ ︷︷ ︸

y4
b

−6.3 × 10−11
︸ ︷︷ ︸

y4
τ

.

(3.5)

At two-loop order the largest terms with yb are of O(10−7) and those with yτ of O(10−9).

Neglecting these small terms we find

β
(2)
λ (µ = Mt)

(16π2)2
= −6.8 × 10−4
︸ ︷︷ ︸

g2
sy4

t

+4.1 × 10−4
︸ ︷︷ ︸

y6
t

+2.5 × 10−4
︸ ︷︷ ︸

g2
sλy2

t

−4.3 × 10−5
︸ ︷︷ ︸

λ2y2
t

+2.2 × 10−5
︸ ︷︷ ︸

g2
2λy2

t

+1.5 × 10−5
︸ ︷︷ ︸

g2
2λ2

−1.4 × 10−5
︸ ︷︷ ︸

λ3

+1.1 × 10−5
︸ ︷︷ ︸

g6
2

+1. × 10−5
︸ ︷︷ ︸

g2
2y2

t g2
1

+9.6 × 10−6
︸ ︷︷ ︸

g4
2λ

−7. × 10−6
︸ ︷︷ ︸

g4
2y2

t

−6.1 × 10−6
︸ ︷︷ ︸

λy4
t

−5.4 × 10−6
︸ ︷︷ ︸

y4
t g2

1

−4.6 × 10−6
︸ ︷︷ ︸

g4
2g2

1

+4.2 × 10−6
︸ ︷︷ ︸

λy2
t g2

1

−2.6 × 10−6
︸ ︷︷ ︸

g2
2g4

1

+1.9 × 10−6
︸ ︷︷ ︸

λg4
1

+1.6 × 10−6
︸ ︷︷ ︸

λ2g2
1

−1.4 × 10−6
︸ ︷︷ ︸

y2
t g4

1

+1.4 × 10−6
︸ ︷︷ ︸

g2
2λg2

1

−6.2 × 10−7
︸ ︷︷ ︸

g6
1

+(terms ∝ y2
b
, y2

τ
) .

(3.6)

At three-loop level we only give the largest terms and omit small ones of O(10−7):

2This has been done with the Mathematica package SMPoleMatching.m by F. Bezrukov which can be

downloaded at http://www.inr.ac.ru/˜fedor/SM/download.php
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β
(3)
λ (µ = Mt)

(16π2)3
= 5.9 × 10−5
︸ ︷︷ ︸

g2
sy6

t

−3.8 × 10−5
︸ ︷︷ ︸

y8
t

+2.5 × 10−5
︸ ︷︷ ︸

g4
sy4

t

−2.3 × 10−5
︸ ︷︷ ︸

g2
sλy4

t

+8.8 × 10−6
︸ ︷︷ ︸

g4
sλy2

t

+5.9 × 10−6
︸ ︷︷ ︸

λ2y4
t

+5.5 × 10−6
︸ ︷︷ ︸

g2
2y6

t

−5.1 × 10−6
︸ ︷︷ ︸

λy6
t

−4.4 × 10−6
︸ ︷︷ ︸

g8
2

+4.2 × 10−6
︸ ︷︷ ︸

g6
2λ

−1.9 × 10−6
︸ ︷︷ ︸

g4
2λy2

t

+1.7 × 10−6
︸ ︷︷ ︸

g6
2y2

t

+1.5 × 10−6
︸ ︷︷ ︸

g2
2g2

sy4
t

+1.3 × 10−6
︸ ︷︷ ︸

y6
t g2

1

−1.3 × 10−6
︸ ︷︷ ︸

g2
2y4

t g2
1

+1. × 10−6
︸ ︷︷ ︸

g2
sy4

t g2
1

−9. × 10−7
︸ ︷︷ ︸

g4
2g2

sλ

−9.2 × 10−7
︸ ︷︷ ︸

g4
2λ2

+8.9 × 10−7
︸ ︷︷ ︸

g4
2g2

sy2
t

+8.3 × 10−7
︸ ︷︷ ︸

g2
sλ2y2

t

+smaller terms .

(3.7)

The dominant contributions contain only gs, yt and λ as suggested in [4]. This result there-

fore explicitly confirms the validity of the approximation made in [4] at the scale of the top

mass. On the other hand some terms proportional to powers of g2
2 are of the same numerical

significance as some of the electroweak two-loop contributions and in including them we re-

duce the theoretical uncertainty in the evolution of λ stemming from βλ even further. The

overall value of the three-loop β-function at this scale
β

(3)
λ

(µ=Mt)

(16π2)3 = 4.2 × 10−5 is about 17%

larger than with the electroweak contributions neglected (
β

(3)
λ

(µ=Mt)

(16π2)3

∣
∣
∣
∣
g2,g1→0

= 3.6 × 10−5).

The whole β-function is dominated by the negative one-loop term ∝ y4
t but with the new

terms presented here λ will decrease less which means that these contributions slightly

enhance the stability of the electroweak vacuum state in the SM.

For βm2(µ = Mt) we find at one-loop order

β
(1)
m2 (µ = Mt)

(16π2)m2
= 1.7 × 10−2
︸ ︷︷ ︸

y2
t

−6. × 10−3
︸ ︷︷ ︸

g2
2

+4.9 × 10−3
︸ ︷︷ ︸

λ

−6.1 × 10−4
︸ ︷︷ ︸

g2
1

+7.6 × 10−6
︸ ︷︷ ︸

y2
b

+6.3 × 10−7
︸ ︷︷ ︸

y2
τ

.

(3.8)

Omitting the small contributions proportional to yb and yτ the two-loop terms look like

this:

β
(2)
m2 (µ = Mt)

(16π2)2m2
= 9.6 × 10−4
︸ ︷︷ ︸

g2
sy2

t

−2.1 × 10−4
︸ ︷︷ ︸

y4
t

−1.7 × 10−4
︸ ︷︷ ︸

λy2
t

+8.4 × 10−5
︸ ︷︷ ︸

g2
2y2

t

+7.9 × 10−5
︸ ︷︷ ︸

g2
2λ

+2.1 × 10−5
︸ ︷︷ ︸

g4
2

+1.6 × 10−5
︸ ︷︷ ︸

y2
t g2

1

−2. × 10−5
︸ ︷︷ ︸

λ2

+8. × 10−6
︸ ︷︷ ︸

λg2
1

+6.6 × 10−6
︸ ︷︷ ︸

g4
1

+2. × 10−6
︸ ︷︷ ︸

g2
2g2

1

+(terms ∝ y2
b
, y2

τ
) .

(3.9)
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Again we only give the largest terms at three-loop level and omit small ones of O(10−7):

β
(3)
m2 (µ = Mt)

(16π2)3m2
= −5.6 × 10−5
︸ ︷︷ ︸

g2
sy4

t

+3.4 × 10−5
︸ ︷︷ ︸

g4
sy2

t

+2.7 × 10−5
︸ ︷︷ ︸

y6
t

+1.3 × 10−5
︸ ︷︷ ︸

g6
2

+9. × 10−6
︸ ︷︷ ︸

λy4
t

−5. × 10−6
︸ ︷︷ ︸

g4
2y2

t

−3.9 × 10−6
︸ ︷︷ ︸

g2
2λy2

t

−3.5 × 10−6
︸ ︷︷ ︸

g4
2g2

s

+3.2 × 10−6
︸ ︷︷ ︸

g2
sλy2

t

−1.7 × 10−6
︸ ︷︷ ︸

g4
2λ

+9.7 × 10−7
︸ ︷︷ ︸

g2
2g2

sy2
t

+5.7 × 10−7
︸ ︷︷ ︸

λ3

+5.7 × 10−7
︸ ︷︷ ︸

g2
sy2

t g2
1

+5.6 × 10−7
︸ ︷︷ ︸

λ2y2
t

+smaller terms .

(3.10)

We see that especially the term ∝ g6
2 is not much smaller than the three dominant terms

that have already been computed in [4]. The overall three-loop results with g2, g1 → 0

and the electroweak interaction switched on differ only by 1. × 10−6 due to cancellations

between the new terms.

4 Conclusions

We have computed the three-loop β-functions for the quartic Higgs self-coupling and for the

mass parameter m2 in the unbroken phase of the SM, neglecting only the Yukawa couplings

of the first two generations and the mixing of quark generations (an extension that could

easily be made but which is numerically negligible). The electroweak contributions are

small as expected which confirms the validity of the approximation made in our previous

calculation [4]. The full three-loop β-function for the quartic Higgs self-interaction is about

17% larger than without the electroweak terms thus making the SM vacuum state slightly

more stable.

Note added: Recently, a similar calculation has independently confirmed the results pre-

sented in this paper [54].
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