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Weak radiative decay B — X,v is known to be a loop-generated process.

However, it does

receive tree-level contributions from CKM-suppressed b — uus7y transitions. In the present paper,
we evaluate such contributions together with similar ones from the QCD penguin operators. For a
low value of the photon energy cutoff Eq ~ m;/20 that has often been used in the literature, they
can enhance the inclusive branching ratio by more than 10%. For Ey = 1.6 GeV or higher, the effect
does not exceed 0.4%, which is due to phase-space suppression. Our perturbative results contain

collinear logarithms that depend on the light quark masses myq

(g = u,d,s). We have allowed

my/mq to vary from 10 to 50, which corresponds to values of my that are typical for the constituent
quark masses. Such a rough method of estimation may be improved in the future with the help of
fragmentation functions once the considered effects begin to matter in the overall error budget for

B(B — Xs7).

PACS numbers: 12.38.Bx, 13.20.He

I. INTRODUCTION

Weak radiative decay of the B meson is an invalu-
able and well-established means for constraining physics
beyond the Standard Model (SM). Its branching ratio
has been measured to a few percent accuracy at the B-
factories [1]. Theoretical calculations have acquired sim-
ilar precision [2]. The decay is generated dominantly by
the b — s7 transition that arises at one loop in the SM
and its most popular extensions. However, it receives
also tree-level contributions from the CKM-suppressed
b — wusy transitions. In the present paper, we eval-
uate such contributions together with similar ones that
originate from the QCD penguin operators.

It is well known that the inclusive B — X,v decay rate
can be approximated by its perturbative counterpart

(1.1)

where XP stands for s, sg, sqq, ... partonic states (with
q = u,d,s only, as no charmed hadrons appear in X
by definition). Deviations from Eq. (1.1) appear as cor-
rections when Ej is large (Ey ~ 2my) but not too
close to the endpoint (my — 2Ey > A ~ Agep). For
Ey = 1.6 GeV, the corresponding non-perturbative un-
certainty amounts to around +5% [3], while the known
O(A?/m} ) corrections [4, 5] are smaller than that.

The considered process is most conveniently analyzed
in the framework of an effective low-energy theory which
arises after integrating out the electroweak bosons and
the top quark. The relevant effective weak interaction
Lagrangian reads

LB = XV g, >5, ~T(b— Xv)E, >k

4G
Lok = \/f V;Es‘/;bZCP +V
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(1.2)

where P; denote either dipole-type or four-quark oper-
ators, and C; stand for their Wilson coefficients. The

ubZC (P; — P“)]

u,d,s
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FIG. 1: Tree-level Feynman diagrams for b — sgq~y at the LO.

Black squares denote four-quark operator insertions.

operators are given by

PP = (807, T%p)(upy*Ty),

Py = (Suypur)(@py"br),

Pro= (s T%er)(ery"Ty),

Py = (517yucL)(ELydu),

Py = (spoubr) 224(07"q),

Py = (5 v, T bL)z (Gy"T"q),

Ps = (807 Yo YusbL) Do (@ #2942 q),

Ps = (5L Y Vs TbL) 3 (@71 91242 T ),

Pr = 15=my(5L0"bR) Flu,

Py = gimmy(5L0" T bR)GY, . (1.3)

Sums over ¢ in P3¢ include all the active flavors ¢ =
u,d, s, c,b.

Our goal in the present work is to evaluate O (ag)
leading order (LO) contributions to the r.h.s. of Eq. (1.1)
that originate from b — ¢gsy with ¢ = u,d, s. They can
be generated either by the current-current operators Py'y
or by the QCD penguin ones P3 . The corresponding
Feynman diagrams are shown in Fig. 1.



At first glance, it may seem surprising that the consid-
ered LO effects have not been evaluated so far while the
analysis of other contributions has already reached the
O (a?) next-to-next-to-leading order (NNLO) level [2].
Let us recall that the Wilson coefficients of all the op-
erators in Eq. (1.3) acquire non-zero values already at
the LO once the QCD logarithms have been resummed
using renormalization group evolution from the elec-
troweak scale pg ~ My, m; down to the low-energy
scale pp ~ my/2. However, despite being non-vanishing
at the LO, Wilson coefficients of the QCD penguin
operators remain rather small |C3 _ 6(up)/Cr(u)|> <
|Cy(1p)/C7(pp)|? ~ 0.1, while the tiny CKM matrix el-
ement ratio |V Viy/ViiVip| ~ 0.02 makes the current-
current operators P’y even more suppressed. Moreover,
when the lower photon energy cutoff Ej is at 1.6 GeV [2]
or higher [1], the considered tree-level contributions to
the branching ratio undergo severe phase-space suppres-
sion, which justifies neglecting them at the leading and
next-to-leading orders in «; (see App. E of Ref. [6]).

Given the current and expected future progress in the
NNLO calculations [7], reliable uncertainty estimates in
the SM prediction for B(B — Xs7) can no longer be
made without evaluating the diagrams in Fig. 1 and
checking what the actual size of their contribution to the
r.hs of Eq. (1.1) is. This fact serves as the main mo-
tivation for our present work. Since the corrections are
expected (and found) to be quite small for Ey = 1.6 GeV,
rough estimates of their size are sufficient. Actually,
nothing more is available within perturbation theory
alone because collinear logarithms In(ms/m,) involving
light quark masses m,; (¢ = u,d, s) remain in the final
expressions. While using the so-called current masses for
the light quarks is not adequate in such a case, the above-
mentioned rough estimates can be obtained by assuming
that m, are of the same order as masses of pions and
kaons or, equivalently, as the constituent quark masses.
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We shall do it by varying my/mg from 10 to 50, which
covers the necessary range. A refined approach would
require taking non-perturbative fragmentation into ac-
count, as it has been done in Refs. [8, 9] for contribu-
tions that are proportional to |Cs|? or in Ref. [10] for the
b — wuudy background. Such an analysis is beyond the
scope of the present paper.

The article is organized as follows. Our final perturba-
tive results together with a discussion of their numerical
impact on the total decay rate are presented in Sec. II.
The next two sections contain brief descriptions of two
alternative methods that we have used for integration
over the four-body phase space. In Sec. III, partly
massive phase-space integration in D = 4 dimensions is
outlined. In Sec. IV, a calculation involving dimensional
regularization and splitting functions is described. We
conclude in Sec. V. App. A contains a collection of
several intermediate results that may be useful for
other calculations of electromagnetic bremsstrahlung
corrections to decays mediated by four-fermion opera-
tors. App. B is devoted to summarizing the necessary
properties of the splitting functions.

II. RESULTS

Our final result can be expressed in terms of three
functions Ty(6) (kK = 1,2,3) that depend on the pho-
ton energy cut Ey = “5t(1 — §) and on logarithms of the
quark masses. Each of the functions gets multiplied by a
quadratic polynomial in the Wilson coefficients C; that
are evaluated at the scale u,. We assume that all the C;
are real, as it is the case in the SM. The LO tree-level
contribution to I'[b — XP~] arising from the four-quark
operators Pffg and P3¢ reads

2 40 272
Vi Vi {Tl((s) <c§ +20C5C5 + 505 + = CaCo + 13602 + 703)

64 128

27

2 8 4 2 8 32
+ Ty (8) <§|A1|2 + | A2)? + (503 — 5701+ —5-Cs = —06> Re A; + (503 +5C0i+ 50+ 76%) ReA2>

128

4 2
+ T5(9) <C§ + 3C5Ca +32C5C5 + —=C3C6 — §Cg

where 4; = —C; “//f’f\‘;::v 1=1,2, and
5 2 m2 s 109
TS = (=2006) — Zw(8) ) In — % 4 s
\(5) ( 05) ~ 2o >) AL USRS
17, 191. 23, 79
e s Py
g0 T 10e) 1l (-9
5 1 5
— 2Liy(8) + = p(8) In —= (2.2)

3 9

4 )
m;mgq

12 4 1024 12
+ —80405 - 6—0406 + 256C2 + 0—0506 - 5—062 :
3 9 3 9
(2.1)
1 2 myd 187
T0) = (—=p(8) — = In b =o!
2(6) = (=500 - 20 )50+ 1255
7, 395, 1181, 133
R SR Nt g WYL
80 "o’ T a9z’ Tios )
1_. 1 Mg
- §L12(5) + §p(5) In e (2.3)



Ci1 = —0.8144|C5 = —0.0125
Cy = 1.0611

Cs = 0.0012|C7 = —0.3688
Cy = —0.1224|Cs = 0.0026 |Cs = —0.1710

TABLE I: The LO Wilson coefficients C; at up = 2.5 GeV. The
matching scale po has been set to 160 GeV in their evaluation.

1 1 m2é 35 1
89 4 341 , 26 1.
5770 350" gL — ) — 5Lia(d), (2.4)
with
1 4
p0) = 6+ 26" +In(1-0),
w(d) = 262—263+64. (2.5)

The function T5(d) originates from cross-terms in b —
ss8y where the s-quark lines are interchanged in one of
the interfered diagrams (see Fig. 2). All the other con-
tributions from the penguin operators P3 . ¢ alone are
described by T7(9). Finally, T5(d) comes from P, and
their interference with Ps _ . ’

We have retained the light quark masses m, in the
collinear logarithms only, i.e., all the power-like correc-
tions proportional to mZ/mj have been neglected in the
above expressions. Such an approximation breaks down
at some point, which manifests itself in non-physical
negative values of Ty 2(6) when In(mj d/m?2) is not big
enough.

Determining the size of the calculated correction is
now straightforward. Numerical values of the LO Wil-

son coefficients C; = C’Z-(O) (1p) are summarized in Tab. I.

Voelus — _0.0079 +
ts ¥tb
0.0184 [11]. As far as the light quark masses m,, 4 s are
concerned, we set all of them equal in the numerical ex-
amples to be discussed below.

In Tab. II, we present the calculated correction (2.1)
as a fraction of the leading contribution to the decay
rate T = GZaemm) C2 |V Vi|* /(327%) for two val-
ues of Ey and two values of z—z Strong dependence on

For the CKM element ratio we use

the collinear logarithms is clearly visible. On the other
hand, the non-logarithmic terms turn out to be relevant

FIG. 2: Sample contribution to the b — ss5y cross-terms that
give rise to the function T3(d). It is represented as a cut propa-
gator diagram, with the cut denoted by the vertical dashed line.

Eo 5 ATES /T
ok = 50| 5t = 10
1.6 GeV|0.316|—0.45% + 0.21% In 2 | +0.36%| +0.02%
2 10.9 —8.1% +5.2%In 72t | +12.2%| +3.8%

TABLE II: The correction from Eq. (2.1) as a fraction of the
leading contribution I'*) for several values of Ey and mp/mg.

in the considered range of 2—3 For a low value of the

photon energy cutoff Ey ~ my/20 that has often been
used in the literature, the correction can enhance the
inclusive rate by more than 10%. On the other hand,
for Ep = 1.6 GeV ~ 2t or higher, the effect does not
exceed 0.4%, which is obviously due to phase-space sup-
pression that becomes efficient when we approach the
high-energy endpoint Fy ~ 5, i.e. when ¢ becomes
small. In this limit, our correction in Eq. (2.1) behaves
like O (52 In 5). In all the four cases shown in Tab. II, the
contribution from T3 (d) is the dominant one, while T3(6)
(T2(9)) give about 5 (50) times smaller effects. Thus, the
CKM-suppressed contributions that come with T»(d) are
minuscule indeed, and no precise knowledge of %ﬁ% is
necessary here. On the other hand, our LO results ex-
hibit significant dependence on the renormalization scale
wp that comes from C5 . g(up). It could be stabilized
only after including O(«,) contributions to b — ¢gsy, in

particular the ones generated by P ».

III. CALCULATION INVOLVING PARTLY
MASSIVE PHASE-SPACE INTEGRALS

Let us now briefly describe the calculation. First, we
consider the diagrams in Fig. 1 with an operator
Py = (5.7.01) (017" q2), (3.1)
where no sum over flavors is present (contrary to P3 in
Eq. (1.3)), and the electric charges {Qs, Qp, Q1,Q2} are
retained arbitrary. The invariant matrix element M is
calculated in the Feynman gauge, so collinear divergences
are allowed to occur in interferences between different di-
agrams (rather than in self-interference terms alone) [12].
The Dirac algebra is performed in D = 4 — 2¢ dimensions
without neglecting the light quark masses. At this point,
we proceed in two different ways. One of them is to in-
tegrate the spin-averaged | M|? over the partly massive
four-body phase space in D = 4 dimensions. The other
way is to initially neglect the light quark masses, inte-
grate |[M|? in D = 4 — 2¢ dimensions over the massless
phase space, and convert the collinear 1/e poles to loga-
rithms of masses only afterwards (see Sec. IV).

In the D = 4 case, we impose the photon energy cut (in
the b-quark rest frame F) after expressing E. in terms of
invariants, namely 2myE., = m% — S123, where s193 is the
invariant mass squared of the ¢;gss system. A boost to



the rest frame F of this system is performed along the —k
direction, where k is the photon three-momentum in F.
The q1G2s system has energy equal to /s123 in F , while
the three-momenta of its constituents define a plane. The
direction of k with respect to this plane is parametrized

by two polar angles 6 and . The remaining three phase-
28;
v/ S123

space variables are the quark energy fractions &; =
(Z = 1, 2) and 5123-
We integrate first over 6 and ¢, and obtain results

containing large logarithms In %2 Integration of the in-

PiDj :
(Pia)(pjk)
Ref. [13]), which applies also to the case p; = mg < mi.
At this stage, all the collinear logarithms have been al-
ready identified, which allows us to neglect masses of the
outgoing particles in the remaining terms. Next, integra-
tions over the quark energy fractions and s;s3 are per-
formed. Finally, charge conservation Qp = Q1 — Q2+ Qs
is imposed, but the charges on the r.h.s. are still re-
tained arbitrary. Several intermediate results with such
arbitrary charges are collected in App. A.

Once the final result for ]33 with arbitrary charges is
at hand, obtaining the corresponding one for Ps (T1(9))
is just a matter of substituting the actual values of the
charges and summing over flavors. Extending the calcu-
lation to P56 and taking into account the b — ss5y
cross-terms (73(0)) requires modifying the Dirac alge-
bra and color factors but no essential difference in the
phase-space integration is encountered. As far as T5(0)
is concerned, it originates from the operators Py, in-
cluding their interference with P5 _g. In this case, it is
sufficient to express Py in D = 4 dimensions as linear
combinations of the (5b)(au)-parts of Ps ¢, namely

terference terms involves angular ordering (see

uo 4 pu 1 pu 1 pu 1 pu
P = — &Pyt ippy Lpr - Lp

P} = —iP}—2Pp+ Py +LPY, (3.2)
The above expressions are easily derived using Fierz iden-

tities for the Dirac and Gell-Mann matrices.

IV. CALCULATION WITH THE HELP OF
DIMENSIONAL REGULARIZATION

A calculation with the help of dimensional regulariza-
tion is technically simpler but involves a few subtleties.
To start with, all the particles in the final state are as-
sumed to be massless, and the phase-space integration is
performed in D = 4 — 2¢ dimensions [14]. The results
are collected in App. A. Given that the collinear diver-
gences appear as 1/e poles, one should make sure that
no ambiguities arise from Dirac traces with odd numbers
of v5’s [15]. Fortunately, such traces being purely imagi-
nary give no contribution to the decay rate in the case of
Ps ¢ alone. As far as Pj'; are concerned, we do not need
to consider them at this level. Once the collinear diver-
gences are re-expressed in terms of logarithms of masses

(see below), we can pass to D = 4 and use the identities
(3.2).

For definiteness, let us consider the operator ﬁ3 from
Eq. (3.1) again, but this time with the s-quark denoted
by gs to keep the notation symmetric. Before integrating
over the photon energy (but after integration over all the
other phase-space variables), the differential decay width
for b — q1G2q37y reads

dl'  dle  dlsnige
de ~ dx dr '’

where = 2E.,/my. The first term on the r.h.s. above is
the dimensionally regulated expression, while the second
one converts the dimensional regulators to logarithms of
masses. Its explicit form is given below.

We shall need a D-dimensional expression for the to-
tal width of the three-body decay b — ¢iGags. De-
noting momenta of the final-state massless particles by
pi, ¢ = 1,2,3, and parametrizing the phase space by
Sij = 2p;p;/mj, one can write

(4.1)

~4e 1
FS—body = 2”—”% / d812 d813 d823 |./\/l/|2 M3, (42)
0

where M’ is the corresponding invariant matrix element,

0% = p2e¥® /An, and

6(1 — 519 — 813 — S3) m3H2€ (m2)1-2¢
28—6e T (% — 6) F(l — 6) (812813823)6

M = (4.3)

describes the phase-space measure [16]. The second term
in Eq. (4.1) can now be written as

dlsp; ate [ —
shify _ & / ds12 ds13 dsaz |M'|* M3 Jem
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dx 2my 2mx
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Properties of the splitting functions that have been nec-
essary to derive the above formula are summarized in
App. B. One should remember that all the collinear 1/e
poles cancel in Eq. (4.1) only after the charge conserva-
tion Qp = Q1 — Q2 + Qs has been imposed.

The structure of Eq. (4.4) remains the same irrespec-
tive of what interaction generates the b-quark decay.
Thus, it is applicable as it stands to the operators Ps 6.
Next, as already mentioned, Eq. (3.2) is used in D = 4
dimensions to take P’y into account. This way the final
expression in Eq. (2.1) has been obtained once again, in
perfect agreement with the results of Sec. III.

V. CONCLUSIONS

In the present paper, we have evaluated the LO con-
tributions to the partonic decay width I'(b — XP~) that



originate from the four-quark operators P’y and Pj . .
They can be sizeable (above 10%) for low photon energy
cutoffs Ey but become very small (below 0.4%) in the
phenomenologically interesting domain Ey > 1.6 GeV,
ie, for § =1 —2Ey/my < 0.32. For small §, they be-
have like O(§2 In §), which determines their phase-space
suppression near the endpoint.

The presence of collinear logarithms In(mgdé/m?2) in-
volving light quark masses m,; (¢ = wu,d,s) implies
that our perturbative results (with my/mg varied from
10 to 50) may serve only as rough estimates of the
corresponding contributions to the inclusive hadronic
B — X,y decay rate. Having such rough estimates
at hand is both advantageous and sufficient at present,
given that the overall non-perturbative uncertainty re-
mains at the +5% level [3]. However, once our control
over non-perturbative corrections improves in the future,
the current contributions will need to be supplemented
with hadronic fragmentation effects, along the lines of
Refs. [8, 9].
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APPENDIX A: INTERMEDIATE RESULTS

Here, we present several intermediate results that
might be useful for studying hard photon emission in
other processes mediated by four-fermion operators, like
muon decays or semileptonic heavy quark decays. Al-
though radiative corrections to such processes have been
calculated long ago, none of the published results that
we are aware of leaves the photon energy as the only
phase-space variable that has not been integrated over
(or, equivalently, integrated with an arbitrary cutoff). To
make our results applicable to such cases, it is enough to
present them for arbitrary electric charges of the final-
state fermions.

As in Sec. III, we replace Ps (1.3) by Ps (3.1) and
assume that ¢; # s, which means ‘that no cross-terms
(T3(0)) arise. The contribution of Ps to the decay rate
is as in the C3T1(d) term in Eq. (2.1) but with 71 (d)

replaced by
T1(8) = (@1 +Q3) Fuu(6) + Q3 Fus(9)

+ Q1Q2 <%P(5) - 1w(é) - i52>

9
7 1
+(@- Q@ (o) + 1) . (A)
where
1 m2 o 11
F = (- — = In —2~ + 46 + —6?
11(9) ( p(0) 6w(6)) n m2 + (5—1—126
17 5 79, :
2
Lm0 By Lo 61
Fis(0) = —p(d) In 2 + 50+ f
17 ,
+ & In(1 =) ~ Lis(9).. (A.2)

In Eq. (A.1), charge conservation @y = Q1 — Q2 + Qs
has been already imposed. In effect, collinear logarithms
remain only in the terms that come with Q?, i=1,2,s.
For simplicity, all the light quark masses have been set
equal and denoted by m,. However, it is easy to relax
this assumption and identify them by the corresponding
charges despite the fact that charge conservation has al-
ready been used (see App. B).

Now, let us consider the case when ¢; = s in Eq. (3.1).
Then, apart from T3 (6) (A.1), we get an additional con-
tribution from the cross-terms

T3(8) = Q3 S22(8) + Q2 e (6)

+ Qa0 (~3000) - ) - ) L (A3)

where
Sa(6) Loo) - L)) el 4 25 Moo
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2 3~ g m2 18" " 18
1M, 85 ., 19 1.
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Sss(8) = —3p(9) In 2 + R0 g
79 o, 43 2
=50+ (1 - 6) — ZLiy(6). A4
+ 570 T 7g (1 —8) — 3Li2(9) (A4)

The above results are valid only for the particular Dirac
structure of the operator Py. To generalize them to all
the four-fermion operators with chirality-conserving cur-
rents, it is sufficient to consider

]55 = (gL'Yul'Yuz'YusbL)(‘ﬁ'YM’YW’YMSQZ)- (A.5)

Its interference with ]33 gives

20T1(6) + (QF — Q3) 71(8) + (Q1 + Q2) Qs 72(6), (A.6)



and 327T3(6) for the cross-terms. Its self-interference
gives

136 T1(8) + 10 [(Q% — Q3) m1(8) + (Q1 + Q2) Qs 72(9)] ,
(A.7)

and 256 T5(8) for the cross-terms. The functions r1,2(0)
are given by

m3 31
7“1((5) = 2(,0(5) In ﬂ”lzg — 2p(6) —116% +166° — 164,
2 2
r2(8) = 4p(8) — 20(6) ~ 357 (A.8)

The corresponding results for massless final-state
fermions in the dimensional regularization have been ob-
tained with the help of Eq. (A.5) of Ref. [16] where a com-
pact expression for the D-dimensional four-body phase-
space measure is given. Only the functions that come
proportional to squared charges differ from their D = 4
counterparts. For P53 alone, they read

(e) 1 45 5., 23 4
F, _ 1 450 5., 23
11 () (0(5) + 6w(6)) C.(0) + 1 5+ 25 5 5
1
o D05 21— ) + (1 — ) — 2Lia().
72 4
133 7 4 65
©(85) — 133, T, 44 65,
4 —11029 In(1— 6) + (1 — §) — 2Lis(6),
¢ 1 1 125 . 101
552 (6) = (gp(é) + §w(5)) Cel0) + 556 + =50
44 83 101 1
_ _63 _64 _1 1—6 —121_6
27 + 72 + 36 n( )+ 3 n”( )
- 21h0),
2 65 1 8 31
5 — 2 65. 1, 8 4 3l,
S0) = 3p(0) Ce(9) + 576 + 507 + 520" + =0

+ % In(1 —6) + % In?(1 —6) — %Lig(é) , (A.9)

where C(6) = 1/e —2In[6(1 — §)].

In the case of Ps-Ps interference (Eq. (A.6) and below),
the following replacements need to be made:

2
Q= — —2Q2— Q) (<c€+8>w+7p %)
—12Q2p—4Q5(6p+w),

_ ~o 16 8
32T — 32157 — S QIBp—w) — 5Q3(p +w),
(A.10)

where fofﬁ)(& is given in terms of Ség) (0) and S’gz)(é), in
analogy to Eq. (A.3). The corresponding replacements

for the P5 self-interference (Eq. (A.7) and below) read
Q1 - Q3)m(0) —
83 52
—92(0? — 02 i 10 p — —
(@7 QQ)((C€+1O)w+ 0p 4)

8 19
+Q?2 (—18p+ gw) —4Q3 (9p+ Ew) :

~ ~o 64 32
25675 — 25674 — 5 Q2L — 4w) — T Q3(Tp + 5w).
(A.11)

Conversion of the collinear regulators in Eq. (4.1) is most
conveniently performed before substitution of charges, at
the level of the functions from Egs. (A.9)—-(A.11).

Our final result in Eq. (2.1) has been obtained by form-
ing appropriate linear combinations of the functions ap-
pearing in Egs. (A.1), (A.3) and (A.8), according to the
values of charges, color factors and sums over flavors.

APPENDIX B: SPLITTING FUNCTIONS

Our conversion formula (4.4) involves a difference be-
tween splitting functions derived in the dimensional reg-
ularization and in the regularization with masses. Their
derivation along the lines of Refs. [17, 18] is briefly de-
scribed in the following.

Let us consider an amplitude M(q, k;...) of a process
where an external massive fermion radiates a photon with
momentum & (k% = 0). After the radiation, the fermion
is on shell (¢ = m?). We shall assume that the calcula-
tion is performed in the light-cone axial gauge n- A = 0,
where n is a lightlike vector (n? = 0), and the sum over
photon polarizations gives

kun, + kun
§ A% N w'ty vity
A €H €, = *g#,/‘i“ T . (Bl)

In such a gauge, interference terms between different di-
agrams are free of collinear singularities [12].

In the course of the splitting function derivation, it is
convenient to introduce the Sudakov parametrization in
terms of

gk
=q+k— ————n,
b 1 (q+k)nn
k
ki Ezp—quz(l—z)un, (B.2)
qn

where z = (qn)/[(q + k)n] € [m?/(m? + 2qk),1]. Tt is
easy to verify that p?> = m?, and that the spacelike vector

k. is orthogonal to both n and p. Inverting the relations
(B.2), one finds

k? + (1 — z?)m?

— 2p—k
TR T )

K2 — (1 — 2)2m2
k= (1-2)p+k +—= (1= =)"m n, (B.3)

(1—2)(2pn)



FIG. 3: A schematic picture of the factorization formula (B.5)

where ki stands for —kikz 1 when expressed in a frame-
independent way. In such a parametrization, propagator
denominators that are responsible for collinear singular-
ities appear as

1 1 z2(1—2)
(g+k)2—m2  2¢k k2 +(1—2z2)2m2

The transverse momentum k; parametrizes how far off-
shell the radiating fermion is. In the massless case (m =0
and € # 0), the collinear limit is defined by k£, — 0, which
determines the phase-space region where the 1/¢ singu-
larity arises. In the case of a massive fermion (m # 0 and
e = 0), the quasi-collinear limit has to be considered [19].
In this limit, the collinear region is defined by taking si-
multaneously k? — 0 and m — 0, but keeping the ratio
m?/k? fixed. Both limits lead to the factorization for-
mula [17, 20] illustrated in Fig. 3

(B.4)

_ Q.
(Mg ks )P = = P(2) [M(ps..))*,  (B.5)
2qk
where M(p;...) is the amplitude of the process with-

out radiation where p — ¢/z in the collinear or quasi-
collinear limits, and @); is the fermion charge. The split-
ting function ]5(,2) in the collinear limit and in D = 4—2¢
dimensions reads (see Eqs. (53) and (54) of Ref. [17])

. 1 2

P.(z) = 8ma [1—’——'2 —e(l1-— z)} . (B.6)

—z

It becomes the Altarelli-Parisi splitting function [21] for
the gluon emission off quark when 8mwa. is replaced by

Cp. Its extension to the massive quark case in D = 4
dimensions is

P(2) = 8T, [— (B.7)

For definiteness, let us assume that the number of final-
state particles is as in Fig 1. In the collinear region, it
is possible to disentangle the four-body phase space d®4
into a convolution of the three-body phase space of the
non-radiative process, and the phase space corresponding
to the radiation process alone [20, 22],

APy = dP3 d®. (B.8)
One proceeds with integration over the low-k; region
using the following phase-space measure [17]

d
e = (ﬁ)*%mm -

_ ! 1 o ((4rp? © dz

- 1677 mdkl< k% ) z(1 —z)e(z(liz))

The integration is performed from k% = 0 up to k% =
E?, where F is chosen to remain in the low-k, region, to
preserve the factorization formula.

The splitting functions integrated over k2 read

e [14 22 1 E 1—2
(z) = L I N ,
1e(2) ﬂ[lz ( 26+nu)+ 2 }

Qe [lJer E z

fm(z) = = 1—z2 1n(l—z)mil—z

] , (B.10)
while their difference is

Af(z)

fm(2) = fe(2)

1+22 1 1-—
_ Qe 1tz [——1—211&7( Z)m] (B.11)
2r 1 —2z |e€ W

The dependence on E cancels in Eq. (B.11) because both
splitting functions in Eq. (B.10) have been consistently
derived in the corresponding regularizations, and they
contain the same high-k, finite terms. The formula
(B.11) could have also been obtained with the splitting
functions from Ref. [23].

The mass-regulated and dimensionally regulated ra-
diative decay widths with E, > Ej satisfy the following
relation

1
Lo = Dot 03 [ i [ d=ar) M. P

x O [(1-2)p] — Eo] , (B.12)

where the sum goes over all the radiating fermions.
The three-body final-state phase-space measure d®3 in-
tegrated over the “blind” angular variables reads [16]

d;f)3 = [1,46/ d(I)g = ﬂ4€ Mg d812 d813 d823 s (B13)
Q

where M3 has been given in Eq. (4.3).

Eq. (B.12) has been derived in the light-cone axial
gauge but it is actually gauge-independent once charge
conservation has been imposed. Thanks to this fact, we
could have used it in our Feynman-gauge calculation.
Actually, the conversion formula (4.4) is obtained from
Eq. (B.12) just by differentiation with respect to Fj.
Even after imposing charge conservation, the splitting
functions derived in the same regularization may differ
by finite terms which depend on the chosen gauge and
also on the high-k, integration limit. Only the differ-
ence (B.11) of the two splitting functions is gauge- and
convention-independent.
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