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Abstract

We compute three-loop matching corrections to the Wilson coefficients C7 and C8

in the Two Higgs Doublet Model by applying expansions for small, intermediate and
large charged Higgs boson masses. The results are used to evaluate the branching
ratio of B̄ → Xsγ to next-to-next-to leading order accuracy, and to determine an
updated lower limit on the charged Higgs boson mass. We find MH+ ≥ 380GeV at
95% confidence level when the recently completed BABAR data analysis is taken
into account. Our results for the charged Higgs contribution to the branching ratio
exhibit considerably weaker sensitivity to the matching scale µ0, as compared to
previous calculations.

1 Introduction

In view of missing (to date) New Physics signals at the Large Hadron Collider (LHC), it is
of utmost importance to exploit precision calculations together with precise experimental
results in order to look for deviations from the Standard Model (SM). In this context,
the rare decay B̄ → Xsγ constitutes one of the most important processes. It is a loop-
generated Flavour-Changing-Neutral-Current (FCNC) transition, which makes it very
sensitive to contributions from beyond-SM particles. Moreover, its branching ratio can
be measured with an uncertainty of a few percent and, at the same time, the result can
be predicted within perturbation theory with a similar uncertainty.



The current average of the measurements by CLEO [1], BELLE [2,3] and BABAR [4–6]
reads [7]

B(B̄ → Xsγ)|Eγ>1.6 GeV = (3.37 ± 0.23) × 10−4 . (1)

It includes the recently updated BABAR data analysis [4,5]. The measurements have
been performed with various photon energy cutoffs E0 ranging from 1.7 to 2.0 GeV. Their
average in Eq. (1) involves an extrapolation to E0 = 1.6 GeV. It can be confronted with the
SM prediction based on the Next-to-Next-to-Leading Order (NNLO) QCD calculations
which reads B(B̄ → Xsγ)|Eγ>1.6GeV = (3.15 ± 0.23) × 10−4 [8,9].

In this paper, we consider extensions of the SM Higgs sector by a second Higgs doublet,
namely the so-called Two Higgs Doublet Models (2HDMs). They are constructed in
such a way that no FCNC occur at the tree level [10]. Such models have five physical
scalar degrees of freedom, among which there is a charged Higgs boson H± that plays
an important role for B̄ → Xsγ. We shall consider two versions of the model, usually
denoted by 2HDM type-I and type-II where, respectively, either the same or two different
Higgs doublet fields couple to the up- and down-type quarks. In these models, both Higgs
doublets acquire vacuum expectation values v1,2 such that v =

√

v2
1 + v2

2 ≃ 246 GeV
determines the W± and Z boson masses in the same way as in the SM. The ratio v2/v1

is denoted by tan β.

Comparison of the experimental results for B(B̄ → Xsγ) to predictions within the 2HDM
type-II leads to the strongest constraint on the charged Higgs boson mass for tan β ∈ [1, 25]
(see, e.g., Sec. 5 of Ref. [11]; the precise range depends on the treatment of uncertainties).
So far, the constraint has been derived using only the Next-to-Leading Order (NLO) ex-
pressions for the 2HDM contributions at the electroweak scale, while the SM contributions
were treated at the NNLO [9]. In the present paper, we compute the missing two- and
three-loop NNLO matching coefficients in the 2HDM, and re-do the analysis to extract a
lower bound on MH+ from the new experimental average (1).

The outline of the paper is as follows: In the next Section, we discuss the matching
coefficients up to the three-loop order. Besides considering the 2HDM, we also re-compute
the SM matching contribution, and improve the three-loop results for C7 and C8. In
Section 3, we use the new results to evaluate B(B̄ → Xsγ) to the NNLO accuracy, and
to extract a lower bound on MH+ . Section 4 contains our conclusions.

2 Matching coefficients

2.1 Formalism

The formalism to compute the Wilson coefficients in the 2HDM can be taken over from
the SM case [12,13]. We shall follow the regularization and renormalization conventions
of those papers. In particular, we adopt the effective Lagrangian and the definition of the
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operators Pj (j = 1, . . . , 8, 11) from Eqs. (2.1) and (2.2) of Ref. [13]. One should note
that the dipole operators P7 and P8 are normalized there with inverse powers of the QCD
coupling constant.

Since the additional degrees of freedom of the 2HDM are all heavy, they only influence
the Wilson coefficients Ci of the operators Pi. In order to incorporate the 2HDM contri-
bution in a manner that is analogous to the SM analysis of Ref. [13], we split the Wilson
coefficients as

CQ
i = CQ,SM

i + CQ,2HDM
i , (2)

where Q = c, t marks contributions from loop diagrams with virtual charm and top quarks,
respectively.

Our matching calculation is performed at the renormalization scale µ0. It is chosen to
be of the same order of magnitude as masses of the particles that are being decoupled
(mt, MW and MH+). For the NLO calculations within the SM we refer to Ref. [14]. The
NNLO SM contributions to CQ,SM

i (µ0) have been computed in Refs. [12,13]. Suppression
by m2

c/M
2
W makes Cc,2HDM

i negligible. In the following, we shall consider Ct,2HDM
i only. It

is convenient to decompose them as follows

Ct,2HDM
i = C

H(0)
i +

αs

4π
C

H(1)
i +

(αs

4π

)2

C
H(2)
i +

(αs

4π

)3

C
H(3)
i + . . . , (3)

where C
H(n)
i is obtained from n-loop diagrams. For i = 7, 8, the tree-level coefficients C

H(0)
i

vanish, while C
H(1)
i (µ0) and C

H(2)
i (µ0) have been found in Refs. [15–18]. In the present

paper, we compute the three-loop corrections C
H(3)
7 (µ0) and C

H(3)
8 (µ0), which constitutes

the last missing element of the 2HDM Wilson coefficient evaluation that matters for
B(B̄ → Xsγ) at the NNLO. Furthermore, we reproduce the two-loop corrections C

H(2)
i (µ0)

for i = 3, 4, 5, 6 that have been originally found in Ref. [19] and belong to the necessary
NNLO matching in the 2HDM.

In the following two subsections, we discuss our results for the Wilson coefficients in the
SM and 2HDM. Several variables turn out to be of convenience in this context:

y =
MW

mt(µ0)
, w = 1 − y2 , r =

m2
t (µ0)

M2
H+

, ū = 1 − r , u = 1 − 1

r
. (4)

2.2 Standard Model

Let us begin with recalling three-loop corrections to the matching coefficients in the SM.
They depend on two masses: MW and mt. In Ref. [13], expansions of the three-loop
diagrams for MW ≪ mt and MW ≈ mt have been performed. The final numerical results
of that paper

C
t(3)
7 (µ0 = mt) = 12.05 ± 0.05 ,
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Figure 1: Three-loop SM coefficients C
t(3)
7 (µ0) and C

t(3)
8 (µ0) as functions of y = MW /mt

for µ0 = mt. Dotted lines show their expansions around y = 0 up to O(y8). Solid lines
show the expansions around y = 1 and include corrections up to w16 = (1−y2)16. Dashed
lines show lower orders in w. The (yellow) band represents the physically allowed region
for y.

C
t(3)
8 (µ0 = mt) = −1.2 ± 0.1 , (5)

have been obtained for y = 0.488 ± 0.015. They relied on convergence behaviour and
agreement of the two expansions for intermediate values of MW and mt.

The dotted curves in Fig. 1 show expansions of C
t(3)
7 (µ0 = mt) and C

t(3)
8 (µ0 = mt) around

y = 0 up to O(y8). Results of the expansion around y = 1 are shown as dashed and solid
lines. The thick dashed lines include terms up to w8 that have been provided in Ref. [13].
In the present calculation, we have added eight more expansion terms for MW ≈ mt.
They are shown in Fig. 1 as thin dashed lines and a solid curve that includes terms up to
w16.

In the case of C
t(3)
7 , we observe an overlap of the two expansions for 0.2 ≤ y ≤ 0.35,

which gives us confidence that the exact curve is approximated with high accuracy by the
Taylor expansion around w = 0 on one side, and by the asymptotic large-mt expansion on
the other. The situation for C

t(3)
8 in Fig. 1(b) is only slightly worse. We still observe an

improvement w.r.t. Ref. [13] due to the additional terms in the w expansion. The vertical
bands in Fig. 1 correspond to the current experimentally allowed region y = 0.492±0.003
for µ0 = mt. In the range 0.4 < y < 0.6, our improved results are very well approximated
(to better than 0.1%) by

C
t(3)
7 (µ0 = mt) = 11.92 + 0.751 y − 1.03 y2 ,

C
t(3)
8 (µ0 = mt) = −0.764 − 2.06 y + 2.35 y2 , (6)

which is consistent with Eq. (5) but much more accurate, and allows to substitute the
updated value of y. In effect, the uncertainties get reduced by almost an order of magni-
tude.
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As far as contributions from loops involving the charm quark are concerned, the corre-
sponding coefficients in the range 0.4 < y < 0.6 can be obtained with high precision from
the expressions given already in Ref. [13], namely

C
c(3)
7 (µ0 = MW ) = 1.458 y−0.0338 ,

C
c(3)
8 (µ0 = MW ) = −1.718 y−0.0598 . (7)

They already provide a high-accuracy approximation in the physical region, so there is
no need to consider higher-order terms in the expansions.

2.3 Two Higgs Doublet Model

In order to specify the notation, we provide the Lagrange density which defines interac-
tions of the charged Higgs boson with fermions. Adopting the conventions from Ref. [15],
we have

LH+ = (2
√

2GF )1/2
3

∑

i,j=1

ui

(

Aumui
VijPL − Ad mdj

VijPR

)

djH
+ + h.c. , (8)

where PL/R = (1 ∓ γ5)/2, Vij are the Cabibbo-Kobayashi-Maskawa matrix elements, ui

and dj are the up- and down-type quarks with masses mui
and mdj

, and GF is the Fermi
constant. For the 2HDM of type-I and II, the couplings Ad and Au take the values

Au = Ad =
1

tan β
(9)

and

Au = − 1

Ad
=

1

tan β
, (10)

respectively.

The 2HDM contributions to the Wilson coefficients in Eq. (2) are proportional to AiA
⋆
j .

Since the terms involving A⋆
d are suppressed by the strange-quark mass, we can safely

neglect them. The remaining terms can be split into two parts as follows:

Ct,2HDM
i = AdA

⋆
u Ct,2HDM

i,AdA⋆
u

+ AuA
⋆
u Ct,2HDM

i,AuA⋆
u

. (11)

For the computation of Ct,2HDM
i , we can use Eq. (5.1) of Ref. [13] that has been derived

in the context of the SM. Its application to the 2HDM is straightforward after taking into
account that, apart from the Wilson coefficients, also the electroweak counterterms (cf.
Eqs. (4.7) to (4.10) of [13]) and the quantities B7 and B8 (cf. Eqs. (3.22) and (3.23) of [13])
receive additional contributions originating from the charged Higgs boson exchange. De-
composing each of these quantities as X = XSM + X2HDM where XSM denotes the result
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Figure 2: Sample Feynman diagrams contributing to C7 [(a)-(c)] and C8 [(d)-(f)] at one-,
two- and three-loop order.

given in Ref. [13], we obtain their 2HDM parts in D = 4 − 2ǫ dimensions by a simple
one-loop calculation

Zt,2HDM
2,sb =

m2
t

M2
W

AuA
⋆
u Γ(ǫ)

[

−1

2
+

2r − 1

2(r − 1)2
(rǫ − 1) − ǫ

3r − 1

4(r − 1)
+ O

(

ǫ2
)

]

,

Zt,2HDM
0,sb =

M2
H+

M2
W

AdA
⋆
u Zt,SM

0,sb |MW→M
H+

,

B2HDM
k = AdA

⋆
u BSM

k |MW→M
H+

, for k = 7, 8. (12)

Both in the SM and 2HDM, the renormalization constants ZQ
0,sb and ZQ

2,sb enter the elec-
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troweak counterterm Lagrangian in the same way1

Lew
counter =

GFM2
W

4
√

2 π2

[

V ∗

csVcb

(

4πµ2
0

M2
W

)ǫ

s̄PR

(

iZc
2,sb 6D − Zc

0,sb mb

)

b

+ V ∗

tsVtb

(

4πµ2
0

m2
t

)ǫ

s̄PR

(

iZt
2,sb 6D − Zt

0,sb mb

)

b

]

, (13)

All the remaining quantities appearing in Eq. (5.1) of Ref. [13] are precisely the same as
in the SM.

In analogy to the SM, we have to consider vacuum integrals with two mass scales (MH+

and mt) in our matching calculation. Sample diagrams up to three-loops are shown in
Fig. 2. At the one- and two-loop levels, the calculation can be performed exactly, and
one obtains C7 and C8 as functions of mt/MH+ [15–18]. At the three-loop level, we
proceed as in Ref. [13], considering expansions around mt ≈ MH+ , for mt ≪ MH+ , and
for mt ≫ MH+ . In the first case, a simple Taylor expansion is sufficient, and we have
computed the first 16 terms in u. Calculations involving strong hierarchies require non-
trivial asymptotic expansions. In these cases, five terms in r and 1/r have been evaluated.

For the purpose of the present analysis, we have re-evaluated the Leading Order (LO)
and NLO contributions to the renormalized Wilson coefficients, confirming the results
of Refs. [15–18] and extending them to include higher powers in ǫ. Such an extension
has been necessary for renormalization at the three-loop level. Two-loop (NNLO) Wilson
coefficients of the four-quark-operators were calculated in Ref. [19] for the MSSM. We
have performed an independent calculation of the charged Higgs boson contribution. Full
agreement has been found. We refrain from displaying here explicit analytical results for
the one- and two-loop Wilson coefficients, and refer to the Mathematica file available from
Ref. [20]. Let us only note that we set mt = mt(µ0) in all those lower-order terms, which
specifies our conventions for the NNLO expressions below.

At the three-loop level, we have been able to recover the dependence of C7 and C8 on µ0

by applying renormalization group techniques to the analytical one- and two-loop results.
We find

C
H(3)
7,AuA⋆

u
(µ0) = C

H(3)
7,AuA⋆

u
(µ0 = mt)

+ ln

(

µ2
0

m2
t

) [

−r (67930r4 − 470095r3 + 1358478r2 − 700243r + 54970)

2187(r − 1)5

+
r (10422r4 − 84390r3 + 322801r2 − 146588r + 1435)

729(r − 1)6
ln r

+
2r2 (260r3 − 1515r2 + 3757r − 1446)

27(r − 1)5
Li2

(

1 − 1

r

)]

+ ln2

(

µ2
0

m2
t

) [

r (−518r4 + 3665r3 − 17397r2 + 3767r + 1843)

162(r − 1)5

1In the corresponding Eq. (4.6) of Ref. [13], a factor of
M2

W

4π
eγǫ is missing in the global normalization,

which we correct here. For clarity, the chirality projectors PR are now displayed explicitly.
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+
r2 (−63r3 + 532r2 + 2089r − 1118)

27(r − 1)6
ln r

]

, (14)

C
H(3)
7,AdA⋆

u
(µ0) = C

H(3)
7,AdA⋆

u
(µ0 = mt)

+ ln

(

µ2
0

m2
t

) [

r (3790r3 − 22511r2 + 53614r − 21069)

81(r − 1)4

+
2r (−1266r3 + 7642r2 − 21467r + 8179)

81(r − 1)5
ln r

−8r (139r3 − 612r2 + 1103r − 342)

27(r − 1)4
Li2

(

1 − 1

r

)]

+ ln2

(

µ2
0

m2
t

) [

r (284r3 − 1435r2 + 4304r − 1425)

27(r − 1)4

+
2r (63r3 − 397r2 − 970r + 440)

27(r − 1)5
ln r

]

, (15)

C
H(3)
8,AuA⋆

u
(µ0) = C

H(3)
8,AuA⋆

u
(µ0 = mt)

+ ln

(

µ2
0

m2
t

) [

r (51948r4 − 233781r3 + 48634r2 − 698693r + 2452)

1944(r − 1)6
ln r

−r (522347r4 − 2423255r3 + 2706021r2 − 5930609r + 148856)

11664(r − 1)5

+
r2 (481r3 − 1950r2 + 1523r − 2550)

18(r − 1)5
Li2

(

1 − 1

r

)]

+ ln2

(

µ2
0

m2
t

) [

r (−259r4 + 1117r3 + 2925r2 + 28411r + 2366)

216(r − 1)5

−r2 (139r2 + 2938r + 2683)

36(r − 1)6
ln r

]

, (16)

C
H(3)
8,AdA⋆

u
(µ0) = C

H(3)
8,AdA⋆

u
(µ0 = mt) + ln

(

µ2
0

m2
t

) [

r (1463r3 − 5794r2 + 5543r − 15036)

27(r − 1)4

+
r (−1887r3 + 7115r2 + 2519r + 19901)

54(r − 1)5
ln r

+
r (−629r3 + 2178r2 − 1729r + 2196)

18(r − 1)4
Li2

(

1 − 1

r

)]

+ ln2

(

µ2
0

m2
t

) [

r (259r3 − 947r2 − 251r − 5973)

36(r − 1)4

+
r (139r2 + 2134r + 1183)

18(r − 1)5
ln r

]

. (17)

Our results for C
H(3)
7 (µ0 = mt) and C

H(3)
8 (µ0 = mt) in terms of expansions are quite

lengthy. Exact values of the expansion coefficients can be found in Ref. [20]. Here, we
present their approximate numerical values only. Considering consecutively the regions
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r → 0, r → 1 and r → ∞, we obtain (for µ0 = mt):

C
H(3),r→0
7,AuA⋆

u
= 0.9225 r ln2 r + 4.317 r ln r − 8.278 r

−20.73 r2 ln3 r − 112.4 r2 ln2 r − 396.1 r2 ln r − 480.9 r2

−34.50 r3 ln3 r − 348.2 r3 ln2 r − 1292 r3 ln r − 1158 r3

−23.26 r4 ln3 r − 541.4 r4 ln2 r − 2540 r4 ln r − 1492 r4

+42.30 r5 ln3 r − 412.4 r5 ln2 r − 3362 r5 ln r − 823.0 r5 + O
(

r6
)

, (18)

C
H(3),r→1−

7,AuA⋆
u

= 1.283 − 0.7158 ū− 0.3039 ū2 − 0.1549 ū3 − 0.08625 ū4 − 0.05020 ū5

−0.02970 ū6 − 0.01740 ū7 − 0.009752 ū8 − 0.004877 ū9

−0.001721 ū10 + 0.0003378 ū11 + 0.001679 ū12 + 0.002542 ū13

+0.003083 ū14 + 0.003404 ū15 + 0.003574 ū16 + O
(

ū17
)

, (19)

C
H(3),r→1+

7,AuA⋆
u

= 1.283 + 0.7158 u + 0.4119 u2 + 0.2629 u3 + 0.1825 u4 + 0.1347 u5

+0.1040 u6 + 0.08306 u7 + 0.06804 u8 + 0.05688 u9 + 0.04833 u10

+0.04163 u11 + 0.03625 u12 + 0.03188 u13 + 0.02827 u14 + 0.02525 u15

+0.02269 u16 + O
(

u17
)

, (20)

C
H(3),r→∞

7,AuA⋆
u

= 3.970 − 8.753
ln r

r
+ 15.35

1

r
− 38.12

ln r

r2
+ 47.09

1

r2
− 103.8

ln r

r3

+79.15
1

r3
− 168.3

ln r

r4
+ 24.41

1

r4
− 72.13

ln r

r5
− 274.2

1

r5
+ O

(

1

r6

)

,(21)

C
H(3),r→0
7,AdA⋆

u
= −20.94 r ln3 r − 123.5 r ln2 r − 453.5 r ln r − 572.2 r

−8.889 r2 ln3 r − 195.7 r2 ln2 r − 870.3 r2 ln r − 524.1 r2

+19.73 r3 ln3 r − 46.61 r3 ln2 r − 826.2 r3 ln r + 166.7 r3

+36.08 r4 ln3 r + 323.2 r4 ln2 r + 169.9 r4 ln r + 1480 r4

−66.63 r5 ln3 r + 469.4 r5 ln2 r + 1986 r5 ln r + 2828 r5 + O
(

r6
)

, (22)

C
H(3),r→1−

7,AdA⋆
u

= 12.82 + 1.663 ū + 0.7780 ū2 + 0.3755 ū3 + 0.1581 ū4

+0.03021 ū5 − 0.04868 ū6 − 0.09864 ū7 − 0.1306 ū8

−0.1510 ū9 − 0.1637 ū10 − 0.1712 ū11 − 0.1751 ū12

−0.1766 ū13 − 0.1763 ū14 − 0.1748 ū15 − 0.1724 ū16 + O
(

ū17
)

, (23)

C
H(3),r→1+

7,AdA⋆
u

= 12.82 − 1.663 u− 0.8852 u2 − 0.4827 u3 − 0.2976 u4 − 0.2021 u5

−0.1470 u6 − 0.1125 u7 − 0.08931 u8 − 0.07291 u9 − 0.06083 u10

−0.05164 u11 − 0.04446 u12 − 0.03873 u13 − 0.03407 u14 − 0.03023 u15

−0.02702 u16 + O
(

u17
)

, (24)
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C
H(3),r→∞

7,AdA⋆
u

= 8.088 + 9.757
ln r

r
− 12.91

1

r
+ 38.43

ln r

r2
− 49.32

1

r2
+ 106.2

ln r

r3

−78.90
1

r3
+ 168.4

ln r

r4
− 24.97

1

r4
+ 101.1

ln r

r5
+ 194.3

1

r5
+ O

(

1

r6

)

,(25)

C
H(3),r→0
8,AuA⋆

u
= 0.6908 r ln2 r + 3.238 r ln r + 0.7437 r

−22.98 r2 ln3 r − 169.1 r2 ln2 r − 602.7 r2 ln r − 805.5 r2

−66.32 r3 ln3 r − 779.6 r3 ln2 r − 3077 r3 ln r − 3357 r3

−143.4 r4 ln3 r − 2244 r4 ln2 r − 10102 r4 ln r − 9016 r4

−226.7 r5 ln3 r − 5251 r5 ln2 r − 26090 r5 ln r − 19606 r5 + O
(

r6
)

, (26)

C
H(3),r→1−

8,AuA⋆
u

= 1.188 − 0.4078 ū− 0.2076 ū2 − 0.1265 ū3 − 0.08570 ū4 − 0.06204 ū5

−0.04689 ū6 − 0.03652 ū7 − 0.02907 ū8 − 0.02354 ū9

−0.01933 ū10 − 0.01605 ū11 − 0.01345 ū12 − 0.01137 ū13

−0.009678 ū14 − 0.008293 ū15 − 0.007148 ū16 + O
(

ū17
)

, (27)

C
H(3),r→1+

8,AuA⋆
u

= 1.188 + 0.4078 u + 0.2002 u2 + 0.1190 u3 + 0.07861 u4 + 0.05531 u5

+0.04061 u6 + 0.03075 u7 + 0.02386 u8 + 0.01888 u9 + 0.01520 u10

+0.01241 u11 + 0.01026 u12 + 0.008575 u13 + 0.007238 u14

+0.006164 u15 + 0.005290 u16 + O
(

u17
)

, (28)

C
H(3),r→∞

8,AuA⋆
u

= 2.278 − 5.214
1

r
+ 20.02

ln r

r2
− 39.76

1

r2
+ 78.58

ln r

r3
− 66.39

1

r3

+91.89
ln r

r4
+ 96.35

1

r4
− 300.7

ln r

r5
+ 826.2

1

r5
+ O

(

1

r6

)

, (29)

C
H(3),r→0
8,AdA⋆

u
= −19.80 r ln3 r − 174.7 r ln2 r − 658.4 r ln r − 929.8 r

−31.83 r2 ln3 r − 612.6 r2 ln2 r − 2770 r2 ln r − 2943 r2

−40.68 r3 ln3 r − 1439 r3 ln2 r − 7906 r3 ln r − 6481 r3

+54.66 r4 ln3 r − 2777 r4 ln2 r − 17770 r4 ln r − 11684 r4

+1003 r5 ln3 r − 2627 r5 ln2 r − 29962 r5 ln r − 15962 r5 + O
(

r6
)

, (30)

C
H(3),r→1−

8,AdA⋆
u

= −0.6110 + 1.095 ū + 0.6492 ū2 + 0.4596 ū3 + 0.3569 ū4

+0.2910 ū5 + 0.2438 ū6 + 0.2075 ū7 + 0.1785 ū8

+0.1546 ū9 + 0.1347 ū10 + 0.1177 ū11 + 0.1032 ū12

+0.09073 ū13 + 0.07987 ū14 + 0.07040 ū15 + 0.06210 ū16 + O
(

ū17
)

, (31)

C
H(3),r→1+

8,AdA⋆
u

= −0.6110 − 1.095 u − 0.4463 u2 − 0.2568 u3 − 0.1698 u4 − 0.1197 u5

−0.08761 u6 − 0.06595 u7 − 0.05079 u8 − 0.03987 u9 − 0.03182 u10

−0.02577 u11 − 0.02114 u12 − 0.01754 u13 − 0.01471 u14 − 0.01244 u15
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Figure 3: Three-loop coefficients C
H(3)
7,AuA⋆

u
(µ0 = mt) (a) and C

H(3)
7,AdA⋆

u
(µ0 = mt) (b) as

functions of MH+ . The dashed, solid and dash-dotted lines correspond to the expansions
for MH+ → ∞, MH+ ≈ mt and MH+ → 0, respectively.

−0.01062 u16 + O
(

u17
)

, (32)

C
H(3),r→∞

8,AdA⋆
u

= −3.174 + 10.89
1

r
− 35.42

ln r

r2
+ 63.74

1

r2
− 110.7

ln r

r3
+ 62.26

1

r3

−71.62
ln r

r4
− 205.7

1

r4
+ 476.9

ln r

r5
− 1003

1

r5
+ O

(

1

r6

)

. (33)

At this point, a comment concerning the expansions in ū = 1 − m2
t (µ0)/M

2
H+ and u =

1 − M2
H+/m2

t (µ0) is in order. For MH+ ≈ mt, one can expand either in ū or in u, and
the two expansions are easily convertible into each other.2 As it has been observed in
Ref. [21], one expects better convergence of the expansion for MH+ ≥ mt (MH+ ≤ mt)
if the result is expressed in terms of ū (u). In the following, we shall always choose the
better-suited representation without explicitly mentioning it.

In Figs. 3 and 4, we demonstrate that the above expansions are sufficient to obtain the
Wilson coefficients for any MH+ . In Fig. 3(a), the coefficient C

H(3)
7,AuA⋆

u
(µ0 = mt) is plotted

as a function of MH+ . The thick-dashed, solid and dash-dotted lines show the results
for r → 0, r → 1 and r → ∞, respectively, including the highest available expansion
coefficients. Convergence of the expansions is illustrated by the thin lines that describe
lower orders in the respective expansions. One observes that the thick dash-dotted and
solid curves overlap for MH+ ≈ 30 − 70 GeV, which suggests that good approximations
to the (unknown) exact results are provided by the r → ∞ and r → 1 expansions for
MH+ < 50 GeV and MH+ > 50 GeV, respectively. Similarly, for MH+ ≈ 500 − 650 GeV,
one observes agreement between the solid and dashed curves, which justifies the use of the
r → 1 result for MH+ < 520 GeV and the r → 0 result above this value. In this way, we

2The exact expansion coefficients from Ref. [20] should be used for the conversion.
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Figure 4: Three-loop coefficients C
H(3)
8,AuA⋆

u
(µ0 = mt) (a) and C

H(3)
8,AdA⋆

u
(µ0 = mt) (b) as

functions of MH+ . The dashed, solid and dash-dotted lines correspond to the expansions
for MH+ → ∞, MH+ ≈ mt and MH+ → 0, respectively.

can define C
H(3)
7,AuA⋆

u
(µ0 = mt) as a piecewise function using the expansions in the various

limits. In Fig. 3(b) , the corresponding results for the coefficient C
H(3)
7,AdA⋆

u
(µ0 = mt) are

plotted showing the same features, however, with a smaller overlap of the MH+ ≫ mt and
MH+ ≈ mt curves. For the phenomenological analysis in the next Section, we define

C
H(3)
7,X =











C
H(3)
7,X (r → ∞) for MH+ < 50 GeV

C
H(3)
7,X (r → 1) 50 GeV ≤ MH+ < M7,X

C
H(3)
7,X (r → 0) MH+ ≥ M7,X

, (34)

with M7,AuA⋆
u

= 520 GeV and M7,AdA⋆
u

= 400 GeV.

Analogous results for C
H(3)
8 (µ0 = mt) are shown in Fig. 4. We observe the same pattern

as for C
H(3)
7 (µ0 = mt), which leads us to define

C
H(3)
8,X =











C
H(3)
8,X (r → ∞) for MH+ < 50 GeV

C
H(3)
8,X (r → 1) 50 GeV ≤ MH+ < M8,X

C
H(3)
8,X (r → 0) MH+ ≥ M8,X

, (35)

with M8,AuA⋆
u

= 600 GeV and M8,AdA⋆
u

= 520 GeV.

The Mathematica file in Ref. [20] contains the definitions (34) and (35), which allows for
convenient numerical evaluation of the 2HDM contributions to C7 and C8. The updated
SM results are included there, too.
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Figure 5: B(B̄ → Xsγ) in the 2HDM type-II as a function of tan β for MH+ = 400 GeV
(left plot), and as a function of MH+ for tan β = 50 (right plot). Dotted, dashed and
solid lines show central values (without uncertainties) of the LO, NLO and NNLO results,
respectively.

3 B(B̄ → Xsγ) in the 2HDM to NNLO

The framework for our numerical analysis is based on Ref. [8] where explicit results for the
effective-theory description of B(B̄ → Xsγ) have been provided up to the NNLO. While
the Wilson coefficients are known in a complete manner at this order, non-BLM NNLO
corrections to the charm-quark-mass-dependent matrix elements (on-shell amplitudes)
have been evaluated only in the large mc limit and extrapolated to the physical region.

Predictions within the 2HDM to be discussed below are obtained along the same algorithm
and using the complete NNLO matching conditions from the previous Section. However,
two-loop purely electroweak corrections to the matching are included in the SM part only,
as they remain unknown in the 2HDM. One should keep in mind that such electroweak
corrections and our new NNLO QCD matching ones may be of comparable size.

In the following, we shall discuss results for the 2HDMs of type-I and II that have been
introduced in Eqs. (9) and (10). Most of the input parameters are adopted from Ref. [8],
except for the strong coupling constant and the top quark mass for which we use the most
up-to-date values that are given by [22–24].3

αs(MZ) = 0.1184 ± 0.0014 ,

Mt = (173.18 ± 0.56stat ± 0.75syst) GeV . (36)

The corresponding MS top quark mass equals mt(mt) = 163.5 GeV using three-loop accu-
racy in QCD [26,27] and neglecting electroweak effects. As in Ref. [8], our default value of

3Conservatively, we use “0.0014” as the uncertainty for αs instead of “0.0007”[23,24]. This is motivated
by the current tension in several precision determinations of αs (see discussion in Ref. [25]).
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Figure 6: A closer look at the 2HDM type-II results. Left: ∆B(µ0)/∆B(µ0 = MH+) as a
function of µ0 for tan β = 50 and MH+ = 400 GeV at the LO (dotted), NLO (dashed) and
NNLO (solid). Dash-dotted lines correspond to the partial NNLO result which has been
used in Ref. [9]. Right: B(B̄ → Xsγ) as a function of MH+ for tan β = 50. Middle lines
show the central values, while the upper and lower ones are shifted by ±1σ. Solid and
dashed lines correspond to the NNLO 2HDM and SM predictions, respectively. Dotted
curves represent the experimental average in Eq. (1).

the photon energy cut is E0 = 1.6 GeV. Furthermore, if not stated otherwise, we choose
µ0 = 160 GeV, µb = 2.5 GeV and µc = 1.5 GeV for the renormalization scales, where µ0

is the matching scale, µb is the scale at which on-shell matrix elements in the effective
theory are evaluated, and µc is the charm quark mass renormalization scale.

In a first step, let us discuss the branching ratio dependence on tan β. In Fig. 5(a), we
choose MH+ = 400 GeV and show B(B̄ → Xsγ) in the 2HDM type-II for 0.5 ≤ tan β ≤ 10.
The solid curve describes the NNLO result, while the dotted and dashed ones show the LO
and NLO central values for comparison. One observes strong dependence for tan β < 2 and
a nearly tan β-independent result for tan β > 2. Actually, from tan β = 10 to tan β = 50,
the branching ratio changes only by 0.03%. In the following, tan β = 50 is going to be
our default value for the type-II model; choosing tan β < 2 would strengthen the lower
limit on MH+ .

In Fig. 5(b), we show B(B̄ → Xsγ) in the same model with tan β = 50 as a function of
MH+ . As expected, for large values of MH+ , the 2HDM result approaches the SM one
that overlaps with the bottom frame of the plot in the NNLO case. For MH+ = 300 GeV
the NNLO curve overshoots the SM prediction by about 35%, while the effect decreases
to around 2% at MH+ = 2 TeV.

The main effect of our new three-loop terms is in reducing µ0-dependence of the decay rate
and, in consequence, stabilizing the lower bound on MH+ . This is illustrated in Fig. 6(a)
where the charged Higgs contribution to the branching ratio ∆B ≡ B2HDM−BSM is plotted
as a function of µ0, while normalized to its own value at µ0 = MH+ = 400 GeV. Apart
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from the LO (dotted), NLO (dashed), NNLO (solid) curves, we also present the partial
NNLO (dash-dotted) line that corresponds to the approach of Ref. [9]. Our calculation
differs from the latter one precisely by including the 2HDM contributions to the NNLO
matching. One observes a clear reduction of µ0-dependence when including higher order
corrections. Whereas the partial NNLO result for the considered ratio varies by more
than 6.6% when µ0 is varied in the [80 GeV, 2MH+ ] range, the corresponding variation
of our present result with full NNLO matching remains below 1.6%. The overall size of
∆B(µ0) amounts to around 25% of B(B̄ → Xsγ)SM in the considered case.

In order to determine a lower bound on MH+ we follow the approach of Ref. [9], combining
the experimental and theoretical uncertainties in quadrature. A one-sided 95% C.L.
(99% C.L.) bound is obtained for the lowest value of MH+ for which the difference between
experimental and theoretical central values is 1.645 (2.326) times larger than the total
uncertainty.

The theory uncertainty consists of four contributions that we take over from Ref. [8]. Let
us briefly comment on each of them:

• In Ref. [8], the non-perturbative uncertainty has been estimated to ±5%, which has
been confirmed by the detailed investigation of Ref. [28]. We adopt this uncertainty
for all the considered values of MH+ .

• The charm quark mass dependence of the operator matrix elements is only partly
known. Thus, an interpolation between the large-mc results [29] and reasonable
assumptions for B(B̄ → Xsγ) at mc = 0 has to be performed. This uncertainty has
been estimated in [8] to ±3%, which we again assume to be MH+-independent.

• The total parametric error is obtained by combining all the partial ones in quadra-
ture.4 It amounts to around 2÷3%, however, computed from scratch for each value
of MH+ .

• An estimate of higher order corrections is obtained by varying the renormalization
scales in the ranges 80 GeV ≤ µ0 ≤ max{2MH+ , 320 GeV}, 1.25 GeV ≤ µb ≤ 5 GeV
and 1.224 GeV ≤ µc ≤ M1S

b = 4.68 GeV. This uncertainty is about 3 ÷ 4% but
again we compute it for each value of MH+ .

Contrary to Refs. [8,9], we work with asymmetric uncertainties resulting from the param-
eter and renormalization scale variation.

In Fig. 6(b), the NNLO result for B(B̄ → Xsγ) is shown as a function of MH+ , together
with an uncertainty band that is obtained by adding all the errors in quadrature. The
dotted (MH+-independent) curves in Fig. 6(b) correspond to the experimental result in
Eq. (1). For comparison, we also show the SM prediction with the corresponding uncer-
tainty as dashed lines.

4A correlation between the phase space factor C and mc is taken into account as described in Ap-
pendix A of Ref. [8].
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Figure 7: Lower bounds on MH+ at the 95% C.L. as a function of the experimentally
determined branching ratio (abscissa) and the corresponding uncertainty (ordinate). The
current theory uncertainty has been used in panel (a), while panel (b) presents a future
projection with assumed reduction of the theory uncertainty by a factor of two.

From Fig. 6(b) one can extract (using the procedure described above) the following limits
on MH+ in the 2HDM type-II:

MH+ ≥ 380 GeV at 95% C.L. ,

MH+ ≥ 289 GeV at 99% C.L. . (37)

The above bounds replace the ones of Ref. [9] (295 and 230 GeV, respectively). Our
95% C.L. limit is very close to the one presented in Ref. [7] (385 GeV) together with the
new experimental average (Eq. (1)). On the other hand, it is significantly stronger than
the one in Ref. [4] (327 GeV) that is based on the BABAR data alone. It is interesting
to mention that when the matching scale µ0 is varied between 80 and 400 GeV, the lower
limits vary by around 25 GeV when our new three-loop 2HDM matching contributions
are not included. This gets reduced to around 7 GeV only after including the three-loop
corrections, which demonstrates the stabilizing effect of the full NNLO matching. On the
other hand, for µ0 = 160 GeV fixed, the correction strengthens the limit only slightly, by
5 ÷ 6 GeV.

The contour plots in Fig. 7 show the 95% C.L. lower bounds on MH+ as functions of
the experimentally determined branching ratio and the corresponding uncertainty. Black
dots correspond to the result in Eq. (1), while the two black lines at the bottom indicate
the projected uncertainty to be reached by Belle II and SuperB [30]. The current theory
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Figure 8: Left: B(B̄ → Xsγ) for 2HDM type-I with tan β = 1. Identification of the lines
is the same as in Fig. 6(b). Right: 95% C.L. exclusion (shaded area) for 2HDM type-I in
the plane of tan β and MH+ .

uncertainty has been used in Fig. 7(a), while Fig. 7(b) presents a future projection with
assumed reduction of the theory uncertainty by a factor of two.

Let us now shortly discuss the 2HDM of type-I. In Fig. 8(a), we show the branching ratio
for tan β = 1 as a function of MH+ , including the uncertainties. The meaning of the
curves is the same as in Fig. 6(b). Contrary to the type-II model, the branching ratio gets
suppressed with respect to the SM, and the effect becomes larger for lower values of MH+ ,
which implies increased discrepancy with respect to the experimental results. Thus, it is
possible to set a lower bound on MH+ . It is shown in Fig. 8(b) where the shaded area
represents the part of the tan β-MH+ plane that is excluded at 95% C.L. Similar results
based on the partial NNLO predictions and the previous experimental average have been
presented in Ref. [31].

4 Conclusions

Applying the method of expansion in mass ratios, we have evaluated three-loop matching
conditions for the dipole operators P7 and P8 in the 2HDM. In effect, Wilson coefficients of
all the operators that matter for B̄ → Xsγ in this model at the leading order in electroweak
interactions are now known to the NNLO accuracy in QCD. This is true not only at the
matching scale µ0 but also at the low-energy scale µb because the renormalization group
evolution is the same as in the SM [32].

The main effect of including the NNLO matching is a significant reduction of µ0-dependence
of the charged Higgs contribution to the B̄ → Xsγ branching ratio. It is particularly trans-
parent when considering a lower bound on MH+ in the type-II model. Before taking our
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correction into account, the bound varies by around 25 GeV when µ0 is varied in a rea-
sonable range [80, 400] GeV ∼ [1

2
mt, MH+ ]. Including the correction reduces the variation

by more than a factor of 3.

With the updated experimental average, we find that the 95% C.L. (99% C.L.) lower
limit on MH+ amounts to 380 (289) GeV in the 2HDM type-II. This is a universal
(tan β-independent) bound that can only get stronger when tan β-dependence is taken
into account. In practice, noticeable modifications occur for tan β smaller than around 2.

In the 2HDM type-I, a 95% C.L. lower limit on MH+ from B(B̄ → Xsγ) can be derived
for low tan β only, currently for tan β < 2.5 when MH+ is above the LEP bound of around
80 GeV [23]. In this case, considerable reduction of µ0-dependence is observed, too.

With the semi-analytical results presented in this paper, constraints on the 2HDM at the
NNLO level can easily be updated in the future, along with developments in the measure-
ments and in calculations of the low-energy matrix elements (that are identical in the SM
and in the 2HDM). More precise measurements are expected in a few years from Belle-
II [33] and Super-B [34]. On the theoretical side, the main challenges are improvements
in analyses of non-perturbative effects [28] together with perturbative calculations of the
NNLO on-shell amplitudes beyond the large-mc limit. In the latter case, new results
should become available soon [35].
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