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1 Motivation

The energy-momentum tensor correlator

T µν;ρσ(q) = i

∫

d4x eiqx 〈0|T̂ µν;ρσ(x)|0〉, T̂ µν;ρσ(x) = T [T µν(x)T ρσ(0)] (1.1)

plays an important role in many physical problems. A lot of these lie in the field of

Quark Gluon Plasma (QGP) physics. Here the correlator eq. (1.1) is the central object

for describing transport properties, like the shear viscosity of the plasma (see e.g. [2, 3])

and spectral functions for some tensor channels in the QGP [4]. Another application is

a sum rule approach to tensor glueballs. These special hadrons without valence quarks
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are determined by their gluonic degrees of freedom. QCD allows for such particles but a

conclusive discovery has not yet been made.

In a sum rule approach [5] one usually starts with the vacuum correlator of an interpolating

local operator which has the same quantum numbers as the hadrons we want to investigate.

If we are interested in glueballs we take local operators consisting of gluon fields. For the

cases JPC = 0++, 0−+ and 2++ the following operators are usually considered:

O1(x) = −
1

4
GµνGµν(x) (scalar) (1.2)

Õ1(x) = GµνG̃µν(x) (pseudoscalar) (1.3)

OT (x) = T µν(x) (tensor) (1.4)

where Gµν is the gluon field strength tensor and

G̃µν = εµνρσG
ρσ (1.5)

the dual gluon field strength tensor. For more details see [6]. The vacuum expectation

value (VEV) of the correlator of such a local operator O(x)

Π(Q2) = i

∫

d4x eiqx 〈0|T [O(x)O(0)]|0〉 (Q2 = −q2) (1.6)

can of course be calculated in perturbation theory for large Euclidean momenta, but this

is not enough. Starting from the perturbative region of momentum space we can probe

into the non-perturbative region by means of an OPE. The idea originally formulated in

[7] is to expand the non-local operator product i
∫

d4x eiqx T [O(x)O(0)] in a series of local

operators with Wilson coefficients depending on the large Euclidean momentum q. In sum

rules we usually have dispersion relations connecting the VEV of such a Euclidean operator

product to some spectral density in the physical region of momentum space. As we are

ultimately interested in the VEV of this operator product we only have to consider gauge

invariant scalar operators in the expansion.

Effectively this expansion separates the high energy physics, which is contained in the Wil-

son coefficients, from the low energy physics which is taken into account by the VEVs of the

local operators, the so-called condensates [5]. These cannot be calculated in perturbation

theory, but need to be derived from low energy theorems or be calculated on the lattice.

Such an OPE has already been done for the cases eq. (1.2) and eq. (1.3) (see [8, 9]) with

one-loop accuracy.

In this work we present the results for the Wilson coefficients in front of the operators O0

and [O1] for the correlator eq. (1.1) in massless QCD:

T µν;ρσ(q) ===
q2→−∞

Cµν;ρσ
0 (q)1 + Cµν;ρσ

1 (q)[O1] + . . . . (1.7)

The brackets in [O1] indicate that we take a renormalized form of the operator O1:

[O1] = ZGO
B
1 = −

ZG
4
GB µνGBµν (1.8)
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where the index B marks bare quantities. We start our calculation with bare quantities

which are expressed through renormalized ones in the end:

T µν;ρσ(q) =
∑

i

CB µν;ρσ
i (q)OBi =

∑

i

Cµν;ρσ
i (q)[Oi]. (1.9)

All physical matrix elements of [O1] are finite and so is the renormalized coefficient1

C1 =
1

ZG
CB1 . (1.10)

The renormalization constant

ZG = 1 + αs

∂

∂αs

lnZαs =

(

1−
β(αs)

ε

)−1

(1.11)

has been derived in a simple way in [10] (see also an earlier work [11]). Here Zαs is the

renormalization constant for αs and we define2

β(αs) = µ2 d

dµ2
lnαs = −

∑

i≥0

βi

(

αs

π

)i+1

. (1.12)

In the massive case the two and four dimensional operators Of = m2
f and Of2 = mf ψ̄fψf

would have to be included as well for every massive quark flavour f. The VEVs of all other

linearly independent scalar operators of dimension four vanish either by some equation

of motion or as they are not gauge invariant. The contributions of higher dimensional

operators are suppressed by higher powers of 1
Q2 in the coefficients.

Apart from the leading coefficient C0 in front of the local operator O0 = 1 the coefficient

C1 in front of [O1] is of special interest for many applications. One example is if we have a

spectral density defined by our correlator and we want to calculate the shift in this spectral

density from zero to finite temperature:

∆ρ(ω, T ) = ρ(ω, T )− ρ(ω, 0). (1.13)

The spectral density at T = 0 is calculated from the VEV of the correlator whereas for

the spectral density at finite T we take the thermal average of the operator product. For

the unity operator O0 = 1 the VEV and the thermal average are both 1 due to the

normalization conditions. Hence the leading term from the OPE, i.e. the one proportional

to O0 vanishes in eq. (1.13) which makes the Wilson coefficients in front of O1 and Of2 the

leading high frequency contributions to eq. (1.13). For more details see e.g. [12].

1This statement as well as eq. (1.9) are only true modulo so-called contact terms; see a detailed discussion

in the next section.
2Often in the literature Zαs

is used instead of ZG and αsGµνGµν instead of O1. This is justified because

up to first order in αs the renormalization constants ZG and Zαs
are the same. Only in higher orders ZG

and Zαs
differ and therefore ZG has to be used in such cases.
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2 The energy-momentum tensor in QCD

The energy-momentum tensor which can be derived from the Lagrangian of a field theory

is an interesting object by itself. To be identified with the physical object known from

classical physics and general relativity it has to be symmetric as well as conserved. A very

general method to derive such an energy-momentum tensor can be found e.g. in [13–15].

This has firstly been done for QCD in [16] and the result derived from the renormalized

Lagrangian

L =−
1

4
Z3GµνG

µν −
1

2λ
(∂µA

µ)2 + Z̃3∂ρc̄∂
ρc+ gsZ̃1∂ρc̄ (Aρ × c)

+
i

2
Z2ψ̄
←→
/∂ ψ + gsZ1ψψ̄ /ATψ

(2.1)

is

Tµν =− Z3GµρG
ρ
ν +

1

λ
(∂µ∂ρA

ρ)Aν +
1

λ
(∂ν∂ρA

ρ)Aµ

+ Z̃3(∂µc̄∂νc+ ∂ν c̄∂µc) + gZ̃1 (∂µc̄(Aν × c) + ∂ν c̄(Aµ × c))

+
i

4
Z2ψ̄

(←→
∂µγν +

←→
∂ν γµ

)

ψ +
g

2
Z1ψψ̄ (AµTγν +Aν Tγµ)ψ

− gµν

{

−
1

4
Z3GρσG

ρσ +
1

λ
(∂σ∂ρA

ρ)Aσ +
1

2λ
(∂ρA

ρ)2

+ Z̃3∂ρc̄∂
ρc+ gZ̃1 (∂ρc̄(Aρ × c)) +

i

2
Z2ψ̄
←→
/∂ ψ + gZ1ψψ̄ /ATψ

}

,

(2.2)

Here

Gµν = ∂µAν − ∂νAµ +
Z̃1

Z̃3
gs (Aµ ×Aν) , (2.3)

Z3, Z̃3 and Z2 stand for the field renormalization constants for the gluon, ghost and quark

fields respectively and Z̃1 and Z1ψ for the vertex renormalization constants. The abbrevi-

ation (Aµ ×Aν)a = fabcAbµA
c
ν , where fabc is the structure constant of the SU(Nc) gauge

group, is used and all colour indices are suppressed for convenience.

This energy-momentum tensor consists of gauge invariant as well as gauge and ghost terms.

If we were to consider general matrix elements of operator products we would have to in-

clude all these terms. It has been pointed out in [16] however that for Green’s functions

with only gauge invariant operators it would be enough to take the gauge invariant part of

the energy momentum tensor:

Tµν |ginv =− Z3GµρG
ρ
ν +

i

4
Z2ψ̄

(←→
∂µγν +

←→
∂ν γµ

)

ψ +
g

2
Z1ψψ̄ (AµTγν +Aν Tγµ)ψ

− gµν

{

−
1

4
Z3 GρσG

ρσ +
i

2
Z2ψ̄
←→
/∂ ψ + gZ1ψψ̄ /ATψ

}

.
(2.4)

This has been checked in our calculation of C0 which we have done once with the full

energy-momentum tensor eq. (2.2) and once with the gauge invariant part eq. (2.4) up to

three-loop accuracy. As expected both calculations yield the same result.

The insertion of a local operator into a Green’s function corresponds to an additional vertex
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in every possible Feynman diagram. For the energy-momentum tensor eq. (2.2) we get the

vertices shown in Figure 1

T µν

gs g2
s

gs gs

Figure 1. Energy-momentum tensor vertices and there dependence on gs

In [16] it has been proven that the energy-momentum tensor of QCD is a finite operator

which means the Z-factors appearing in (2.2) make any Green function of (renormalized)

QCD elementary fields with one insertion of the operator Tµν finite. We have used

this theorem as a check for our setup and have calculated one - and two-loop correc-

tions to the matrix elements 〈gluon(p,µ1)|T µν |gluon(p,µ2)〉, 〈ghost(p)|T µν |ghost(p)〉 and

〈quark(p), gluon(0,µ1)|T µµ|quark(p)〉 which turned out to be finite as expected.

Another important consequence of the finiteness property is the absence of the anomalous

dimension of the energy-momentum tensor. For the bilocal operator T̂ µν;ρσ(x) the situation

is more complicated. This is because of extra (quartic!) UV divergences appearing in the

limit of x→ 0. If x is kept away from 0 then T̂ µν;ρσ(x) is finite and renormalization scheme

independent. These divergences (which are local in x!) manifest themselves in the Fourier

transform T µν;ρσ(q). They can and should be renormalized with proper counterterms:

[T µν;ρσ(q)] = T µν;ρσ(q)−
∑

i

Zcti (q)Oi, (2.5)

where Oi are some operators of (mass) dimension ≤ 4 and Zcti (q) are the corresponding

(divergent) Z-factors. The latter must be local, that is have only polynomial dependence

of the external momentum q. Within the MS-scheme Zcti (q) are just poles in ε. It is of

importance to note that the subtractive renormalization encoded in eq. (2.5) is in general

not constrained by the QCD charge renormalization. Thus, the unambiguous QCD predic-

tions for the coefficient functions in OPE (1.7) could be made only modulo contact terms

proportional to δ(x) in position space.

3 OPE of the energy-momentum tensor correlator

The leading coefficient C0 is just the perturbative VEV of the correlator eq. (1.1)

Cµν;ρσ
0 (q) = 〈0|T µν;ρσ(q)|0〉|pert (3.1)
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which we have computed up to order α2
s (three loops). In Figure 2 we show some sample

Feynman diagrams contributing to this calculation. The energy-momentum tensor plays

the role of an external current. In order to produce all possible Feynman diagrams we

have used the program QGRAF [17]. As these diagrams are propagator-like the relevant

integrals can be computed with the FORM package MINCER [18] after projecting them

to scalar pieces. For the colour part of the diagrams the FORM package COLOR [19]

has been used. Because of the four independent external Lorentz indices there are many

〈0|T µν;ρσ(q)|0〉pert =
µν ρσ

q q

= + +

+ + +

+ . . .

Figure 2. Diagrams for the calculation of the coefficient C0

possible tensor structures for the correlator eq. (1.1) and hence the Wilson coefficients.

These are composed of the large external momentum q and the metric tensor g. Using

the symmetries3 of eq. (1.1) we can narrow them down to five possible independent tensor

structures:

tµν;ρσ
1 (q) = qµqνqρqσ,

tµν;ρσ
2 (q) = q2 (qµqνgρσ + qρqσgµν) ,

tµν;ρσ
3 (q) = q2 (qµqρgνσ + qµqσgνρ + qνqρgµσ + qνqσgµρ) ,

tµν;ρσ
4 (q) =

(

q2
)2
gµνgρσ ,

tµν;ρσ
5 (q) =

(

q2
)2

(gµρgνσ + gµσgνρ) .

(3.2)

The conservation of the energy-momentum tensor leads to additional restrictions:

qµ T
µν;ρσ(q) = (local) contact terms (3.3)

This condition has been checked in all calculations. Subtracting the physically irrelevant

contact terms leads to only two independent tensor structures which have also been used

3These symmetries are µ←→ ν,ρ←→ σ and (µν)←→ (ρσ).
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e.g. in [20]:

tµν;ρσ
S (q) =ηµνηρσ

tµν;ρσ
T (q) =ηµρηνσ + ηµσηνρ −

2

D − 1
ηµνηρσ

with ηµν(q) =q2gµν − qµqν

(3.4)

where D is the dimension of the space time. The structure tµν;ρσ
T (q) is traceless and

orthogonal to tµν;ρσ
S (q). Hence the latter corresponds to the part coming from the traces of

the energy-momentum tensors. The Wilson coefficients in eq. (1.7) are then of the general

form

Cµν;ρσ
i (q) =

∑

r=1,5

tµν;ρσ
r (q) (Q2)

−dim(Oi)

2 C
(r)
i (Q2)

=
∑

r=T,S

tµν;ρσ
r (q) (Q2)

−dim(Oi)

2 C
(r)
i (Q2) (+ contact terms).

(3.5)

where dim(O0) = 0 and dim(O1) = 4 are the mass dimensions of the respective operators.

The coefficients defined in the first line of eq. (3.5) and there conversion to the ones defined

in the second line are given in the appendix. In order to compute the coefficient Cµν;ρσ
1 (q)

we have used the method of projectors [21] which allows to express coefficient functions for

any OPE of two operators in terms of massless propagator type diagrams only. For the

case of Cµν;ρσ
1 (q) the following projector has been employed:

Cµν;ρσ
1,B (q) = P1

(

∫∫∫

d4xd4y1 d4y2 e
iqx+k1y1+k2y2 〈0|T [Aaµ(y1)Abν(y2) T̂ µν;ρσ(x)]|0〉Q−irr

)

.

(3.6)

Here

Cµν;ρσ
1,B (q) =

δab

ng

gµ1µ2

(D − 1)

1

D

∂

∂k1
·
∂

∂k2























k1 k2

µ2µ1

a b

µν ρσ 





















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ki=0

(3.7)

and the upper script Q−irr means that only diagrams which become 1PI after formal gluing

(depicted as a dotted line above) of two external lines carrying the (large) momentum q

are included. Figure 3 shows some sample diagrams at tree and one-loop level.

4 Results

All results are given in the MS scheme with as = αs

π
, αs = g2

s

4π and the abbreviation

lµq = ln
(

µ2

Q2

)

where µ is the MS renormalization scale. They can be retrieved from

http://www-ttp.particle.uni-karlsruhe.de/Progdata/ttp12/ttp12-025/
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a

µν ρσ

q

+ + + . . .

Figure 3. Diagrams for the calculation of the coefficient C1.

The gauge group factors are defined in the usual way: CF and CA are the quadratic Casimir

operators of the quark and the adjoint representation of the corresponding Lie algebra, dR

is the dimension of the quark representation, ng is the number of gluons (dimension of the

adjoint representation), TF is defined so that TF δ
ab = Tr

(

T aT b
)

is the trace of two group

generators of the quark representation.4 For QCD (colour gauge group SU(3)) we have

CF = 4/3 , CA = 3 , TF = 1/2 and dR = 3. By nf we denote the number of active quark

flavours.

4.1 C0

Because of the contact terms both coefficients CS0 and CT0 could be unambiguously com-

puted only up to constant (that is q-independent) contributions. To avoid the ambiguity

we present below their Q2-derivatives:

Q2 d

dQ2
C

(T )
0 =

1

16π2

[

−
1

10
ng −

1

20
nfdR

+ as

{

1

18
CAng −

7

144
nfTFng

}

+ a2
s

{

67

12960
C2

Ang +
3

128
nfTFCFng −

10663

51840
nfCATFng +

473

6480
n2

fT
2
Fng

+
11

216
lµqC

2
Ang −

109

1728
lµqnfCATFng +

7

432
lµqn

2
fT

2
Fng

+
11

40
ζ3C

2
Ang +

3

80
ζ3nfCATFng −

1

20
ζ3n

2
fT

2
Fng

}]

.

(4.1)

Q2 d

dQ2
C

(S)
0 (Q2) =

a2
s

16π2

{

−
121

1296
C2

Ang +
11

162
nfCATFng −

1

81
n2

fT
2
Fng

}

=−
a2
s

144π2
β2

0 ng,

(4.2)

where

β0 =
11CA

12
−
nf Tf

3
4For an SU(N) gauge group these are dR = N , CA = 2TF N and CF = TF

(

N − 1
N

)

.
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is the first coefficient of the perturbative expansion of the β-function (1.12). This result

for Q2 d
dQ2 C

(T )
0 is in agreement with the one derived in [20] for the case of gluodynamics

(nf = 0) at order αs (two-loop level). The simple form of eq. (4.2) comes from the well-

known trace anomaly [16, 22], which reads

T µµ =
β(as)

2
[GaρσG

a ρσ] = −2β(as) [O1]. (4.3)

Indeed, from operator eq. (4.3) we expect that

i

∫

d4x eiqx 〈0|T [ T µµ(x)T νν(0)]|0〉 = 4β2(αs)Q
4 ΠGG(q2) + contact terms, (4.4)

where

Q4 ΠGG(q2) = i

∫

d4x eiqx 〈0|T [O1(x)O1(0)]|0〉. (4.5)

Now the one-loop result

Q2 d

dQ2
ΠGG(q2) =

O1 O1

q q

= −
1

64π2
ng + contact terms (4.6)

leads directly to eq. (4.2) The fact that this particular three-loop result can be derived

from one-loop results is also the reason for the lack of ζ-functions in it. Furthermore the

structure of eq. (4.3) explains nicely why the leading contribution for this scalar piece is of

order α2
s .

In fact, the correlator (4.5) is known in two-, three- and four-loop approximations from

works [23],[24] and [1] respectively. The four-loop result reads (with all colour factors set

to their QCD values and lµq = 0)

Q2 d

dQ2
ΠGG(q2) =

1

16π2

{

− 2 + as

(

−
73

2
+

7

3
nf

)

+ a2
s

(

−
37631

48
+

495

4
ζ3 + nf

[

7189

72
−

5

2
ζ3

]

−
127

54
n2
f

)

+ a3
s

(

−
15420961

864
+

44539

8
ζ3 −

3465

4
ζ5

+ nf

[

368203

108
−

11677

24
ζ3 +

95

18
ζ5

]

+ n2
f

[

−
115207

648
+

113

12
ζ3

]

+n3
f

[

7127

2916
−

2

27
ζ3

]

)}

. (4.7)
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Finally, using eq. (4.4) and the well-known result for the four-loop QCD β-function [25, 26]

we could easily extend the rhs of (4.2) by three more orders in αs:

Q2 d

dQ2
C

(S)
0 (Q2) =

a2
s

16π2

{

−
121

18
+

22

27
nf −

2

81
n2
f

+ as

(

−
11077

72
+

1025

36
nf −

265

162
n2
f +

7

243
n2
f

)

+ a2
s

(

−
5787209

1728
+

6655

16
ζ3+nf

[

540049

648
−

4235

72
ζ3

]

+ n2
f

[

−
556555

7776
+

275

108
ζ3

]

+ n3
f

[

29071

11664
−

5

162
ζ3

]

−
127

4374

)

+ a3
s

(

−
2351076745

31104
+

5925007

288
ζ3 −

46585

16
ζ5

+ nf

[

367411229

15552
−

33359777

7776
ζ3 +

240185

648
ζ5

]

+ n2
f

[

−
381988321

139968
+

3715127

11664
ζ3 −

12485

972
ζ5

]

+ n3
f

[

20279497

139968
−

180083

17496
ζ3 +

95

1458
ζ5

]

+n4
f

[

−
1101389

314928
+

427

2916
ζ3

]

+n5
f

[

7127

236196
−

2

2187
ζ3

]

)}

. (4.8)

4.2 C1

According to the definition of Cµν;ρσ
1 in eq. (3.5) there is a factor 1

(Q2)2 in front of the

dimensionless scalar pieces C
(S)
1 and C

(T )
1 which makes the whole coefficient immune to

contact terms except for those proportional to the tensor structures tµν;ρσ
4 (q) and tµν;ρσ

5

defined in eq. (3.2). The physical pieces C
(S)
1 and C

(T )
1 however are unambigous and the

results read:

C
(S)
1 = as

{

22

27
CA −

8

27
nfTF

}

+ a2
s

{

83

324
C2

A −
2

9
nfTFCF −

8

81
nfCATF −

4

81
n2

fT
2
F

}

, (4.9)

C
(T )
1 = as

{

−
5

18
CA −

5

72
nfTF

}

+ a2
s

{

−
83

432
C2

A +
43

96
nfTFCF +

41

432
nfCATF −

1

216
n2

fT
2
F

}

. (4.10)

One thing to notice aboutC
(S)
1 is that if we take the trace of both energy-momentum tensors

the whole term ηµµ(q)ηνν(q)
1

(Q2)2C
(S)
1 in the Wilson coefficient becomes local and, therefore,

indistinguishable from contact terms. We can however check eq. (4.9) independently by
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computing first the coefficient function C
(TG,T )
1 in an OPE ( tµνS = q4 gµν , t

µν
T = q4 gµν −

q2qµ qν)

i

∫

d4x eiqx T [T µν(x)G2
ρσ(0)] ===

q2→−∞

(

C
(TG,S)
0 tµνS + C

(TG,T )
0 tµνT

)

1 +
(

C
(TG,S)
1 tµνS + C

(TG,T )
1 tµνT

) [O1]

Q4
+ . . .

(4.11)

and then employing eq. (4.3) to get the next higher order in αs for C
(S)
1 . The result

C
(TG,T )
1 = −

16

3
+ as

(

22

9
CA −

8

9
nfTF

)

+O(α2
s ) = −

16

3
(1 + β(as)/2) +O(α2

s ) (4.12)

allows to represent the rhs of eq. (4.9) in a form directly confirming eq. (4.3):

CS1 =
β(αs)

6
C

(TG,T )
1 +O(α3

s ) = −
8

9
β(αs) (1 + β(as)/2) +O(α3

s ). (4.13)

The factor β(as) in this result is a direct consequence of the trace anomaly equation (4.3).

However, we do not know any rationale behind the peculiar structure after this factor.

If it is not accidental, then one can hope that an explanation could be found within the

so-called β-expansion formalism suggested in [27].

It is important to note that the coefficient functions C
(S)
1 and C

(T )
1 are not Renormalization

Group independent. We can construct the corresponding RG invariants by using the well-

known fact5 that the scale invariant version of the operator O1 is

ORGI1 ≡ β̂(as) [O1], β̂(as) =
−β(as)

β0
= as



1 +
∑

i≥1

βi
β0
ais



 . (4.14)

From this and the scale invariance of T µν;ρσ(q) defined in eq. (1.1) we find the RG invariant

Wilson coefficients

C
(S)
1,RGI ≡ C

(S)
1 /β̂(as)

C
(T )
1,RGI ≡ C

(T )
1 /β̂(as)

(4.15)

which satisfy

C
(S,T )
1,RGIO

RGI
1 = C

(S,T )
1 [O1]. (4.16)

From this definition we can immediately explain the absence of lµq in eq. (4.9) and eq. (4.10).

Suppose we had lµq in C
(S)
1 and therefore in C

(S)
1,RGI then the general structure of eq. (4.15)

up to three-loop order would be

C
(S,T )
1,RGI = (a1 + b1 lµq) + as(a2 + b2 lµq + c2 l

2
µq)

+ a2
s(a3 + b3 lµq + c3 l

2
µq + d3 l

3
µq) +O(a3

s)
(4.17)

5This follows directly from the RG invariance of the energy-momentum tensor and the trace anomaly

equation (4.3).
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with scale independent coefficients ai, bi, ci and di. The derivative with respect to µ2 must

vanish:

µ2 d

dµ2
C

(S,T )
1,RGI = b1 + as(b2 + 2c2 lµq) + asβ(as)(a2 + b2 lµq + c2 l

2
µq)

+ a2
s(b3 + 2c3 lµq + 3d3 l

2
µq) +O(a3

s)
!
= 0 ∀µ2

⇒ b1 = 0

⇒ b2 = 0, c2 = 0

⇒ b3 = β0a2, c3 = 0, d3 = 0.

(4.18)

In conclusion, not only have we explained the absence of logarithms in eq. (4.9) and

eq. (4.10) but we also get the logarithmic part of the three-loop result for these coeffi-

cient functions for free. Terms with l2µq can only appear starting from four-loop level,

terms with l3µq from five-loop level and so on.

The quantities defined in eq. (4.15) are given by

C
(S)
1,RGI = 22

27CA −
8
27nfTF −

as

324 (11CA − 4nfTF )2 (4.19)

C
(T )
1,RGI = − 5

72 (4CA + nfTF ) + as

864(11CA−4nfTF )

(

214C3
A + 876C2

AnfTF

+3537CACFnfTF − 672CAn
2
fT

2
F − 1728CFn

2
fT

2
F + 16n3

fT
3
F

)

(4.20)

The three-loop parts proportional to lµq are

C
(S,3l,log)
1,RGI = a2

slµq

{

−
1331C3

A

3888 + 121
324C

2
AnfTF −

11
81CAn

2
fT

2
F + 4

243n
3
fT

3
F

}

, (4.21)

C
(T,3l,log)
1,RGI = a2

slµq

{

214C3
A

+876C2
A
nfTF +3537CACFnfTF −672CAn

2
f
T 2

F
−1728CF n

2
f
T 2

F
+16n3

f
T 3

F

10368

}

.(4.22)

For completeness we have also computed the contribution of the gluon condensate to the

OPE of correlator (4.5):

Q4 ΠGG(q2) ===
q2→−∞

CGG0 Q4 + CGG1 〈0|[O1]|0〉 (4.23)

with the result:

CGG1 =− 1 + as

(

−
49

36
CA +

5

9
nfTF −

11

12
lµqCA +

1

3
lµqnfTF

)

+ a2
s

(

−
11509

1296
C2

A +
13

4
nfTFCF +

3095

648
nfCATF −

25

81
n2

fT
2
F

−
1151

216
lµqC

2
A + lµqnfTFCF +

97

27
lµqnfCATF −

10

27
lµqn

2
fT

2
F

−
121

144
l2µqC

2
A +

11

18
l2µqnfCATF −

1

9
l2µqn

2
fT

2
F +

33

8
ζ3C

2
A

−3ζ3nfTFCF +
3

2
ζ3nfCATF

)

+ a2
s

ε

(

−17
24C

2
A + 1

4nfTFCF + 5
12nfCATF

)

.

(4.24)
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The tree and one-loop contributions in (4.24) are in agreement with [8] and [28, 29] corre-

spondingly. The two-loop part is new and has a feature that did not occur in lower orders,

namely, a divergent contact term. Its appearance clearly demonstrates that non-logarithmic

perturbative contributions to CGG1 are not well defined in QCD, a fact seemingly ignored

by the QCD sum rules practitioners (see, e.g. [6, 30]).

An unambiguous QCD prediction can be made for the derivative:

Q2 d

dQ2
CGG1 =as

(

11

12
CA −

1

3
nfTF

)

+ a2
s

(

1151

216
C2

A − nfTFCF −
97

27
nfCATF +

10

27
n2

fT
2
F

+
121

72
lµqC

2
A −

11

9
lµqnfCATF +

2

9
lµqn

2
fT

2
F

)

.

(4.25)

5 Numerics

In this section we will give our main results in the numerical form for two cases of interest,

that is gluodynamics (nf = 0) and QCD with three light quarks only (nf = 3). As

has already been mentioned, not all coefficient functions which we have discussed in the

previous section are Renormalization Group independent. For a meaningful discussion we

will construct the corresponding RG invariants by using the scale invariant version of the

operator O1 defined in eq. (4.14). In addition we set lµq = 0 everywhere.6

Q2 d

dQ2
C

(T )
0 ===

nf =0
−

4

80π2

(

1− 1.66667 as − 30.2162 a2
s

)

, (5.1)

Q2 d

dQ2
C

(T )
0 ===

nf =3
−

5

64π2

(

1− 0.6 as − 15.1983 a2
s

)

, (5.2)

Q2 d

dQ2
C

(S)
0 ===

nf =0
−

121

288π2
a2
s

(

1 + 22.8864as + 423.833a2
s + 8014.74a3

s

)

, (5.3)

Q2 d

dQ2
C

(S)
0 ===

nf =3
−

9

32π2
a2
s

(

1 + 18.3056as + 247.48a2
s + 3386.41a3

s

)

, (5.4)

Q2 d

dQ2
CGG,RGI1 ===

nf =0

11

4
a2
s (1 + 19.7576 as) , CGG,RGI1 ≡ β̂(as)C

GG
1 , (5.5)

Q2 d

dQ2
CGG,RGI1 ===

nf =3

9

4
a2
s (1 + 15.3889 as) , (5.6)

C
(S)
1,RGI ===

nf =0

22

9
(1− 1.375 as) , C

(S)
1,RGI ≡ C

(S)
1 /β̂(as), (5.7)

C
(S)
1,RGI ===

nf =3
2 (1− 1.125 as) , (5.8)

C
(T )
1,RGI ===

nf =0
−

5

6
(1− 0.2431825 as) , C

(T )
1,RGI ≡ C

(T )
1 /β̂(as), (5.9)

C
(T )
1,RGI ===

nf =3
−

15

16
(1− 1.3333 as) . (5.10)

6This corresponds to the choice µ2 = Q2 for the renormalization scale.

– 13 –



6 Applications to high-temperature QCD

Recently, the correlators ΠGG and T µν;ρσ(q) have been studied in (Euclidean) hot Yang-

Mills theory in [31, 32] respectively (see, also references therein for related earlier works).

In this section we will employ our T = 0 calculations in order to extend some of the results

of these publications by adding fermionic contributions as well as higher order corrections.

Note that for simplicity we will set all colour factors in all expressions below to their QCD

values. The reader interested in expressions valid for generic colour group should be able

to derive the corresponding results himself from our results.

6.1 Trace anomaly correlator

In [31] two-loop corrections to the quantity7

Gθ(X) ≡ 〈T [θ(X) θ(0)]〉c, θ ≡ T µµ, (6.1)

where 〈. . . 〉c stands for the connected part and the expectation value is taken at finite

temperature8 T, have been computed. The capital case X for the space-time argument

in (6.1) is used in order to stress that we are dealing with a Euclidean correlator. In

the following e and p = |q| are the energy and momentum densities with the well-known

relation 〈θ〉c = e− 3p. In the limit of small r ≡ |X| the result of [31] reads 9

4 a2
s

β2(as)
Gθ(r) =

384

π4r8
γ̄θ;1(r) −

8 as 〈θ〉c
β(as)π2r4

γ̄θ; θ(r) −
64(e+ p)

π2r4
γ̄θ; e+ p(r) + O

(

T6

r2

)

,

(6.2)

with

γ̄θ;1(r) = a2
s + a3

s

(

−
1

12
+

11

2
lµX

)

+O(a4
s), (6.3)

γ̄θ;θ(r) = 22 a2
s +O(a3

s), (6.4)

γ̄θ;e+p(r) = a2
s + a3

s

(

15

72
+

11

2
lµX

)

+O(a4
s), (6.5)

and lµX = log(µ2X2/4) + 2γE .

According to [34] the coefficient functions γ̄θ;1 and γ̄θ;θ(r) do not depend on temperature

T and, thus, should coincide with their T = 0 counterparts. Hence, we can use our

momentum space results described in previous sections to arrive at the following QCD

7Note that Gθ(0, ~X) has been directly measured in lattice simulations [33].
8We use the bold case for the temperature to make it distinct from T (. . . ) standing for the time ordered

product of operators inside the round brackets.
9The expression below is the somewhat modified eq. (5.7) of [31].
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predictions for both coefficient functions10.

γ̄θ;1(r) = a2
s + a3

s

(

−
1

12
+

11

2
lµX + nf

[

−
1

18
−

1

3
lµX

]

)

+a4
s

(

−
49

24
−

495

8
ζ3 +

397

16
lµX

+
363

16
l2µX + nf

[

−
35

144
+

5

4
ζ3 −

43

12
lµX −

11

4
l2µX

]

+ n2
f

[

−
13

216
+

1

36
lµX +

1

12
l2µX

]

)

+ a5
s

(

−
255155

1728
−

2915

16
ζ3 +

3465

8
ζ5 +

20891

192
lµX −

5445

8
ζ3 lµX +

1793

8
l2µX +

1331

16
l3µX

+ nf

[

38741

1728
−

9

16
ζ3 −

95

36
ζ5 −

16685

576
lµX + 55ζ3 lµX −

4241

96
l2µX −

121

8
l3µX

]

+ n2
f

[

−
361

216
+

125

72
ζ3 +

491

1728
lµX −

5

6
ζ3 lµX +

289

144
l2µX +

11

12
l3µX

]

+ n3
f

[

37

1458
−

1

27
ζ3 +

13

324
lµX −

1

108
l2µX −

1

54
l3µX

]

)

+O(a6
s), (6.6)

γ̄θ;θ(r) = a2
s

(

22−
4

3
nf

)

+ a3
s

(

+
788

3
+ 121 lµX +nf

[

−
304

9
−

44

3
lµX

]

+n2
f

[

8

27
+

4

9
lµX

]

)

+O(a4
s). (6.7)

Note that our vacuum calculations produce no information about the coefficient function

γ̄θ;e+p corresponding to the traceless part of the energy-momentum tensor.

Numerically eqs. (6.6) and (6.7) read (we set lµX = 0)

γ̄θ;1(r) ===
nf =0

a2
s − 0.08333 a3

s − 76.4189 a4
s + 82.4604a5

s +O(a6
s), (6.8)

γ̄θ;1(r) ===
nf =3

a2
s − 0.25 a3

s − 73.1821 a4
s + 142.705a5

s +O(a6
s), (6.9)

γ̄θ;θ(r) ===
nf =0

22

(

a2
s + 11.9394 a3

s

)

+O(a4
s), (6.10)

γ̄θ;θ(r) ===
nf =3

18

(

a2
s + 9.11111 a3

s

)

+O(a4
s). (6.11)

6.2 Shear stress correlator

In [32] the so-called shear stress correlator, defined as

Gη(X) = −16 c2
η 〈T [T 12(X)T 12(0)]〉c (6.12)

10The details of the corresponding Fourier transformation are spelled e.g. in [35].
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with X = (X0, ~X), ~X = (0, 0,X3), has been computed up to two-loops in high-temperature

Yang-Mills theory. Here cη is an arbitrary constant (introduced for some reason that is

not quite clear to us in [32]) which we put for simplicity equal to i/4. The calculation

has been performed with the help of an ultraviolet expansion valid in the limit of small

distances or large momenta; the result has been presented in the form of an OPE. As

the corresponding Wilson coefficients should be T-independent the results of [32] can be

checked and extended further with the help of our calculations.11

We start from momentum space. In the zero temperature limit the function

G̃η(Q
2) =

∫

d4X eiQX Gη(X)

is related to contribution to energy-momentum tensor correlator (1.1) proportional to

the tensor structure tµν;ρσ
5 (q). This fact could be easily checked by applying pro-

jector (2.5) of [32] to the correlator T µν;ρσ(q) expressed in terms of five independent

tensor structures displayed in (3.2). The result reads −8Q4 (1 − 7/2 ε + 7/2 ε2 −

ε3)
(

C5
1
(Q2) + C5

θ (Q2) 〈0|θ|0〉
Q4 + . . .

)

.

Thus, we will work with the representation

T µν;ρσ(q) ===
q2→−∞

tµν;ρσ
5 (q)

(

C5
1(Q2) + C5

θ (Q2)
〈0|θ|0〉

Q4
+ . . .

)

+ structures 1-4 (6.13)

We first concentrate on the coefficient function C5
θ (Q2) as the two-loop expression for

C5
1
(Q2) presented in [32] is in agreement to the previously known expression obtained in

[20]. The result of [32] for the second term in eq. (6.13) reads:

C5
θ (Q2) = −

1

3β0 as

(

1−
β0 as

4
ln ζ12

)

, (6.14)

where ζ12 is an unknown constant. Note that the second term of the above expression

is obtained not from a calculation but with the use of Renormalization Group considera-

tions similar to those leading to eq. (4.18). Such a derivation assumes that the coefficient

function C5
θ is finite which is not obvious as the corresponding Feynman integrals have loga-

rithmic divergences stemming from the region of small x in eq. (1.1). Our direct calculation

explicitly demonstrates the presence of such divergences:

C
(5)
θ (Q2) =

1

3β(as)

{

1 + as

(

41

24
+

7

288
nf

)

+ a2
s

(

117

32
−

457

576
nf +

1

576
n2
f

)

+
as

ε

(

11

4
−

1

6
nf

)

+
a2

s

ε

(

51

8
−

19

24
nf

)}

. (6.15)

11The Wilson coefficients in front of Lorentz non-invariant operators are for the moment not reachable

with our projectors. It would be interesting however to extend these methods in order to reach e.g. the

coefficient in front of 〈T 00〉 ∼ e + p with a similar approach.

– 16 –



It is important to note that the contribution proportional to C5
θ in (6.13) contains contact

terms only. This is in agreement with (4.10) due to an identity

C
(T )
1 − C

(5)
1 = contact terms, (6.16)

which, in turn, follows from restriction (3.3) (recall that C
(5)
θ (Q2) ≡ C

(5)
1 /(−2β(as)) as a

consequence of (4.3)).

In Euclidean position space eq. (6.13) can be presented as follows:

T̂ µν;ρσ(X) ===
r→0

(

δµρδνσ+δµσδνρ
){

C̃5
1(r)1+C̃5

θ (r) 〈0|θ|0〉+. . .

}

+ structures 1-4 (6.17)

Eq. (6.16), rewritten in terms of RG invariant quantities assumes the form:

C
(T )
1,RGI − 2β0 C

(5)
θ = contact terms. (6.18)

By recalling that the contact terms do not contribute the function Gη(x) for all x 6= 0 we

conclude that eqs. (6.15) and (4.22) contain all information to construct the first non-zero

term O(a2
s ) in the coefficient function C̃5

θ (x) with the result

2β0C̃
5
θ (r) =

a2
s

π2 r4

(

107

192
+

17

16
nf −

5

48
n2
f +

1

5184
n3
f

)

(6.19)

Finally, using the identity

C
(T )
0 − C

(5)
0 = contact terms, (6.20)

and (4.1) we arrive at the following result

C̃5
1
(x) =

1

π4 r8

{

48

5
+

9

5
nf + as

(

−16+
7

3
nf

)

+ a2
s

(

711

5
−

1188

5
ζ3 − 44 lµX

+ nf

[

−
259

120
−

27

5
ζ3 +

109

12
lµX

]

+ n2
f

[

−
41

90
+

6

5
ζ3 −

7

18
lµX

]

)}

. (6.21)

Numerical versions of eqs. (6.19) and (6.21) with lµX = 0 are presented below.

2β0 C̃
5
θ (x) ===

nf =0

a2
s

π2 r4

{

107

192
= 0.557292

}

, (6.22)

2β0 C̃
5
θ (x) ===

nf =3

a2
s

π2 r4

{

45

16
= 2.81250

}

, (6.23)

C̃5
1
(x) ===

nf =0

48

5

1

π4 r8

(

1− 1.66667 as − 14.9384 a2
s

)

, (6.24)

C̃5
1(x) ===

nf =3

15

π4 r8

(

1− 0.6 as − 10.6983 a2
s

)

. (6.25)

– 17 –



7 Discussion and Conclusions

We have presented higher order corrections to coefficient functions C0 and C1 of the OPE

of two energy-momentum tensors in massless QCD as well as for the OPE of two scalar

“gluon condensate” operators in massless QCD. Our results extend the previously known

accuracy by one loop for the coefficient functions in front of the unit operator and by two

loops for the CF of the gluon condensate operator O1 = −1
4G

µνGµν .

We have confirmed all previously available results and in some cases extended them from

purely Yang-Mills theory to QCD. Contrary to previous assumptions, we have found that

the coefficient functions CGG1 as well as C
(5)
θ (Q2) are not completely finite with the standard

QCD renormalization.
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A Results for C
(r)
0 and C

(r)
1 , r = 1 . . . 5 and conversion to C

(S,T )
0 and C

(S,T )
1

Here we give our intermediate results for the coefficients C
(r)
0 and C

(r)
1 (r = 1 . . . 5) ap-

pearing in the first line of eq. (3.5), i.e. the coefficients for the tensor structures eq. (3.2)

before subtraction of contact terms:

C
(r)
0 = C

B (r)
0 , (A.1)

C
(r)
1 = 1

Z2
G

C
B (r)
1 . (A.2)

The conservation of the energy-momentum tensor in classical field theory translates to

∂µ T
µν = local terms [16]. (A.3)

From this we get the relation

qµC
µν;ρσ
i (q) = (local) contact terms (i = 0, 1) (A.4)

which leads to the three restrictions serving as checks in our calculation:

D
(1)
i (Q2) := Ci,1(Q2) + Ci,2(Q2) + 2Ci,3(Q2) = (local) contact terms,

D
(2)
i (Q2) := Ci,2(Q2) + Ci,4(Q2) = (local) contact terms,

D
(3)
i (Q2) := Ci,3(Q2) + Ci,5(Q2) = (local) contact terms.

(A.5)
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Hence the subtraction of contact terms enables us to write the Wilson coefficients in terms

of only two independent tensor structures eq. (3.4) which are related to the original five by

the following equations:

C
(S)
i (Q2) = −Ci,2(Q2)−

2

(D − 1)
Ci,3(Q2),

C
(T )
i (Q2) = −Ci,3(Q2).

(A.6)

A.1 C
(r)
0 , r = 1 . . . 5

These coefficients fulfill the relations eq. (A.5) even without local terms:

D
(1)
0 (Q2) := C0,1(Q2) + C0,2(Q2) + 2C0,3(Q2) = 0,

D
(2)
0 (Q2) := C0,2(Q2) + C0,4(Q2) = 0,

D
(3)
0 (Q2) := C0,3(Q2) + C0,5(Q2) = 0.

(A.7)

Hence it is enough to give C0,4 and C0,5 here:

(

16π2
)

C0,4 = +
1

ε2

{

−
11

1944
a2

sC
2
Ang +

109

15552
a2

snfCATFng −
7

3888
a2

sn
2
fT

2
Fng

}

+
1

ε

{

−
1

15
ng −

1

30
nfdR +

1

54
asCAng −

7

432
asnfTFng −

35

11664
a2

sC
2
Ang

+
1

192
a2

snfTFCFng −
809

93312
a2

snfCATFng +
77

23328
a2

sn
2
fT

2
Fng

}

−
47

450
ng −

23

225
nfdR −

1

15
lµqng −

1

30
lµqnfdR

+ as

{

+
187

1620
CAng −

1987

12960
nfTFng +

1

27
lµqCAng −

7

216
lµqnfTFng

+
1

5
ζ3CAng +

1

10
ζ3nfTFng

}

+ a2
s

{

+
160831

1399680
C2

Ang +
61

480
nfTFCFng −

1733639

2799360
nfCATFng +

140909

699840
n2

fT
2
Fng

+
941

9720
lµqC

2
Ang +

1

64
lµqnfTFCFng −

15943

77760
lµqnfCATFng +

593

9720
lµqn

2
fT

2
Fng

−
11

648
l2µqC

2
Ang +

109

5184
l2µqnfCATFng −

7

1296
l2µqn

2
fT

2
Fng

−
5

12
ζ5C

2
Ang −

1

4
ζ5nfTFCFng +

1

24
ζ5nfCATFng

+
563

720
ζ3C

2
Ang +

37

240
ζ3nfTFCFng −

29

720
ζ3nfCATFng −

19

180
ζ3n

2
fT

2
Fng

+
11

60
ζ3lµqC

2
Ang +

1

40
ζ3lµqnfCATFng −

1

30
ζ3lµqn

2
fT

2
Fng

}

,

(A.8)
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(

16π2
)

C0,5 = +
1

ε2

{

+
11

1296
a2

sC
2
Ang −

109

10368
a2

snfCATFng +
7

2592
a2

sn
2
fT

2
Fng

}

+
1

ε

{

+
1

10
ng +

1

20
nfdR −

1

36
asCAng +

7

288
asnfTFng −

1

864
a2

sC
2
Ang

−
1

128
a2

snfTFCFng +
415

20736
a2

snfCATFng −
35

5184
a2

sn
2
fT

2
Fng

}

+
9

100
ng +

3

25
nfdR +

1

10
lµqng +

1

20
lµqnfdR

+ as

{

−
1

540
CAng +

1367

8640
nfTFng −

1

18
lµqCAng +

7

144
lµqnfTFng

−
3

10
ζ3CAng −

3

20
ζ3nfTFng

}

+ a2
s

{

+
343429

933120
C2

Ang −
307

1440
nfTFCFng +

983059

1866240
nfCATFng −

109129

466560
n2

fT
2
Fng

−
67

12960
lµqC

2
Ang −

3

128
lµqnfTFCFng +

10663

51840
lµqnfCATFng −

473

6480
lµqn

2
fT

2
Fng

+
11

432
l2µqC

2
Ang −

109

3456
l2µqnfCATFng +

7

864
l2µqn

2
fT

2
Fng

+
5

8
ζ5C

2
Ang +

3

8
ζ5nfTFCFng −

1

16
ζ5nfCATFng

−
563

480
ζ3C

2
Ang −

37
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ζ3nfTFCFng +

29

480
ζ3nfCATFng +

19

120
ζ3n

2
fT

2
Fng

−
11

40
ζ3lµqC

2
Ang −

3

80
ζ3lµqnfCATFng +

1

20
ζ3lµqn

2
fT

2
Fng

}

.

(A.9)

A.2 C
(r)
1 , r = 1 . . . 5

Here we give the five coefficents

C1,1 =as

{

4

9
CA −

7

18
nfTF

}

+ a2
s

{

3

8
nfTFCF +

1

36
nfCATF −

1

18
n2

fT
2
F

}

,

(A.10)

C1,2 =as

{

−CA +
1

4
nfTF

}

+ a2
s

{

−
83

216
C2

A +
25

48
nfTFCF +

35

216
nfCATF +

5

108
n2

fT
2
F

}

,

(A.11)

C1,3 =as

{

5

18
CA +

5

72
nfTF

}

+ a2
s

{

83

432
C2

A −
43

96
nfTFCF −

41

432
nfCATF +

1

216
n2

fT
2
F

}

,

(A.12)
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C1,4 = +
1

3
as

ε

{

11

36
CA −

1

9
nfTF

}

+
1

3
+ as

{

161

216
CA −

17

108
nfTF

}

+
a2

s

ε

{

17

72
C2

A −
1

12
nfTFCF −

5

36
nfCATF

}

+ a2
s

{

3

16
C2

A −
65

144
nfTFCF −

5

108
nfCATF −

5

108
n2

fT
2
F

}

,

(A.13)

C1,5 =−
2

3
as

ε

{

−
11

18
asCA +

2

9
asnfTF

}

−
2

3
+ as

{

−
41

108
CA −

7

216
nfTF

}

+
a2

s

ε

{

−
17

36
C2

A +
1

6
nfTFCF +

5

18
nfCATF

}

+ a2
s

{

−
13

48
C2

A +
137

288
nfTFCF +

61

432
nfCATF −

1

216
n2

fT
2
F

}

,

(A.14)

which fulfill the relations eq. (A.5):

D
(1)
1 = 0 ,

D
(2)
1 =local 6= 0,

D
(3)
1 =local 6= 0.

(A.15)

This is an important check as for the coefficent Cµν;ρσ
1 only counterterms of the form

tµν;ρσ
4 [O1] and tµν;ρσ

5 [O1] are possible. Counterterms proportional to the other tensor struc-

tures would not be local. Hence D
(1)
1 = 0 is necessary.
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