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1 Motivation

The energy-momentum tensor correlator
T (q) =i [dle e (0P (@)]0), T (@) = T @)TO) (L)

plays an important role in many physical problems. A lot of these lie in the field of
Quark Gluon Plasma (QGP) physics. Here the correlator eq. (1.1) is the central object
for describing transport properties, like the shear viscosity of the plasma (see e.g. [2, 3])
and spectral functions for some tensor channels in the QGP [4]. Another application is
a sum rule approach to tensor glueballs. These special hadrons without valence quarks



are determined by their gluonic degrees of freedom. QCD allows for such particles but a

conclusive discovery has not yet been made.

In a sum rule approach [5] one usually starts with the vacuum correlator of an interpolating
local operator which has the same quantum numbers as the hadrons we want to investigate.
If we are interested in glueballs we take local operators consisting of gluon fields. For the
cases JPC =01t 0~ and 277 the following operators are usually considered:

O1(z) = —iG“"GW(:U) (scalar) (1.2)
O1(z) = G" G (2) (pseudoscalar)
Or(z) = TH (x) (tensor)

where G, is the gluon field strength tensor and

é;w = 5,uupaGpo (15)
the dual gluon field strength tensor. For more details see [6]. The vacuum expectation
value (VEV) of the correlator of such a local operator O(z)

IHQ%Zi/&xﬁnwﬂﬂﬂwommw (@Q° = —¢% (1.6)

can of course be calculated in perturbation theory for large Euclidean momenta, but this
is not enough. Starting from the perturbative region of momentum space we can probe
into the non-perturbative region by means of an OPE. The idea originally formulated in
[7] is to expand the non-local operator product i [d*z €' T [O(z)O(0)] in a series of local
operators with Wilson coefficients depending on the large Euclidean momentum q. In sum
rules we usually have dispersion relations connecting the VEV of such a Euclidean operator
product to some spectral density in the physical region of momentum space. As we are
ultimately interested in the VEV of this operator product we only have to consider gauge

invariant scalar operators in the expansion.

Effectively this expansion separates the high energy physics, which is contained in the Wil-
son coefficients, from the low energy physics which is taken into account by the VEVs of the
local operators, the so-called condensates [5]. These cannot be calculated in perturbation
theory, but need to be derived from low energy theorems or be calculated on the lattice.
Such an OPE has already been done for the cases eq. (1.2) and eq. (1.3) (see [8, 9]) with

one-loop accuracy.

In this work we present the results for the Wilson coefficients in front of the operators Oq
and [Oq] for the correlator eq. (1.1) in massless QCD:

T4 (g) CE" 7 (@)1 + CE 7 (@)O01] + .. .7

g2 ——00

The brackets in [O] indicate that we take a renormalized form of the operator O;:

Za .
[01] = ZoOP = —TGBﬂ Gl (1.8)



where the index B marks bare quantities. We start our calculation with bare quantities
which are expressed through renormalized ones in the end:

TP (g) = 3 CP M (9)OF = 37 O ()[04, (1.9)

1

All physical matrix elements of [O1] are finite and so is the renormalized coefficient!

1
c, = —CBE. 1.10
1= 754 (1.10)
The renormalization constant
a _1
Zo=1+a,—~1nZ,, = <1—M> (1.11)
Oa, €

has been derived in a simple way in [10] (see also an earlier work [11]). Here Z,, is the
renormalization constant for o, and we define?

d i+1
Bla,) = “2@172 na, = -3 8 (%) . (1.12)

>0

In the massive case the two and four dimensional operators Oy = mfc and Og =m f?,Z; by
would have to be included as well for every massive quark flavour f. The VEVs of all other
linearly independent scalar operators of dimension four vanish either by some equation
of motion or as they are not gauge invariant. The contributions of higher dimensional
operators are suppressed by higher powers of é in the coefficients.

Apart from the leading coefficient Cj in front of the local operator Oy = 1 the coefficient
(4 in front of [O4] is of special interest for many applications. One example is if we have a
spectral density defined by our correlator and we want to calculate the shift in this spectral
density from zero to finite temperature:

Ap(w,T) = p(w,T) — p(w,0). (1.13)

The spectral density at T = 0 is calculated from the VEV of the correlator whereas for
the spectral density at finite T we take the thermal average of the operator product. For
the unity operator Og = 1 the VEV and the thermal average are both 1 due to the
normalization conditions. Hence the leading term from the OPE; i.e. the one proportional
to Op vanishes in eq. (1.13) which makes the Wilson coefficients in front of O; and Og the
leading high frequency contributions to eq. (1.13). For more details see e.g. [12].

'This statement as well as eq. (1.9) are only true modulo so-called contact terms; see a detailed discussion
in the next section.

20ften in the literature Zq, is used instead of Zg and a.G*Y G, instead of O;. This is justified because
up to first order in o the renormalization constants Zg and Z,, are the same. Only in higher orders Zg
and Z,, differ and therefore Z has to be used in such cases.



2 The energy-momentum tensor in QCD

The energy-momentum tensor which can be derived from the Lagrangian of a field theory
is an interesting object by itself. To be identified with the physical object known from
classical physics and general relativity it has to be symmetric as well as conserved. A very
general method to derive such an energy-momentum tensor can be found e.g. in [13-15].
This has firstly been done for QCD in [16] and the result derived from the renormalized
Lagrangian

L= _ i 5 G G — % (3;/4“)2 + Z30,¢0°c + . Z10,¢ (AP x c)

+ %Z21E<g¢ + 9. Z1yp Y AT

(2.1)

is
1 1
Ty = — 253G, G + X(OH(?,,AP)A,, + X(@,,OPAP)AH
+ Z3(0,€0, ¢ + 0,¢0,¢) + gZ1 (8,8(Ay X ) + 0,6(A, % ¢))
A — -
+ ZZzib (@A'Yu + 0, 'Yu) P+ gzhﬂ/} (AMT'YV + A, T"Yu) (0 (2.2)
1 1 1
— G {—Zzg GpoG" + 1 (0,0,A°) A” + o (9,A4°)?
- . R _
+ 2o, + 9 (BN, X ) + 520 0 b+ 9 L1y BAT 6

Here -

G = Ay — 0, A, + %gs (Ayx Ay), (2.3)
Zs3, Zs and Z, stand for the field renormalization constants for the gluon, ghost and quark
fields respectively and Z; and Z1y for the vertex renormalization constants. The abbrevi-
ation (A, x A,)" = fabcAZAﬁ, where f¢ is the structure constant of the SU(N.) gauge
group, is used and all colour indices are suppressed for convenience.
This energy-momentum tensor consists of gauge invariant as well as gauge and ghost terms.
If we were to consider general matrix elements of operator products we would have to in-
clude all these terms. It has been pointed out in [16] however that for Green’s functions
with only gauge invariant operators it would be enough to take the gauge invariant part of

the energy momentum tensor:

1, -/ — -

T/J,l/|ginv = - Z3G,quyp + ZZQT;Z) (OH% + al/ 'Y;L) ¢ + gzhp¢ (A,LLT'YV + AI/ Tr)/,u) 1,[)
: 2.4)

1 VR g _ (
— g { =23 GP + 52000 v+ 9210 ATO ).

This has been checked in our calculation of Cy which we have done once with the full
energy-momentum tensor eq. (2.2) and once with the gauge invariant part eq. (2.4) up to
three-loop accuracy. As expected both calculations yield the same result.

The insertion of a local operator into a Green’s function corresponds to an additional vertex



in every possible Feynman diagram. For the energy-momentum tensor eq. (2.2) we get the
vertices shown in Figure 1

TH
ZOToToToTo 1oL ZeIoTeIeI0IoN 9s g>
o > - @ - — > —— — /’é\\

9s /” 9s N

Figure 1. Energy-momentum tensor vertices and there dependence on g,

In [16] it has been proven that the energy-momentum tensor of QCD is a finite operator
which means the Z-factors appearing in (2.2) make any Green function of (renormalized)
QCD elementary fields with one insertion of the operator Tj, finite. We have used
this theorem as a check for our setup and have calculated one - and two-loop correc-
tions to the matrix elements (gluon(p,uq)|T* |gluon(p,us)), (ghost(p)|T""|ghost(p)) and
(quark(p), gluon(0,u1)|T%;|quark(p)) which turned out to be finite as expected.

Another important consequence of the finiteness property is the absence of the anomalous
dimension of the energy-momentum tensor. For the bilocal operator 7 P9 (x) the situation
is more complicated. This is because of extra (quartic!) UV divergences appearing in the
limit of x — 0. If = is kept away from 0 then TW;W(@“) is finite and renormalization scheme
independent. These divergences (which are local in z!) manifest themselves in the Fourier
transform TH"#?(q). They can and should be renormalized with proper counterterms:

(707 (q)] = T (q) = 3 Z{(@)Os, (2.5)

where O; are some operators of (mass) dimension < 4 and Z¢*(q) are the corresponding
(divergent) Z-factors. The latter must be local, that is have only polynomial dependence
of the external momentum g. Within the MS-scheme Z¢(q) are just poles in . It is of
importance to note that the subtractive renormalization encoded in eq. (2.5) is in general
not constrained by the QCD charge renormalization. Thus, the unambiguous QCD predic-
tions for the coefficient functions in OPE (1.7) could be made only modulo contact terms
proportional to d(x) in position space.

3 OPE of the energy-momentum tensor correlator

The leading coefficient Cj is just the perturbative VEV of the correlator eq. (1.1)

Cy"" (q) = (0|77 (q)|0)| (3.1)

pert



which we have computed up to order o (three loops). In Figure 2 we show some sample
Feynman diagrams contributing to this calculation. The energy-momentum tensor plays
the role of an external current. In order to produce all possible Feynman diagrams we
have used the program QGRAF [17]. As these diagrams are propagator-like the relevant
integrals can be computed with the FORM package MINCER [18] after projecting them
to scalar pieces. For the colour part of the diagrams the FORM package COLOR [19]
has been used. Because of the four independent external Lorentz indices there are many

<0|TMV§PU(q) |0>pert =

+...

Figure 2. Diagrams for the calculation of the coefficient Cjy

possible tensor structures for the correlator eq. (1.1) and hence the Wilson coefficients.
These are composed of the large external momentum ¢ and the metric tensor g. Using
the symmetries? of eq. (1.1) we can narrow them down to five possible independent tensor

structures:
1" (q) = ¢"¢"¢"¢°,
t;zw;pa(q) _ q2 (q,uql/gpo + qPquuu)’
7 (q) = ¢ ("9 + ¢"¢"9"" + "¢" 9" + """ , (3.2)
tuu;pa(q) _ (qg)zguvgpa7
_ 2
tgw,po(q) _ <q2) (gﬂpgva +guagvp) .

The conservation of the energy-momentum tensor leads to additional restrictions:
qu T""*? (q) = (local) contact terms (3.3)

This condition has been checked in all calculations. Subtracting the physically irrelevant

contact terms leads to only two independent tensor structures which have also been used

3These symmetries are p +— v,p +— o and (uv) +— (po).



e.g. in [20]:

ts " (q) =n""n"

t%u;pa(q) :nupnua + nuanup _ oo 177MV77PU (34)

with  n"”(q) =¢°g" — q"¢"

where D is the dimension of the space time. The structure 4"’ (q) is traceless and
orthogonal to ¢§""?(g). Hence the latter corresponds to the part coming from the traces of
the energy-momentum tensors. The Wilson coefficients in eq. (1.7) are then of the general
form

—dim(0;)
2

CIr(q) = 3t (q) (QP) c(@Q?)

r=b (3.5)

Voo 2 —dim(Oi) (T‘) 9
= Z P (q) (Q7) 2 C;/(Q*) (+ contact terms).
r=T.,S

where dim(Op) = 0 and dim(O;) = 4 are the mass dimensions of the respective operators.
The coefficients defined in the first line of eq. (3.5) and there conversion to the ones defined
in the second line are given in the appendix. In order to compute the coefficient C}"**?(q)
we have used the method of projectors [21] which allows to express coefficient functions for
any OPE of two operators in terms of massless propagator type diagrams only. For the
case of C1"""?(q) the following projector has been employed:

Cﬁ'BPO(Q) =P <// d4x d4y1 d4y2 elartkiyitkayz <O‘T[AZ (1) AZ(yQ) T‘W;pg(x)] ’0>Qirr> .

(3.6)
Here

(3.7)

L I oy

and the upper script @7 means that only diagrams which become 1PI after formal gluing
(depicted as a dotted line above) of two external lines carrying the (large) momentum g
are included. Figure 3 shows some sample diagrams at tree and one-loop level.

4 Results

g2

s a, = 7= and the abbreviation

T 7

All results are given in the MS scheme with a, =

l,,=1In (6—22) where 1 is the MS renormalization scale. They can be retrieved from
http://www-ttp.particle.uni-karlsruhe.de/Progdata/ttp12/ttp12-025/
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Figure 3. Diagrams for the calculation of the coeflicient C}.

The gauge group factors are defined in the usual way: C and C, are the quadratic Casimir
operators of the quark and the adjoint representation of the corresponding Lie algebra, dx
is the dimension of the quark representation, n, is the number of gluons (dimension of the
adjoint representation), T is defined so that 76 = Tr (T“T b) is the trace of two group
generators of the quark representation.? For QCD (colour gauge group SU(3)) we have
Cr=4/3,Cy =3,Tr =1/2 and dy = 3. By n; we denote the number of active quark
flavours.

4.1 Cy

Because of the contact terms both coefficients C§ and C{" could be unambiguously com-
puted only up to constant (that is g-independent) contributions. To avoid the ambiguity
we present below their Q?-derivatives:

2 d_ o _ 1 711
@ dQ2 16712[ 10 20"
1 7
+ aj 1_80An9 144nfTFn
67 3 10663 473
2 2 2 2
+a {12960 any + g TrCeny — 51840’” aleng + Erge e
11 109
+ %zwqﬁng - 17285wnchTan + 13 z#qngﬂ
11 1
+EC3C'zng + %anfCATan — 2—0C3n?TanH .
(4.1)
d a? 121 11 1
2 S) 2 s 2 22
2 ¢ — = C.T, 272n,
@ gz G0 (@) 167r2{ 1206 7" T g Cat e T gyt } (42)
N .
a 2
=T a0 ne
h
where ; C1Cs Ty
D) 3

4For an SU(N) gauge group these are dr = N, Ca = 2T%N and Cr = Tr (N —

2|~
~—



is the first coefficient of the perturbative expansion of the S-function (1.12). This result
for QQ# ST) is in agreement with the one derived in [20] for the case of gluodynamics
(ny = 0) at order a, (two-loop level). The simple form of eq. (4.2) comes from the well-

known trace anomaly [16, 22], which reads

T — @ (G2, G*7] = =2 B(as) [O1]. (4.3)

Indeed, from operator eq. (4.3) we expect that
i/d4:v el OT[T*,(2)17,(0)]]0) = 4 8%(a,) Q* TI9Y(¢?) + contact terms, (4.4)
where
Q'TIOC(q?) = i [tz e (O[T (01(@)0 (0)]0). (4.5

Now the one-loop result

Q-2 e () =

0 = ———n, + contact terms (4.6)

6472

leads directly to eq. (4.2) The fact that this particular three-loop result can be derived
from one-loop results is also the reason for the lack of (-functions in it. Furthermore the
structure of eq. (4.3) explains nicely why the leading contribution for this scalar piece is of

order a?.

In fact, the correlator (4.5) is known in two-, three- and four-loop approximations from
works [23],[24] and [1] respectively. The four-loop result reads (with all colour factors set
to their QCD values and 1,,; = 0)

d 1 73 7
2 & GG 2\ _ _ o 7
@ @) 16w2{ 2'%a5< 2’*37”>

1 12
C3 +ny [@ _ §C3] _ —7712)

72 2 54 1

g BT 4

368203 11677< +—9§C}
108 18>°

207 113 7127 2
648 Cs] [m - 2—7C3]> } (4.7)

+ ny

—i—n

( 15420961 44539 3465



Finally, using eq. (4.4) and the well-known result for the four-loop QCD f-function [25, 26]
we could easily extend the rhs of (4.2) by three more orders in a:

2
2 S) oy _ @y ) 121 22 2,
@ dQ2 (@) = 167r2{ B T s

11077 | 1025 25 5, T
as | ——=—+—n
s 72 36 7T 162" T 243 n

2( 5787209 6655 {540049 4235 } 2[ 556555 275
_ 3+ ng

s 1728 16 68 72 | T T T 108
. 3 {29071 _ig} 127
111664 1627 4374
3 (2351076745 5925007 46585 .
a — —
s 31104 288 16 P
{367411229 33359777 - 240185 C]
n —
J1 715552 76 S >
. 2 {_ 381988321 3715127 - 12485<}
f 139968 11664 > 972
3{20279497 180083 bt C}
f 17139968 17496 1458 °
1101389 427 7127 9
4
- el 2 4.8
tny [ 314928 +2916<3} o {236196 2187C3]>} (4.8)

4.2

According to the definition of C1"**? in eq. (3.5) there is a factor (Q2)2 in front of the

dimensionless scalar pieces Cfs) and C(T) which makes the whole coefficient immune to

contact terms except for those proportional to the tensor structures t"?(¢q) and ¢£""7
defined in eq. (3.2). The physical pieces Cf ) and Cf ) however are unambigous and the
results read:

C:ES) - as{ 2C"A 8 nfTF}

27

+ a {32402 ;nfTFCF—E%nfCATF—Siln?Tg}, (4.9)
o = af-Ze-Zur)

+a§{—@02 ggnfTFcF 44312nf0ATF 216 iTQ} (4.10)

(S)

One thing to notice about C}" is that if we take the trace of both energy-momentum tensors
the whole term 7%, (q)1", (¢) rgzy= (QQ) C’f ) in the Wilson coefficient becomes local and, therefore,
indistinguishable from contact terms. We can however check eq. (4.9) independently by

,10,



(TG,T)
1

computing first the coefficient function C' in an OPE ( tg” =g G B = q* Juv —

9. q)

i / A4 9% T[TH(2)G2,(0)

g2 ——o0

(TG,S) (TG,T) (TG,S) (TG,T) [O4] (4-11)
(e + e ) 14 (o O 4 o tgw)@-i-...
and then employing eq. (4.3) to get the next higher order in «, for C’fs). The result
16 22 8 16

allows to represent the rhs of eq. (4.9) in a form directly confirming eq. (4.3):

pla)
6

CfTG,T)

8
Cf = +0(a)) = —g Alew) (1+65(as)/2) +0(a?). (4.13)
The factor B(a,) in this result is a direct consequence of the trace anomaly equation (4.3).
However, we do not know any rationale behind the peculiar structure after this factor.
If it is not accidental, then one can hope that an explanation could be found within the

so-called f-expansion formalism suggested in [27].

It is important to note that the coefficient functions C£S) and C’fT) are not Renormalization
Group independent. We can construct the corresponding RG invariants by using the well-
known fact® that the scale invariant version of the operator O is

O{%GI = B(as) [01], B(as) — _B(as) = ag (1 + Z ﬂ—;aé) . (414)

Bo =

From this and the scale invariance of T##?(q) defined in eq. (1.1) we find the RG invariant
Wilson coefficients

Cfi)?GI = Cfs) /B(as)

R (4.15)
Cg%GI = CfT) /Blas)

which satisfy
Cfi’%TG)IO{%GI = c*[0y]. (4.16)

From this definition we can immediately explain the absence of ,,4 in eq. (4.9) and eq. (4.10).
) 3)

and therefore in Cf hey then the general structure of eq. (4.15)
up to three-loop order would be

Suppose we had [,,4 in Cfs

Cfi,%TG)I = (a1 4 b1 Lug) + as(ag + ba lug + c217,)

2 2 3 3 (4.17)
+ag(as + b3 lug + sl +dsly,) + O(ay)

5This follows directly from the RG invariance of the energy-momentum tensor and the trace anomaly
equation (4.3).

— 11 —



with scale independent coefficients a;, b;, ¢; and d;. The derivative with respect to ,uQ must
vanish:

d
W e (e = b1+ as(ba + 22 1) + asBlas)(az + byl + 2 12,)

+a2(bs + 2c3 Ly + 3d3 12,) + O(a) =0 V2
(4.18)

= b1 =0

=by=0,c0=0

= b3z = Poag, c3 =0, d3 = 0.
In conclusion, not only have we explained the absence of logarithms in eq. (4.9) and
eq. (4.10) but we also get the logarithmic part of the three-loop result for these coeffi-
cient functions for free. Terms with lﬁq can only appear starting from four-loop level,
terms with lzq from five-loop level and so on.
The quantities defined in eq. (4.15) are given by

e = 20, — En, Ty — & (11C, — 4n,Ty)? (4.19)
T
(ﬁﬁm:=—%MCA+nﬂ}%+%ﬂﬁaﬁzwﬁj@MC§+8mC%wﬂ?
+3537C,Cpn;Tr — 672C,n3T7 — 1728Cxn3T2 + 16n3T}) (4.20)

The three-loop parts proportional to [, are

(S,3Llog) 9 1331C% | 121 2 11 27 3
Crrar = 2lug | — 5385~ + 551 CansTr — g1 CaniTE + 5330 TH (4.21)
C(T 3llog) _ 2l 214C3 +876C% n s Tr+3537TC A CpnsTp— 6720An2T2 17280Fn2T2 +16n3T3 199
1,RGI nq 10368 )

For completeness we have also computed the contribution of the gluon condensate to the
OPE of correlator (4.5):

QI (¢%) = C§9Q* + CY9(0][04])0) (4.23)

q—)OO

with the result:

49 5 1
CPY = — 1+ a (——CA+§nfTF 12l,LqCA+§lwnfTF)
11509 13 3095 25
% Tag6 Ot 4fﬂ@‘6@m@ﬂ 51"
1151
zm%ﬁ+zmn@ 7%m@n—7%@ﬂ
4.24)
121 2 2 2 2,2 2 2 (
o mluqc 1_8luqnfCATF 9 luq fT §C3CA

=3G3nTrCr + §C3nfCATF)

2
4+ & (—%Cﬁ + infTFCF + %nfCATF) .

£

- 12 —



The tree and one-loop contributions in (4.24) are in agreement with [8] and [28, 29] corre-
spondingly. The two-loop part is new and has a feature that did not occur in lower orders,
namely, a divergent contact term. Its appearance clearly demonstrates that non-logarithmic
perturbative contributions to C%¢ are not well defined in QCD, a fact seemingly ignored
by the QCD sum rules practitioners (see, e.g. [6, 30]).

An unambiguous QCD prediction can be made for the derivative:

d 11 1

dQ
1151 97 10
+ a? ( 516 C% —n,TpCp — 27nfCATF 5 nIT? (4.25)
72 lﬂqCQ 5 z,anchTF lwn 2 ) .

5 Numerics

In this section we will give our main results in the numerical form for two cases of interest,
that is gluodynamics (ny = 0) and QCD with three light quarks only (ny = 3). As
has already been mentioned, not all coefficient functions which we have discussed in the
previous section are Renormalization Group independent. For a meaningful discussion we
will construct the corresponding RG invariants by using the scale invariant version of the

operator O; defined in eq. (4.14). In addition we set [,, = 0 everywhere.’

2 T) 4 _ _ 2

Q dQ2 — T (1 1.66667 a; — 30.2162 as) , (5.1)
2 T) _ 5 _ _ 2
Q dQ2 = (1-06a,—15.198342), (5.2)
9 (S) 121
Q- Q2 — e a? (1+22.8864a, + 423.833a2 + 8014.74a3 ), (5.3)
2 4 o) 9 21 1830564, + 247 4802 + 3386.4107 5.4
Q @ 0 nf=3_32772a3( + 18. as + 247.48a% + . as), (5.4)
Q> — CUeRGL —a?(1419.7576a,), CECH = B(a,)CCY,  (5.5)
dQ2 nf—O 4
d 9
o CYONOT — Za? (1+15.3889a,) (5.6)
s 22 S S) 4

Clier = (1-13T5a5), Ol = O /3(a,) (57)
e (1-1.125a,), (5.8)

5 .
o — 5 (1-02431825a,). O\ e = 7 /Bay), (5.9)

(1) 15 .

Ol nar == T (1-1.3333a,). (5.10)

5This corresponds to the choice p? = Q? for the renormalization scale.

,13,



6 Applications to high-temperature QCD

Recently, the correlators TI¢¢ and T#"#?(q) have been studied in (Euclidean) hot Yang-
Mills theory in [31, 32] respectively (see, also references therein for related earlier works).

In this section we will employ our T = 0 calculations in order to extend some of the results
of these publications by adding fermionic contributions as well as higher order corrections.
Note that for simplicity we will set all colour factors in all expressions below to their QCD
values. The reader interested in expressions valid for generic colour group should be able
to derive the corresponding results himself from our results.

6.1 Trace anomaly correlator

In [31] two-loop corrections to the quantity”
Go(X) = (T[O(X)0(0)])e, 0=T", (6.1)

where (...). stands for the connected part and the expectation value is taken at finite
temperature® T, have been computed. The capital case X for the space-time argument
in (6.1) is used in order to stress that we are dealing with a Euclidean correlator. In
the following e and p = |q| are the energy and momentum densities with the well-known
relation (f). = e — 3p. In the limit of small r = |X| the result of [31] reads *

4a? 384 _ 8as (#). _ 64(e +p) _ T
ﬁz(as)Ge(T’) — 4,8 Yo;1(r) — W%;G(T) - WWe;e+p(T) + O(T_Q)’
(6.2)
with

_ o 3 1, 11 .
Y61 (T) = dg + ag _E + ? luX + O(as)7 (63)
o (r) = 22a3 + O(a3), (6.4)

15 11

Yoresp(r) = a2 + a’ (5 + 5 lux ) +O(a$), (6.5)

and l,,x = log(p?X?/4) + 2.

According to [34] the coefficient functions 7.1 and 7s.4(r) do not depend on temperature
T and, thus, should coincide with their T = 0 counterparts. Hence, we can use our
momentum space results described in previous sections to arrive at the following QCD

"Note that G(0, X) has been directly measured in lattice simulations [33].

8We use the bold case for the temperature to make it distinct from 7(...) standing for the time ordered
product of operators inside the round brackets.

9The expression below is the somewhat modified eq. (5.7) of [31].
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predictions for both coefficient functions'®.

B Lo, [1 L }+4 49 495C 97
Yo (r) = @ + a3 12 " WX TRITIg Ty )T Ty 3t nX

363 35 5 43 11 13 1
+ = lx o+ f{ + Cs——lux—zlﬁx}+n§[——+ x + 35 l D

16 144 48T 12 216 36
s (L2155 2015 3465 20891 5445 545 1793 1793 1331 1831 5
s 1728 16 277 8 T 192 X 3tux +
138741 16685 4241 121
2000 L L - P - 200 55Gs Lux — o lix — =1
+ ny T738 C3 C5 rg x t Glux ]
361 125 91 5 289
2 3
i — 2641 2y Ry
op o1 T @ Trgg X 643 X T T ]
r 37 13 1
3 3 6
oL lix — —= Py — =1 10 6.6
| 1158 27C3+ 324 X T 08 WX T 5y “XD +0(a,), (6.6)

_ 4
Yo,0(r) = a? (22 —3 nf)

788 304 44 8 4
t+a (+7+121lﬂx+nf [—7—§lux]+ 2[27 —luxDJrO(aﬁ)- (6.7)

Note that our vacuum calculations produce no information about the coefficient function
Y6:e4+p corresponding to the traceless part of the energy-momentum tensor.

Numerically egs. (6.6) and (6.7) read (we set [, x = 0)

Yo (r) = a? —0.08333a> — 76.4189 a* + 82.4604a’ + O(ab), (6.8)
nf:
- 2 3 4 5 6
Yo.1(7) = a5 — 0.25a; — 73.1821 a; + 142.705a. + O(a,), (6.9)
nf:
Yo.0(r) — 2 <a§ + 11.9394a§> + O(ad), (6.10)
Voso(r) == 18 (a§ +9.11111 af) + O(ad). (6.11)
ny=

6.2 Shear stress correlator

In [32] the so-called shear stress correlator, defined as

Gy(X) = =16, (T[T"*(X) T"*(0)]). (6.12)

9The details of the corresponding Fourier transformation are spelled e.g. in [35].
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with X = (X, X), X = (0,0, X3), has been computed up to two-loops in high-temperature
Yang-Mills theory. Here ¢, is an arbitrary constant (introduced for some reason that is
not quite clear to us in [32]) which we put for simplicity equal to i/4. The calculation
has been performed with the help of an ultraviolet expansion valid in the limit of small
distances or large momenta; the result has been presented in the form of an OPE. As
the corresponding Wilson coefficients should be T-independent the results of [32] can be

checked and extended further with the help of our calculations.!!

We start from momentum space. In the zero temperature limit the function
Col@) = [ d'X 69V G, (x)

is related to contribution to energy-momentum tensor correlator (1.1) proportional to

the tensor structure ¢£?(¢q). This fact could be easily checked by applying pro-
jector (2.5) of [32] to the correlator T#"#?(q) expressed in terms of five independent

tensor structures displayed in (3.2). The result reads —8Q*(1 — 7/2¢ + 7/2¢2 —
&%) (CR(Q%) +CRQ) 2 + ).

Thus, we will work with the representation

(0[6]0)

TP () 7

— ) (CRQ) + @

+.. ) + structures 1-4  (6.13)
q?——o0
We first concentrate on the coefficient function C3(Q?) as the two-loop expression for
C3(Q?) presented in [32] is in agreement to the previously known expression obtained in
[20]. The result of [32] for the second term in eq. (6.13) reads:

Cp(Q%) = _35; o (1 - ﬁ04as In C12>, (6.14)
where (15 is an unknown constant. Note that the second term of the above expression
is obtained not from a calculation but with the use of Renormalization Group considera-
tions similar to those leading to eq. (4.18). Such a derivation assumes that the coefficient
function Cg’ is finite which is not obvious as the corresponding Feynman integrals have loga-
rithmic divergences stemming from the region of small z in eq. (1.1). Our direct calculation
explicitly demonstrates the presence of such divergences:

1 a7 117 457 1
C(S) 2 — 1 = _ 2 - . 2
0 Q)= 55y T\ T ass ) T\ 5 e e Y

a, (11 1 a2 (51 19
=== === . 1
+€<4 6nf>+5<8 24”f>} (6.15)

HThe Wilson coefficients in front of Lorentz non-invariant operators are for the moment not reachable

with our projectors. It would be interesting however to extend these methods in order to reach e.g. the
coefficient in front of (T%) ~ e + p with a similar approach.

,16,



It is important to note that the contribution proportional to C’g in (6.13) contains contact
terms only. This is in agreement with (4.10) due to an identity

CfT) — C£5) = contact terms, (6.16)

which, in turn, follows from restriction (3.3) (recall that Cé5)(Q2) = CfS)/(—Q B(a,)) as a
consequence of (4.3)).

In Euclidean position space eq. (6.13) can be presented as follows:

THV;PU(X)

r—0

(5“p5”0+5“05”p> {C’i’(r) 1+C5(r) (0]0]0) +. .. }—l— structures 1-4 (6.17)

Eq. (6.16), rewritten in terms of RG invariant quantities assumes the form:
Cf;%GI - 205 00(5) = contact terms. (6.18)

By recalling that the contact terms do not contribute the function G, (x) for all x # 0 we
conclude that egs. (6.15) and (4.22) contain all information to construct the first non-zero
term O(a?) in the coefficient function Cj(z) with the result

2
2 BoC5(r) = —= <£7+1—7 > ! ) (6.19)

2\ T2 T T T Esa ™
Finally, using the identity
CST) — 00(5) = contact terms, (6.20)

and (4.1) we arrive at the following result

m™r8] 5 5 5
259 27 109 o[ 41 6 7
_— — —— + =3 ——=1 . 21
nf{ 120 C3 ED) uX]+ f[ 904—5(3 18 uX])} (6.21)

Numerical versions of egs. (6.19) and (6.21) with [, x = 0 are presented below.

~ 1 48 9 7 711 1188
Ci?(:c):—{——k—nf%—as( 16—|—3nf>+ <—_—<3_44l,uX

2

- a? (107

280 Cj () — {@ = 0.557292}, (6.22)
=5 a? [45
25y Cy () E 2,1\ 16 2.81250 o, (6.23)
C?(x) 8 1 () 166667a, — 14.938402 (6.24)
1(x m0 5 i . a, . a; |, .
Cia) = —5(1-06a,-10. 6983 a* (6.25)
f 7”
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7 Discussion and Conclusions

We have presented higher order corrections to coefficient functions Cy and C of the OPE
of two energy-momentum tensors in massless QCD as well as for the OPE of two scalar
“gluon condensate” operators in massless QCD. Our results extend the previously known
accuracy by one loop for the coefficient functions in front of the unit operator and by two
loops for the CF of the gluon condensate operator O = —%G‘“’ Guv-

We have confirmed all previously available results and in some cases extended them from
purely Yang-Mills theory to QCD. Contrary to previous assumptions, we have found that
the coefficient functions CF as well as C’é5) (Q?) are not completely finite with the standard

QCD renormalization.

We thank H. B. Meyer who has drawn our attention to the importance of the energy-
momentum tensor correlator. Furthermore we would like to thank Y. Schréder, A. Vuorinen
and M. Laine for useful comments.

We are grateful to J. H. Kiihn for interesting discussions and support.

In conclusion we want to mention that all our calculations have been performed on a SGI
ALTIX 24-node IB-interconnected cluster of 8-cores Xeon computers using the thread-
based [36] version of FORM [37]. The Feynman diagrams have been drawn with the Latex
package Axodraw [38].

This work has been supported by the Deutsche Forschungsgemeinschaft in the Sonder-
forschungsbereich /Transregio SFB/TR-9 “Computational Particle Physics”.

A Results for ¢} and C\”, r =1...5 and conversion to C{>") and C{*"

Here we give our intermediate results for the coefficients CO(T) and C'Y) (r=1...5) ap-
pearing in the first line of eq. (3.5), i.e. the coefficients for the tensor structures eq. (3.2)
before subtraction of contact terms:

cl” =ckm, (A1)
cl” = %cf‘ ™), (A.2)
The conservation of the energy-momentum tensor in classical field theory translates to
0, T"” =local terms [16]. (A.3)
From this we get the relation
q,C!""*?(q) = (local) contact terms (i = 0,1) (A4)

which leads to the three restrictions serving as checks in our calculation:
DZQ)(QQ) = Ci1(Q%) + Ci2(Q?) +2Ci 3(Q%) = (local) contact terms,
DZ(Q)(QQ) = CM(QZ) + Ci74(Q2) = (local) contact terms, (A.5)
302 .
(2

D 3)(Q ) = Ci,3(Q2) + C,‘75(Q2) = (local) contact terms.
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Hence the subtraction of contact terms enables us to write the Wilson coefficients in terms

of only two independent tensor structures eq. (3.4) which are related to the original five by
the following equations:

CN@) = ~Cual@) = 5y @),

Cz‘(T)(QQ) = —C;3(Q%).

(A.6)

A1 ¢ r=1..5
These coefficients fulfill the relations eq. (A.5) even without local terms:

DIM(Q?) = Co1(Q%) + Co2(Q) +2Cos(Q2) =0,
DPQ?) = Co2(Q%) + Cou(@Q?) =0, (A7)
D(Q?) = Cos(Q%) + Cos(Q%) = 0.

Hence it is enough to give Cp 4 and Cp 5 here:

1 11 109 7
(16772) Cous = +€—2 { a?C%n, + ——a*n;C\Trn, — a2n2T2ng}

1044 15552 ¢ 3888 ¢ /TF
* é {_% 310"f dn+ 5146‘50/*"9 N 43%@3"" Teny = 1136564“z i,
+La n;TpCrn, — 809 afnfCATan + afn?Tgng}
192 93312 23328
— %ng — %nde 15lw n, — Olwnde
+ a, {—{—1168270 ANy — %nﬂ} Ny 7l,quAng - %luq”fTF”g
+3C30Ang + 1—106371pr719}
9974210l“q02 64l“q"fTFCF"9 ;iiggl“q"f CaTrn, + 9579230l“q e,
—ézzqczng 5184z§qnchTFn —%%zﬁq iTin,

5
——C5C§ng C5nfTFCFn + C5nfCATFn
563 19
720<3 aly %anfTFCan - %C?)nfCATan - @Csn?ﬂg“g
1 1
—l-@Cglquzng + ZOCgl“qnfCATan - %Cglﬂqn?Tgng} ,
(A.8)
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1 1 109
(167‘1’2) 0075 == + {—F% fo‘ng — a2nfCA
1 1

1 7 1 5o
{ 1™ + 20nde %asCAng + @asnfTan - @ascAnQ
1

415 35
2 2 2, 2m2
L Ton. — T
128" 20736“5""0/* Mo T gy M an}
9

3
T 00" T g5t 10l“q"9 * 20l“q”f @

1 1367 7
+ a, {—%C s+ 8640nfTFn 18lqu’Ang + 144lwnfTan

3 3
1OC3CAn 20<3nfTan}
9 { 343429 307 983059 109129 2T,

_ Ut IO O Ton, — 22
933120 ang 1440 s T 1866240 41 T Zge560 "

67 10663 173
" 12960 bug zny 128 luqnfTFCan 51840 ——— 1, n;CiTen, — ———

+@l#qc 3456lwnfCATpn + @l#qn TF’I’Lg

563
48063 altg

g?,z Cn, ggzwnchTFn + Csl#qn?TQ }

2 2T2n }
2502 """

_l’_

29 19

(A.9)

A2 ¢ r=1..5

Here we give the five coefficents

4 7
Cl,l —=Ag4 {gcA - 1—8’1’LfTF}

3 (A.10)
+ af {gnfTFCF

1
—n;CyTy —

1 22
T
36 18" }

18

1
01,2 =0y {_CA —|— anTF}

. (A.11)

83 25
+a? { 02 + —n;T-Cr + 516

5
T n2T?
1" 216 48 2160 r + 108 }

108"

)
01,3 = { Ca+ 72nfTF}

43

+a { C% - —n,T:.C 41 CuTr + — ! 2T2} )
432 06 T EYE T g3 AT T o1

,20,



1
CA - §nfTF}

161 17
a, {%CA - mnfTF} (A.13)

+ (T)|cnQ

W = A W=
C«O|}—‘
=

_l’_

+
o |8,

@ D

+
S

Q
|
!

11
18

41 7
+a, {—ch - ﬁnfTF} (A.14)

17 1
02
{ 5

137 61 1

2 4 n2T2
T

{ = 288 nTrCr + 432 nyCalr = 2167 }

—a,C, + 9a nfTF}

| olR
) wlw,—/h\oolw
« N

+
o |

5
-n/TCr + 8nfC'ATF}

+
g[\’)

)

which fulfill the relations eq. (A.5):

p{Y =0,
D§2) =local # 0, (A.15)
Dgs) =local # 0.

This is an important check as for the coefficent C1"**? only counterterms of the form
th"?7104] and t£V**7[O4] are possible. Counterterms proportional to the other tensor struc-

tures would not be local. Hence D11 = 0 is necessary.
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