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Abstract

The analytic result for the singlet part of the Adler function of the vector current in a general gauge theory is presentedin five-
loop approximation. Comparing this result with the corresponding singlet part of the Gross-Llewellyn Smith sum rule [1], we
successfully demonstrate the validity of the generalized Crewther relation for the singlet part. This provides a non-trivial test of
both our calculations and the generalized Crewther relation. Combining the result with the already available non-singlet part of the
Adler function [2, 3] we arrive at the completeO(α4

s) expression for the Adler function and, as a direct consequence, at the complete
O(α4

s) correction to thee+e− annihilation into hadrons in a general gauge theory.
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1. Introduction

The Crewther relation (CR) [4, 5] connects in a non-trivial
way two seemingly unrelated quantities, namely the Adler
function [6] and perturbative corrections arising in the sum
rules relevant for deep inelastic scattering (DIS). Originally the
CR had been formulated for the case of a conformal-invariant
gauge theory. Subsequently, observing a close relation between
theO(α3

s) terms in the Adler function and the corrections to the
Bjorken sum rule, its generalization for the case of QCD was
suggested in [5], introducing as modification additional terms
proportional to thebeta-function. A more formal argument for
the validity of this “generalized Crewther relation” (GCR)was
given in [7, 8]. During the past years the perturbative correc-
tions both for Adler function and Bjorken sum rule were ex-
tended fromO(α3

s) [9, 10, 11, 12] toO(α4
s) [2, 3]. However,

these results were restricted to the respective non-singlet parts.
Nevertheless, they could be used to demonstrate the validity of
the GCR between non-singlet Adler function and Bjorken sum
rule [13, 14], thus providing at the same time an important cross
check of the underlying, demanding calculations.

TheO(α4
s) singlet piece of the sum rule was published in [1],

thus completing the prediction for the Gross-Llewellyn Smith
(GLS) sum rule [15]. Below we give the corresponding result
for the Adler function. On the one hand this leads to a predic-
tion of the familiarR-ratio measured in electron-positron anni-
hilation, including the (small) up to now missing singlet pieces
of O(α4

s), on the other hand this result allows to test the GCR
also for the singlet case.

2. Singlet O(α4
s) contributions to the Adler function and

R(s)

For the definition of the Adler function it is convenient to
start with the polarization function of the flavor singlet vector
current:

3 Q2Π(Q2) = i
∫

d4x eiq·x〈0|T jµ(x) jµ(0)|0〉 , (1)

with jµ =
∑

i ψiγµψi andQ2 = −q2. The corresponding Adler
function

D(Q2) = −12π2Q2 d
dQ2
Π(Q2) (2)

is naturally decomposed into a sum of the non-singlet (NS) and
singlet (SI) components (see Fig. 1):

D(Q2) = nf DNS(Q2) + n2
f DS I(Q2) . (3)

Here nf stands for the total number of quark flavours; all
quarks are considered as massless. The Adler functionDEM

corresponding to the electromagnetic vector currentjEM
µ =

∑

i qi ψiγµψi (qi stands for the electric charge of the quark field
ψi) is thus given by the following combination:

DEM =

(

∑

i

q2
i

)

DNS +

(

∑

i

qi

)2

DS I . (4)

Similar decompositions hold for the corresponding polarization
functionsΠ andΠEM.

The physical observableR(s) = σ(e+e−→hadrons)
σ(e+e−→µ+µ−) is related to

ΠEM(Q2) by the optical theorem

R(s) = 12πℑΠEM(−s− iǫ) . (5)

The result for the perturbative expansions of the non-singlet
part (as ≡

αs

π
)

DNS(Q2) = dR

(

1+
∞
∑

i=1

dNS
i ai

s(Q
2)
)

(6)

has been presented in [3]. For the singlet part it reads:

DS I(Q2) = dR

(
∞
∑

i=3

dS I
i ai

s(Q
2)
)

, (7)

where the parameterdR (the dimension of the quark color rep-
resentation,dR = 3 in QCD) is factorized inboth non-singlet
and singlet components.
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Figure 1: Lowest order non-singlet (a) and singlet (b) diagrams contributing to the Adler function.

The singlet component has the following structure at orders
α3

s andα4
s:

dS I
3 = dabcdabc/dR

(

11
192 −

1
8 ζ3

)

, (8)

dS I
4 = dabcdabc/dR

(

CF dS I
4,1 +CA dS I

4,2 + T nf dS I
4,3

)

. (9)

Here CF and CA are the quadratic Casimir operators of the
fundamental and the adjoint representation of the Lie algebra,
dabc = 2 Tr({ λ

a

2 ,
λb

2 },
λc

2 }), T is the trace normalization of the fun-
damental representation. For QCD (colour gauge group SU(3)):

CF = 4/3 , CA = 3 , T = 1/2 , dabcdabc = 40/3 .

Using the methods described in [16, 17, 18, 2, 19, 3] we
obtain

dS I
4,1 = − 13

64 −
1
4 ζ3 +

5
8 ζ5 , (10)

dS I
4,2 = 3893

4608−
169
128 ζ3 +

45
64 ζ5 −

11
32 ζ

2
3 , (11)

dS I
4,3 = − 149

576 +
13
32 ζ3 −

5
16 ζ5 +

1
8 ζ

2
3 . (12)

With the use of eqs. (10)-(12) and the result forDNS from [3]
we arrive at the complete result for the ratioR(s) at orderα4

s in
(massless) QCD:

R(s) = 3
∑

f

q2
f

{

1+ as + a2
s

(

365
24 − 11ζ3 −

11
12 nf +

2
3 ζ3 nf

)

+ a3
s

[

n2
f

(

151
162 −

1
108π

2 − 19
27 ζ3

)

+ nf

(

− 7847
216 +

11
36 π

2 + 262
9 ζ3 −

25
9 ζ5

)

+ 87029
288 −

121
48 π

2 − 1103
4 ζ3 +

275
6 ζ5

]

+ a4
s

[

n3
f

(

− 6131
5832+

11
432 π

2 + 203
324 ζ3 −

1
54 π

2 ζ3 +
5
18 ζ5

)

+ n2
f

(

1045381
15552 −

593
432 π

2 − 40655
864 ζ3

+ 11
12 π

2 ζ3 +
5
6 ζ

2
3 −

260
27 ζ5

)

+ nf

(

− 13044007
10368 +

2263
96 π2 + 12205

12 ζ3 −
121
8 π2 ζ3

− 55ζ2
3 +

29675
432 ζ5 +

665
72 ζ7

)

+ 144939499
20736 −

49775
384 π2 − 5693495

864 ζ3 +
1331
16 π2 ζ3

+ 5445
8 ζ2

3 +
65945
288 ζ5 −

7315
48 ζ7

]

}

+

(

∑

f

qf

)2{

a3
s

(

55
72 −

5
3 ζ3

)

+ a4
s

[

nf

(

− 745
432 +

65
24 ζ3 +

5
6 ζ

2
3 −

25
12 ζ5

)

+
(

5795
192 −

8245
144 ζ3 −

55
4 ζ

2
3 +

2825
72 ζ5

)]

}

, (13)

where we setµ = Q. The full results for Adler function
andR(s) for generic color factors and generic value ofµ are
rather lenghty and can be found (in computer-readable form)in
http://www-ttp.physik.uni-karlsruhe.de/Progdata

/ttp12/ttp12-017. Numerically, it reads:

R(s) = 3
∑

f

q2
f

{

1+ as + a2
s

(

1.986− 0.1153nf

)

+ a3
s

(

− 6.637− 1.200nf − 0.00518n2
f

)

+ a4
s

(

− 156.608+ 18.7748nf − 0.797434n2
f

+ 0.0215161n3
f

)

}

−

(

∑

f

qf

)2
(

1.2395a3
s +

(

17.8277− 0.57489nf

)

a4
s

)

.

Specifically, for the particular values ofnf = 4 and 5 one
obtains (for the terms of orderα3

s andα4
s we have explicitly

decomposed the coefficient into non-singlet and singlet contri-
butions):

Rnf=4(s) =
10
3

[

1+ as + 1.5245a2
s

+ a3
s

(

− 11.686= −11.52− 0.16527S I
)

+ a4
s

(

− 94.961= −92.891− 2.0703S I
)

]

, (14)

Rnf=5(s) =
11
3

[

1+ as + 1.40902a2
s

+ a3
s

(

− 12.80= −12.767− 0.037562S I
)

+ a4
s

(

− 80.434= −79.981− 0.4531S I
)

]

. (15)

Note that fornf = 3 the singlet contributions vanish in every
order inαs as the corresponding global coefficient (

∑

i qi)2 hap-
pens to be zero. Implications of this result for the determination
of αs in electron-positron annihilation and inZ-boson decays
are discussed in [20].
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3. GLS sum rule at orderO(α4
s) and the Crewther relation

The second quantity of interest, the GLS sum rule,

1
2

∫ 1

0
F3(x,Q2)dx= 3CCLS(as), (16)

relates the lowest moment of the isospin singlet structure func-
tion Fνp+ν̄p

3 (x,Q2) to a coefficientCCLS(as), which appears in
the operator product expansion of the axial and vector non-
singlet currents

i
∫

T Aa
µ(x)Vb

ν (0)eiqxdx|q2→−∞ ≈ CV,ab
µνα Vα(0)+ . . . (17)

where

CV,ab
µνα = δ

abǫµναβ
qβ

Q2
CGLS(as)

andVα = ψγαψ is a flavour singlet quark current. At lastAa
µ =

ψγµγ5taψ, Vb
ν = ψγνt

bψ are axial vector and vector non-singlet
quark currents, withta, tb being the generators of the flavour
groupS U(nf ).

Again diagrams contributing toCGLS(as) can be separated in
two groups: non-singlet and singlet ones (see Fig. 2):

CGLS = CNS +CS I , (18)

CNS(Q2) = 1+
∞
∑

i=1

cNS
i ai

s(Q
2) , (19)

CS I(Q2) =
∞
∑

i=3

cS I
i ai

s(Q
2) . (20)

The results for both functionsCNS andCS I at orderα3
s are

known since early 90-ties [12]. Note that as a consequence of
chiral invariance the closely related Bjorken sum rule receives
contributions from the non-singlet piece only [12]:

CB jp ≡ CNS. (21)

The O(α4
s) contribution toCB jp has been computed some

time ago [3]. The calculation of theO(α4
s) contribution toCS I

has been published in [1] for a generic gauge group and is re-
peated below:

cS I
3 = nf

dabcdabc

dR

(

cS I
3,1 ≡ −

11
192
+

1
8
ζ3

)

, (22)

cS I
4 = nf

dabcdabc

dR

(

CF cS I
4,1 +CA cS I

4,2 + T nf cS I
4,3

)

, (23)

cS I
4,1 =

37
128
+

1
16

ζ3 −
5
8
ζ5 , (24)

cS I
4,2 = −

481
1152

+
971
1152

ζ3 −
295
576

ζ5 +
11
32

ζ2
3 , (25)

cS I
4,3 =

119
1152

−
67
288

ζ3 +
35
144

ζ5 −
1
8
ζ2

3 . (26)

Using the input from eqs. (10-12) and (22-26), the validity
of the GCR can now be investigated. In fact, there exist two

of them [5], one involving the non-singlet parts only and one
involving also a singlet piece:

DNS(as) CB jp(as) = dR

[

1+
β(as)

as
KNS(aS)

]

, (27)

KNS(as) = as KNS
1 + a2

s KNS
2 + a3

s KNS
3 + . . .

and

D(as) CGLS(as) = dR nf

[

1+
β(as)

as
K(as)

]

, (28)

K(as) = as K1 + a2
s K2 + a3

s K3 + . . .

Hereβ(as) = µ2 d
dµ2 as(µ) = −

∑

i≥0 βiai+2
s is the QCDβ-function

with its first termβ0 =
11
12 CA −

T
3 nf . The term proportional

to theβ-function describes the deviation from the limit of exact
conformal invariance, with the deviations starting in order α2

s.
Relation (27) has been studied in detail in [3], where its va-

lidity at orderα4
s was demonstrated (a detailed discussion at

ordersα2
s andα3

s can be found in [5]).
Let us consider now eq. (28). Combining eqs. (3,18,21) and

(27) leads to the following relations between coefficientsKNS
i

andKi :

K1 = KNS
1 , K2 = KNS

2 , (29)

K3 = KNS
3 + KS I

3 , (30)

KS I
3 = kS I

3,1 nf
dabcdabc

dR
, (31)

with kS I
3,1 being a numerical parameter.

Thus, we conclude that eq. (28) puts 3− 1 = 2 con-
straints between two triplets of (purely numerical) parameters
{dS I

4,1, d
S I
4,2, d

S I
4,3} and{cS I

4,1, c
S I
4,2, c

S I
4,3} appearing in eqs. (9) and (23)

and completely describing the orderα4
s singlet contributions to

the Adler function and the Gross-Llewellyn Smith sum rule re-
spectively.

The solution of the constraints and eqs. (24-26) produces the
following relations fordS I

4 :

dS I
4,1 = −

3
2

cS I
3,1 − cS I

4,1 = −
13
64
−
ζ3

4
+

5ζ5

8
, (32)

dS I
4,2 = −cS I

4,2 −
11
12

kS I
3,1 , (33)

dS I
4,3 = −cS I

4,3 +
1
3

kS I
3,1 , (34)

whose validity is indeed confirmed by the explicit calculations.
As a result the remaining unknownkS I

3,1 is fixed as:

kS I
3,1 = −

179
384
+

25
48

ζ3 −
5
24

ζ5 . (35)

4. Conclusion

We have analytically computed coeffcients of all three colour
structures contributing to the singlet part of the Adler function
in massless QCD atO(α4

s). We have checked that all constraints
on these coefficients derived previously in [1] on the base of the
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Figure 2: (a),(b):O(α3
s) non-singlet and singlet diagrams contributing to the Gross-Llewellyn Smith sum rule; note that the coefficient functionCBjp is contributed

by only non-singlet diagrams.

GCR are really fulfilled. This is an important cross-check of
our calculations ofDS I, CS I and the very GCR.

The calculations has been performed on a SGI ALTIX 24-
node IB-interconnected cluster of 8-cores Xeon computers us-
ing parallel MPI-based [21] as well as thread-based [22] ver-
sions of FORM [23]. For the evaluation of color factors we
have used the FORM programCOLOR [24]. The diagrams
have been generated with QGRAF [25]. The figures have been
drawn with the the help of Axodraw [26] and JaxoDraw [27].

This work was supported by the Deutsche Forschungs-
gemeinschaft in the Sonderforschungsbereich/Transregio
SFB/TR-9 “Computational Particle Physics” and by RFBR
grants 11-02-01196, 10-02-00525.
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