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Abstract

The analytic result for the singlet part of the Adler funatiof the vector current in a general gauge theory is presantéde-
loop approximation. Comparing this result with the cormsging singlet part of the Gross-Llewellyn Smith sum rulg fte
successfully demonstrate the validity of the generalizezivher relation for the singlet part. This provides a niovidl test of
both our calculations and the generalized Crewther rela@mmbining the result with the already available non-gihgart of the
Adler function [2, 3] we arrive at the compla®a?) expression for the Adler function and, as a direct consecgieat the complete
O(a?) correction to thee*e~ annihilation into hadrons in a general gauge theory.
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1. Introduction with j, = X vy and@? = —g?. The corresponding Adler
functi
The Crewther relation (CR) [4, 5] connects in a non-trivial vnetion > 5o d >
way two seemingly unrelated quantities, namely the Adler D(Q) = -127°Q @H(Q) (2)

function [6] and perturbative corrections arising in thensu
rules relevant for deep inelastic scattering (DIS). Owdjinthe
CR had been formulated for the case of a conformal-invaria
gauge theory. Subsequently, observing a close relatiavelest D(Q?) = n; DNS(Q?) + n? DS(Q?). (3)
theO(a?2) terms in the Adler function and the corrections to the
Bjorken sum rule, its generalization for the case of QCD wadere ny stands for the total number of quark flavours; all
suggested in [5], introducing as modification additionafrte  quarks are considered as massless. The Adler fun&fdh
proportional to theévetafunction. A more formal argument for corresponding to the electromagnetic vector currgit =
the validity of this “generalized Crewther relation” (GCRas ¥, q y;y,¥i (g stands for the electric charge of the quark field
given in [7, 8]. During the past years the perturbative anrre y;) is thus given by the following combination:
tions both for Adler function and Bjorken sum rule were ex- )
tended fromO(a?) [9, 10, 11, 12] to0(a?) [2, 3]. However, DEM — (Zin)DNS + (Zqi) DS! 4)
these results were restricted to the respective non-sipgtes. i
Nevertheless, they could be used to demonstrate the yadiflit - ] N
the GCR between non-singlet Adler function and Bjorken sunpimilar decompog:\}lmns hold for the corresponding potien
rule [13, 14], thus providing at the same time an importaassr  functionsIl andI=*. . _

; ; ; The physical observablg(s) = Z&&=hadons)ig vajated to
check of the underlying, demanding calculations. phy (s) o(ee o)

TheO(?) singlet piece of the sum rule was published in [1], T5(Q?) by the optical theorem
thus completing the prediction for the Gross-Llewellyn 8mi .
(GLS) sum rule [15]. Below we give the corresponding result R(s) = 120 ST (=s - e) . (5)
for the Adler function. On the one hand this leads to a predicThg resylt for the perturbative expansions of the non-sing|
tion of the familiarR-ratio measured in electron-positron anni- _ as
. . . o . . part @s =
hilation, including the (small) up to now missing single¢pés i
of O(a?), on the other hand this result allows to test the GCR NS/ 2 NS i 2
also for the singlet case. D™(Q%) = dR(1+ Z 4 al(Q )) (6)
i=1

is naturally decomposed into a sum of the non-singlet (N8) an
n§inglet (SI) components (see Fig. 1):

2. Singlet O(e) contributions to the Adler function and ~ has been presented in [3]. For the singlet part it reads:
R(s)

For the definition of the Adler function it is convenient to D°(Q?) = dR(Z d°' als(Qz))’ 7
start with the polarization function of the flavor singletcter =3
current: where the parametek (the dimension of the quark color rep-
. 4 . ] resentationdr = 3 in QCD) is factorized irboth non-singlet
3QPI(QY) =i fd“x eT(0Tju(¥)#(0)I0) , (1) and singlet components.
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Figure 1: Lowest order non-singlet (a) and singlet (b) diags contributing to the Adler function.
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((5-34)

The singlet component has the following structure at orders (Z qf)
3 4.
az andag: .
4 2
dSI _ dabcdabcd 11 1 8 +a3[nf(_zli3‘g+g_z51§3+g§3_%g§5)
3 = /R(@_éﬁ), (8) +(@_%§3_@§2+@§5)]} (13)
d§| - dabC dabC/dR (CF di:lL + CA dilz +T N diilg) ] (9) 192 144 4 53 72 ’

where we sefu = Q. The full results for Adler function

Here Cr and Ca are the quadratic Casimir operators of theand R(s) for generic color factors and generic valueofire

fundamental and the adjoint representation of the Lie aklgeb : .
be 2 oaby e . o rather lenghty and can be found (in computer-readable form)
d®°=2Tr({%, 5}, 51), T isthe trace normalization of the fun- http: //wwi—tto. physik i ~karlsruhe.de/Progdat
damental representation. For QCD (colour gauge group SU(3) Pi/ /- R PAYSLE. T sar ST e de/frogdata
P ' gauge group /ttpl2/ttp12-017. Numerically, it reads:

Cr=4/3, Ca=3, T=1/2, d®°d°=40/3.
F=4/3, Ca=3, / / R(s)=32q%{1+as+a§(1.986— 0.1153ny)
f

Using the methods described in [16, 17, 18, 2, 19, 3] we +a§(— 6.637— 1.200n; 0.00518n$)
obtain

+ a3 ( - 156608+ 18.7748n; — 0.797434n?

dp1 = —H-il+5s, (10)

si 3893 _ 169 45 11 52 + 0.021516]11“;‘)}

A2 = T B tsas-54 (11) ,

diz = —se+ @l 1dbtad (12) ~ (> ar) (1239522 + (178277- 0.5748ny) af)
f

With the use of egs. (10)-(12) and the resultBdt> from [3]
we arrive at the complete result for the rai¢s) at ordera? in
(massless) QCD:

Specifically, for the particular values of = 4 and 5 one
obtains (for the terms of order: anda? we have explicitly
decomposed the cficient into non-singlet and singlet contri-

butions):
R(s) = 32 q?{l +as+ aﬁ(%} —114G-Bni+ 34 nf)
f

10
R'=4(s :—[1+a + 152452
ol [ (18- Aa? - 20) (9= F|1+as+ 1524%

7847 11 2 262 +a3(-11686=-1152-0.16527')

25
+nf(—m+3—5ﬂ + 5 53—355)

4 |
81029 121,203, 4 215 ] +a( - 94961= -92891- 2.070F )] . (14)
41,3 6131 11 2 203 1.2 5
+ag[nf (- BR+ e+ Bo- LB+ 6) RY=5(s) = 1—1[1+as+ 1409022
2 (1045381_ 593 12 40655 3 3
FA 15852 432 864 +a3(-1280=-12767-0.037562")
+ U+ 38 -
onn 226s 23 o ) . +al( - 80434= -79.981- 0.453%° ')]. (15)
0y (- 0 B + 180 - Bty
— 5573 + 257545 + %357) Note that forns = 3 the singlet contributions vanish in every
14403000 _ 4977512 5693495, | 133112 order inas as the corrgsp_onding gI_obaI dbeient %; q)? h{;l_p—
20736 384 864 537 T16 3 pens to be zero. Implications of this result for the deteation

5445 ,2 | 65945 7315 of as in electron-positron annihilation and ifrtboson decays
+ §3 + 5~ 718 &7

8 288 are discussed in [20].



3. GLS sumrule at orderO(ag) and the Crewther relation of them [5], one involving the non-singlet parts only and one
involving also a singlet piece:
The second quantity of interest, the GLS sum rule,

L o D"S(a)C*Pa) = de|1+ 2 k)| (27)
> | Fa(x Q)dx=3C"(ay), (16)
Zfo > KNS(@ag) = as K{\‘S+as KNS + a3KYS +.
relates the lowest moment of the isospin singlet structumef gng
tion F;”"P(x, Q?) to a codiicient C°-S(as), which appears in
the operator product expansion of the axial and vector non-  p(a,)C®S(a) = dgn; ,8( S) K(as)|, (28)
singlet currents
K(ag) = asK1+asK2+asK3+...
; a b igx V,ab .
' f TACV, (0T G0 = Cpg Val0) .. (17) Herep(as) = dﬂzas(p) - YisoBias? is the QCDB-function
where with its first termgy = TzCA - %nf. The term proportional
9 to theg-function describes the deviation from the limit of exact
Crab = 6ab6yvaﬁ&CGLs(as) conformal invariance, with the deviations starting in ordg
Relation (27) has been studied in detail in [3], where its va-
andV, = ¥y, is a flavour singlet quark current. At lakf = lidity at orderaS was demonstrated (a detailed discussion at

Uyystty, VP = Gy, 1y are axial vector and vector non-singlet ordersaZ ande? can be found in [5]).
quark currents, with?, t° being the generators of the flavour ~ Let us consider now eq. (28). Combining egs. (3,18,21) and
(27) leads to the following relations between ffmentsKNS

groupS U(ns).
Again diagrams contributing t8%-S(ag) can be separated in andKi:
two groups: non-singlet and singlet ones (see Fig. 2): Ki = KNS, Kp=KDS, (29)
CCS =cNS 4. CS!, (18) Ks = KY}S+K3', (30)
S| | dabcdabc
CNS(Q?) = 1+Z NS al(Q?), (19) K3' = ke —g (31)

, with k3] being a numerical parameter.
C3(Q) = Z c'ay(Q?) . (20) Thus, we conclude that eq. (28) puts-31 = 2 con-
i= straints between two triplets of (purely numerical) partarse
{d31, d33, d33) and(c3;, c3 ), c;3) appearing in egs. (9) and (23)
&nd completely describing the ordef singlet contributions to
the Adler function and the Gross-Llewellyn Smith sum rule re

The results for both functiongNS andCS!' at ordera? are
known since early 90-ties [12]. Note that as a consequence
chiral invariance the closely related Bjorken sum rule nexe

contributions from the non-singlet piece only [12]: spectively. ) _
The solution of the constraints and eqgs. (24-26) produaes th
CBip = CNS. (21)  following relations ford3":
The O(a?) contribution toCBP has been computed some ) = _§c§'l —col = 18 & L% , (32)
time ago [3]. The calculation of th@(e%) contribution toCS' 2 1 64 4 8
has been published in [1] for a generic gauge group and is re- d??,é = 045'2 - 1_2 kg"l (33)
peated below:
Sl _ Sl |
gabe gabe 11 1 dgz = —Cpg+ 3 k§1 , (34)
' =nf—— (Cg = - —(3), (22) o - .
dr 192 8 whose validity is indeed confirmed by the explicit calcudas.

gabe gabe As a result the remaining unknowd! is fixed as:
G = gl T (9) “
179 25 5
37 122 k31=-3g2*+ 288~ 24¢ (35)
Sl _ il _ - 24 3,1 3 5-
Ca1= o5t T8 5% (24) 384 48 24
481 971 295
Sl _ 2
Ca2= 1957 T 11522 " 5765 T 3% (25) 4. conclusion
CSI_l_lg_ﬂ(Jrﬁ,;_}gZ (26) h vticall d cibei fall th I
3= 1152 288 T 1aa% " 55 We have analytically computed ddeients of all three colour

structures contributing to the singlet part of the Adlerdtion
Using the input from egs. (10-12) and (22-26), the validityin massless QCD @(a?). We have checked that all constraints
of the GCR can now be investigated. In fact, there exist twaon these co@cients derived previously in [1] on the base of the
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Figure 2: (a),(b)r)(ag) non-singlet and singlet diagrams contributing to the Gridewellyn Smith sum rule; note that the ¢beient functionCBiP is contributed

by only non-singlet diagrams.

GCR are really fulfilled. This is an important cross-check of[12]
our calculations oDS!, CS! and the very GCR.

The calculations has been performed on a SGI ALTIX 24-[13]
node IB-interconnected cluster of 8-cores Xeon computers u
ing parallel MPI-based [21] as well as thread-based [22] ver
sions of FORM [23]. For the evaluation of color factors we [14]
have used the FORM progra@OLOR [24]. The diagrams [15]
have been generated with QGRAF [25]. The figures have been
drawn with the the help of Axodraw [26] and JaxoDraw [27].
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