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Gauge Coupling Beta Functions in the Standard Model to Three Loops
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In this paper we compute the three-loop corrections to the beta functions of the three gauge
couplings in the Standard Model of particle physics using the minimal subtraction scheme and
taking into account Yukawa and Higgs self couplings.
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Renormalization group functions are fundamental
quantities of each quantum field theory and play an im-
portant role in various aspects. Besides controlling the
energy dependence of parameters and fields they are also
crucial for the resummation of large logarithms. Further-
more, renormalization group functions are important for
the development of grand unified theories and the extrap-
olation of low-energy precision data to high energies, not
accessible by collider experiments.

As far as the strong interaction part of the Standard
Model is concerned the corresponding gauge coupling
beta function is known up to four-loop order [1–9]. At
three-loop level also the corrections involving two strong
and one top quark Yukawa coupling have been com-
puted [10]. On the other hand, for the SU(2)L × U(1)Y

part only one- [1, 2, 11] and two-loop [12–15] corrections
are available since about 30 years. (Two-loop corrections
are also known for the Yukawa [15–17] and Higgs boson
self coupling [15, 18, 19] beta function, see also Ref. [20].)
In this Letter we provide results for the three-loop gauge
coupling beta functions taking into account all sectors of
the Standard model, i.e., the gauge, Yukawa and Higgs
boson self couplings.

Let us in a first step define the beta functions. We
denote the three gauge couplings by α1, α2 and α3 and
adopt a SU(5)-like normalization with

α1 =
5

3

α

cos2 θW

,

α2 =
α

sin2 θW

,

α3 = αs , (1)

where α is the fine structure constant, θW the weak
mixing angle and αs the strong coupling. In our cal-
culation we consider in addition to the gauge couplings
also the third-generation Yukawa couplings [32] α4 = αt,
α5 = αb and α6 = ατ , and the Higgs boson self coupling
α7 = λ/(4π). αx = αm2

x/(2 sin2 θW M2
W ) (x = t, b, τ)

where mx and MW are the fermion and W boson mass,
respectively, and −λ(Φ†Φ)2 is the part of the Lagrange
density describing the quartic Higgs self interaction.

In the modified minimal subtraction (MS) renormaliza-
tion scheme the beta functions are then defined through
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where ǫ = (4−d)/2 is the regulator of Dimensional Regu-
larization with d being the space-time dimension used for
the evaluation of the momentum integrals and the depen-
dence of αi on the renormalization scale µ is suppressed.
We assume the definition in Eq. (2) for α1, α2 and α3.
In this Letter we evaluate the three-loop terms (coeffi-
cients cijk) only for the gauge couplings (i.e. i = 1, 2, 3).
For our calculation the beta functions for the Yukawa
couplings are needed to the one-loop order (as compared
to Eq. (2) αiai has to be replaced by

∑

j αjaj) and the

tree-level expression (first term in Eq. (2)) is sufficient
for βλ.

The functions βi are obtained from the renormalization
constants of the corresponding gauge couplings which are
defined as gbare

i = µǫZgi
gi where αi = g2

i /(4π). Exploit-
ing the fact that the gbare

i are µ-independent and taking
into account that Zgi

may depend on all seven couplings
leads to the following formula
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From Eq. (3) it is clear that the renormalization con-
stants Zgi

(i = 1, 2, 3) have to be computed up to three-
loop order.

In the MS scheme the beta functions are mass inde-
pendent which allows us to use the Standard Model in
the unbroken phase as a framework for our calculation.
By construction less vertices have to be considered than
after spontaneous symmetry breaking. The electroweak
gauge bosons are denoted by W and B corresponding to
the SU(2)L × U(1)Y gauge groups, respectively.

In principle each vertex containing the gauge coupling
gi at tree level can be used in order to obtain Zgi

via

Zgi
=

Zvert

Πk

√

Zk,wf

, (4)

where Zvert stands for the renormalization constant of
the vertex and Zk,wf for the wave function renormaliza-
tion constant; k runs over all external particles. We have
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FIG. 1: Sample Feynman diagrams contributing to the
W1W2W3 vertex [(a), (b) and (c)] and the W3 ghost vertex
[(d) and (e)]. Dashed, dotted, solid and wavy lines corre-
spond to Higgs boson, ghost, fermion and W boson lines,
respectively. Sample diagrams for gluonic Green’s functions
are obtained for (a), (b), (d) and (e) by replacing the W lines
by gluon lines.

computed Zg3
using both the ghost-gluon and the three-

gluon vertex and Zg2
has been evaluated with the help

of the ghost-W3, the W1W2W3 and the φ+φ−W3 vertex
where φ± is the charged component of the Higgs dou-
blet corresponding to the Goldstone boson in the broken
phase and W1, W2 and W3 are the components of the W
boson. Both for Zg2

and Zg3
the different ways lead to

the same result which constitutes a strong check for the
correctness of the final result. Zg1

is obtained from ver-
tices containing the B boson. Due to the Ward identity
there is a cancellation of Zvert and the factors

√

Zk,wf

other than the one corresponding to the B boson. Thus
Zg1

is solely computed from the wave function renormal-
ization constant of the B boson. We have computed the
three-loop corrections to the BBB vertex and checked
that the result is zero. Several three-loop sample dia-
grams contributing to the considered three-point func-
tions are shown in Fig. 1. Due to the fact that the βi do
not depend on any kinematical scale we evaluate the ver-
tex functions in the limit where one external momentum
is set to zero. In this way all loop-integrals are mapped
to massless two-point functions which up to three-loops
can be computed with the help of MINCER [21].

An important issue in the present calculation is the
treatment of γ5 within dimensional regularization. Non-
trivial contributions may arise if in the course of the cal-
culation two fermion traces occur where both of them

contain an odd number of γ5 matrices and four or more
γ matrices. It is straightforward to see that the Green’s
functions which we have chosen for calculating the beta
functions contain at most one-loop triangle sub-diagrams
(see, e.g., Fig. 1(a)) which could potentially lead to con-
tributions where a careful treatment of γ5 is required. In
our case, however, all these contributions vanish identi-
cally due to anomaly cancellations (see, e.g., Ref. [22])
since we always sum over all fermions of one generation.
This has also been checked by an explicit calculation [23].

Our calculation is based on a high level of automation
in order to avoid errors due to manual interaction. As
a core of our set-up we use the well-tested chain of pro-
grams which work hand-in-hand: QGRAF [24] generates all
contributing Feynman diagrams. The output is passed
via q2e to exp [25, 26] which generates the FORM [27]
code. The latter is processed by MINCER [21] which com-
putes the Feynman integrals and outputs the ǫ expan-
sion of the result. A serious problem which had to be
overcome in the course of the present calculation is the
enormous number of diagrams which contribute to the
individual renormalization factors. E.g., in the case of
the W1W2W3 vertex one has about 380 000 diagrams for
the vertex itself and 60 000 for the W3 self energy with
similar numbers for the other Green’s functions. Thus,
in total more than one million diagrams have to be com-
puted. In order to handle such an amount of diagrams we
have decided to automatically split the original problems
into blocks containing only of the order of 1000 Feynman
diagrams. In total we end up with a CPU time of about
100 days on a single core. Since our calculation is highly
parallelizable the final wall-clock time is about one day
on 100 cores.

Note that at three-loop level all sectors of the Stan-
dard Model contribute to the β functions of the gauge
couplings. Thus the huge number of diagrams mainly re-
sults from the numerous interaction vertices in the Stan-
dard Model. In the set-up described above the strong
interaction part of the Standard Model has already been
used for a variety of calculations. We have added the
electroweak part by establishing an interface to a model
file of FeynArts [28]. It generates all Standard Model
Feynman rules in a format readable by QGRAF and q2e.
The model file for FeynArts has been generated using
FeynRules [29].

In the following we present results for β1, β2 and β3 up
to three loops. In order to keep the expressions compact
we set the Yukawa couplings αb and ατ to zero. Also, we
use unit CKM matrix in our calculations. The complete
result with αb and ατ kept non-zero can be found else-
where [23]. Omitting the µ dependence in the arguments
of αi (and taking the limit ǫ → 0) we obtain
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where nG labels the number of generations and nt the
number of heavy up-type quarks. In the Standard Model
we have nG = 3 and nt = 1. The result including a fourth
generation [33] (with Yukawa coupling αt′) is obtained
with the replacements (αtnt)

n → (αt + αt′)
n (n = 1, 2)

and α2
t nt → α2

t + α2
t′ . It is interesting to note that,

although the two-loop expression is λ-independent, the
three-loop term of β1 and β2 contains both linear and
quadratic terms in λ. The latter arise from diagrams as
those in Fig. 1(c).

There are several checks on the correctness of our re-
sult. The interface between FeynArts and QGRAF/q2e has
been checked by evaluating several one- and two-loop re-
sults which are known in the literature. We have even
considered quantities within the Minimal Supersymmet-
ric Standard Model, like the relation between the squark
masses within one generation, which is quite involved in
case electroweak interactions are kept non-zero. We have
furthermore reproduced the two-loop results in the litera-
ture both for the gauge [12–15] and the Yukawa coupling
beta functions [15–17] which constitutes a strong check
on the correctness of the Feynman rules and the general
set-up. Also the three-loop corrections of order α3

3αt to
β3 from Ref. [10] have been reproduced. All our calcu-
lations have been performed for three general gauge pa-
rameters, one for each gauge group. Whereas the renor-
malization constants for the vertices and wave functions
still depend on the gauge parameters the Zgi

are indepen-
dent leading to gauge parameter independent results for

βi. In a further check we have ensured that in the vertex
diagrams no infra-red divergence is introduced although
one external momentum is set to zero [34]. This is done
by assigning a non-vanishing mass m to internal lines (a
common mass for all particles is sufficient) and perform-
ing an asymptotic expansion [30] in the limit q2 ≫ m2

where q is the non-vanishing external momentum of the
vertex diagram. Asymptotic expansion for this limit is
automated in the program exp and thus can be performed
with the set-up described above. It is sufficient to re-
strict to the leading term in m2/q2 and check that no
ln(m2/µ2) terms appear in the final result. Nevertheless
the calculation becomes significant more complex; some
diagrams develop up to 35 sub-diagrams when applying
the rules of asymptotic expansion. With this method
we have explicitly checked that the W1W2W3 and three-
gluon vertex are free from infra-red divergences. Since
the results agree with the ones obtained from the other
vertices also the latter are infra-red safe.

In order to estimate the numerical effect of the new
terms we use the experimental measured values for
αi(M

2
Z) (i = 1, 2, 3) and run to a higher scale µ using

two or three loops for the gauge and two loops for top
Yukawa beta functions. For µ = 2 TeV the relative dif-
ference between two and three loops amounts to 0.003%,
0.010% and 0.005% for α1, α2 and α3, respectively. In
the case of α3 the shift is significantly smaller than the
one introduced by the experimental uncertainty at the
Z boson mass scale. On the other hand, for α1 and α2
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the three-loop effect is of the same order of magnitude
compared to the experimental uncertainty. Similar con-
clusions hold for µ = 1016 GeV where a relative shift be-
tween two- and three-loop running amounts to 0.012%,
0.027% and 0.004% for α1, α2 and α3, respectively.

To conclude, in this Letter we have computed the
three-loop corrections to the gauge coupling beta func-
tions in the Standard Model. Whereas Yukawa correc-
tions are already present at two-loop order the Higgs bo-
son self coupling appears for the first time at three loops.
The numerical effect of the new terms is small, however,
in the case of α1 and α2 it is comparable to the experi-
mental uncertainties.

The method used for the current calculation can also

be applied to the calculation of the beta functions of the
Yukawa and Higgs boson self coupling. However, in the
case of the Yukawa couplings the issue of γ5 is likely to
be more serious. For the Higgs boson self coupling, on
the other hand, one has to consider four-point functions
and thus a mapping to massless two-point functions in-
troduces infra-red divergences already at one-loop order.
A promising method would be to assign a common mass
to all fields and set all external momenta to zero (see,
e.g., Ref. [31]).
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