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Abstract

In this paper we present the C++ package CRunDec which implements all relevant formulae
needed for the running and decoupling for the strong coupling constant and light quark
masses. Furthermore, several formulae are implemented which can be used to transform the
heavy quark masses among different renormalization schemes. CRunDec is the C++ version
on the Mathematica package RunDec containing several updates and improvements.
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Program summary

Title of program: CRunDec

Available from:

http://www-ttp.physik.uni-karlsruhe.de/Progdata/ttp12/ttp12-02/

Computer for which the program is designed and others on which it is operable: Any
computer where a C++ compiler is running.

Operating system or monitor under which the program has been tested: Linux, Windows

No. of bytes in distributed program including test data etc.: 85 000

Distribution format: source code

Keywords: Quantum Chromodynamics, running coupling constant, running quark
mass, on-shell mass, MS mass, decoupling of heavy particles

Nature of physical problem: The value for the coupling constant of Quantum Chro-

modynamics, α
(nf )
s (µ), depends on the considered energy scale, µ, and the number of

active quark flavours, nf . The same applies to light quark masses, m
(nf )
q (µ), if they are,

e.g., evaluated in the MS scheme. In the program CRunDec all relevant formulae are
collected and various procedures are provided which allow for a convenient evaluation

of α
(nf )
s (µ) and m

(nf )
q (µ) using the state-of-the-art correction terms.

Method of solution: CRunDec is implemented in C++. For the solution of the differential
equations an adaptive Runge-Kutta procedure has been implemented.

Restrictions on the complexity of the problem: It could be that for an unphysical choice
of the input parameters the results are nonsensical.

Typical running time: In general the run time for the individual operations is below a
millisecond.

1. Introduction

Among the fundamental quantities of Quantum Chromodynamics there are certainly
the anomalous dimensions which control the scale dependence of the parameters and fields.
In this context a particular role is taken over by the beta function and anomalous mass
dimension in the MS scheme which govern the running of the strong coupling constant αs

and the quark masses mq. Every time a flavour threshold is crossed in the running process
decoupling relations have to be applied which guarantee that the heavy quark is integrated
out from the theory. More than ten years ago the Mathematica package RunDec has been
written [1] which incorporates all relevant formulae. However, for many application it is
more convenient to have the running and decoupling routines available in the framework of
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a commonly used programming language and not within a computer algebra system. Thus
we have decided to convert the most important routines to C++ adding at the same time new
routines and improving others w.r.t. the Mathematica version. In what follows we describe
the C++ file CRunDec which constitutes a C++ class and contains the functions known from
RunDec as public components.

The use of CRunDec does not require any knowledge about object oriented programming.
The following skeletons exemplify the usage and can easily be adapted to the problem at
hand. It is possible to work with pointers to an object of the type CRunDec and access the
member functions correspondingly:

#include <iostream>

#include "CRunDec.h"

using namespace std;

int main(){

CRunDec * <pointer> = new CRunDec();

double <result> = <pointer> -> <function>(<parameters>);

return(0);

}

Alternatively also the following realization is possible:

#include <iostream>

#include "CRunDec.h"

using namespace std;

int main(){

CRunDec <object>;

double <result> = <object>.<function>(<parameters>);

return(0);

}

Explicit examples will be given below.
The remainder of the paper is organized as follows: In the next Section all available

functions are described, Section 3 contains typical examples which exemplify the usage of
CRunDec.

2. Structure of CRunDec

All public components of the C++ class CRunDec consist of functions which have the same
name as the corresponding function in the Mathematica version [1]. In the following we list
the function header (including the variable names; see also Tab. 1) which — together with
the description in the Appendix of Ref. [1] — specifies both the usage and the purpose of
the function. There are some additions implemented in CRunDec which are also described.

Let us mention that all functions listed in Subsections 2.2–2.4 are overloaded w.r.t. the
argument nf (number of active flavours). I.e., this argument can be omitted in case nf is
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symbol in C++ code mathematical symbol meaning
asmu, asmu0, asmu1 αs(µ), αs(µ0), αs(µ1) strong coupling constant

mq, mq0 mq(µ), mq(µ0) MS quark mass
mOS, mMS Mq, mq on-shell and MS quark mass

mRI mRI regularization invariant mass
mRGI m̂ renormalization group invariant mass
Mth Mth heavy quark mass

mu, mu0, mu1 µ, µ0, µ1 renormalization scale
muth µth decoupling scale
nf nf number of active flavours

nloops — number of loops

Table 1: Meaning of the variables used in the function headers.

specified in the declaration of the CRunDec object (see also examples in Section 3). In this
context two auxiliary functions are quite useful: GetNf() returns the specified number of
active flavours and SetNf(int nf) can be used to set the number of active flavours.

2.1. Input parameters

For convenience of the user some frequently used input parameters are pre-defined in the
file CRunDec.h and can be used during the calculation. They read [2, 3, 4, 5]

#define asMz 0.1183

#define Mz 91.18

#define Mt 173.2

#define Mb 4.8

#define Mc 1.5

#define muc 1.279

#define mub 4.163

#define Mtau 1.777

If not stated otherwise these numbers are used in the examples presented in Section 3. In
case other numerical values shall be used it is straightforward to redefine the preprocessor
variables. The examples given in the appendix of Ref. [1] can be reproduced with

#define asMz 0.118

#define Mz 91.18

#define Mt 175.

#define Mb 4.7

#define Mc 1.6

#define muc 1.2

#define mub 3.97

#define Mtau 1.777
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2.2. Functions related to the running of αs and mq

• double LamExpl(double asmu, double mu, int nf, int nloops);

• double LamImpl(double asmu, double mu, int nf, int nloops);

• double AlphasLam(double Lambda, double mu, int nf, int nloops);

• double AlphasExact(double asmu0, double mu0, double mu1,

int nf, int nloops);

• double mMS2mMS(double mq0, double asmu0, double asmu1,

int nf, int nloops);

• AsmMS AsmMSrunexact(double mq0, double asmu0, double mu0,

double mu, int nf, int nloops);

The function AsmMSrunexact is new in CRunDec. It solves simultaneously the differential
equations for αs and mq with initial values mq(µ0) and αs(µ0) and nf active quark flavours.
The return type of AsmMSrunexact is a struct with two double components, αs(µ) and mq(µ).
The corresponding code in CRunDec looks as follows:

struct AsmMS {

double Asexact;

double mMSexact;

};

For convenience of the user there is a pre-defined variable AsmMS AM. Both components of
AM are initialized to zero when creating a CRunDec object.

2.3. Functions relating different mass definitions

• double mOS2mMS(double mOS, double mq[], double asmu, double mu,

int nf, int nloops);

• double mMS2mOS(double mMS, double mq[], double asmu, double mu,

int nf, int nloops);

• double mOS2mMSrun(double mOS, double mq[], double asmu, double mu,

int nf,int nloops);

• double mMS2mOSrun(double mMS, double mq[], double asmu, double mu,

int nf,int nloops);

• double mOS2mMSit(double mOS, double mq[], double asmu, double mu,

int nf,int nloops);

• double mOS2mSI(double mOS, double mq[], double asM,

int nf, int nloops);
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• double mMS2mSI(double mMS, double asmu, double mu,

int nf, int nloops);

• double mMS2mRI(double mMS, double asmu, int nf, int nloops);

• double mRI2mMS(double mRI, double asmu, int nf, int nloops);1

• double mMS2mRGI(double mMS, double asmu, int nf, int nloops);

• double mRGI2mMS(double mRGI, double asmu, int nf, int nloops);

• double mMS2mRGImod(double mMS, double asmu, int nf, int nloops);

Note that the light-quark-mass effects can be taken into account with the help of the
array mq[] which is defined as

double mq[4];

By default all elements of mq[] are zero. In case non-zero values are needed the array has
to be filled before the corresponding function is called.

In CRunDec the implementation of mMS2mSI has been modified as compared to the
Mathematica version. It is now based on AsmMSrunexact and avoids the computation of
ΛQCD in intermediate steps which is perturbatively more stable, in particular for lower renor-
malization scales. Similar modifications have been performed in mMS2mOSrun.

The function mMS2mRGImod is new in CRunDec. It is defined in analogy to mMS2mRGI,
however, the more commonly used convention has been adopted where the function c(x) in
Eq. (11) of Ref. [1] is evaluated for x = 2β0αs/π instead of x = αs/π.

2.4. Functions related to the decoupling of heavy quarks

As compared to the Mathematica version CRunDec contains the decoupling relations only
for the case of on-shell heavy quarks which are most relevant for the practical purposes.
Furthermore, the functions DecLambdaUp and DecLambdaDown have not been implemented
in the C++ version since it is recommended to use AlL2AlH and AlH2AlL in case a flavour
threshold is crossed during the running of αs.

• double DecAsDownOS(double asmu, double Mth, double muth,

int nf, int nloops);

• double DecAsUpOS(double asmu, double Mth, double muth,

int nf, int nloops);

• double DecMqDownOS(double mq, double asmu, double Mth, double muth,

int nf, int nloops);

1Note a typo in the example to mRI2mMS in the Appendix of Ref. [1]: mRI2mMS[175,0.107,175,6,3]

should read mRI2mMS[175,0.107,6,3].
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• double DecMqUpOS(double mq, double asmu, double Mth, double muth,

int nf, int nloops);

In CRunDec the functions DecAsDownOS and DecAsUpOS also contain the four-loop decou-
pling relations which have been computed in Refs. [6, 7]. Note that in the functions of this
subsection the parameters nf refers to the number of flavours in the effective theory [1].

2.5. Functions related to the combination of running and decoupling

• double AlL2AlH(double asmu0, double mu0, TriplenfMmu decpar[],

double mu1, int nloops);

• double AlH2AlL(double asmu0, double mu0, TriplenfMmu decpar[],

double mu1, int nloops);

• double mL2mH(double mq0, double asmu0, double mu0,

TriplenfMmu decpar[], double mu1, int nloops);

• double mH2mL(double mq0, double asmu0, double mu0,

TriplenfMmu decpar[], double mu1, int nloops);

The parameters governing the decoupling are contained in the array decpar[] where
each element contains the triple {nf , Mth, µth} which is realized in the structure

struct TriplenfMmu {

int nf;

double Mth;

double muth;

};

There is a pre-defined variable TriplenfMmu nfMmu[4]; which can be used when calling
the above functions. Note that the components of decpar are set to zero at the end of the
above functions.

In CRunDec we refrain to implement the function AsRunDec which automatically deter-
mines the number of active flavours for the initial and final energy scale and performs the
corresponding running and decoupling steps. In practice it turns out that the decoupling of
the heavy quark with mass Mth at the scale µth = Mth is not convenient for all applications.
Furthermore, there are ambiguities as far as the number of active flavours is concerned in
case αs(Mth) has to be evaluated using AsRunDec. Thus, it is recommended to use AlL2AlH

and AlH2AlL instead.

3. Typical examples

In this section we present some typical examples which exemplify the usage of CRunDec.
In the following we only display the part of the code related to CRunDec; the complete
programs can be found in the file example.cc which comes together with CRunDec.
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Running of αs from Mt to Mb with five active flavours

It is either possible to create a CRunDec object where five active flavours are already
specified

CRunDec* pObjnf5 = new CRunDec(5);

or leave nf unspecified

CRunDec* pObj = new CRunDec();

In the former case α(5)
s (Mb) is computed from α(5)

s (Mt) = 0.108 via

pObjnf5 -> AlphasExact(0.108,Mz,Mb,4);

whereas in the latter case one has

pObj -> AlphasExact(0.108,Mz,Mb,5,4);

In both evaluations four-loop accuracy is assumed leading to the result α(4)
s (Mb) = 0.183.

The number of active flavours for the object pObjnf5 can be obtained with the help of
pObjnf5 -> GetNf(); and pObj -> SetNf(5); sets nf = 5 for pObj.

Compute α(5)
s (MZ) from α(3)

s (Mτ )

Assuming a value of the strong coupling as extracted form τ decay as α(3)
s (Mτ ) = 0.332 [8]

the task is the computation of α(5)
s (MZ). If the decoupling of the charm and bottom quark

is performed for µth = 2Mc and µth = Mb, respectively, one has to specify

CRunDec crundec;

crundec.nfMmu[0].nf = 4;

crundec.nfMmu[0].Mth = Mc;

crundec.nfMmu[0].muth = 2*Mc;

crundec.nfMmu[1].nf = 5;

crundec.nfMmu[1].Mth = Mb;

crundec.nfMmu[1].muth = Mb;

Afterwards α(5)
s (MZ) is computed via

crundec.AlL2AlH(0.332, Mtau,crundec.nfMmu,Mz,4);

where four-loop accuracy for the running (corresponding to three-loop decoupling relations)
has been assumed. As a result one obtains α(5)

s (MZ) = 0.1200.
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Compute mb(mb) from mb(10 GeV)

In Ref. [2] the MS bottom quark mass has been extracted for µ = 10 GeV as mb(10 GeV) =
3.610± 0.016 GeV. The scale-invariant mass mb(mb) can been computed with four-loop ac-
curacy via

CRunDec cmpasmb(5);

double asmu = cmpasmb.AlphasExact(0.1189,Mz,10,4);

cmpasmb.mMS2mSI(3.610,asmu,10,5,4);

where α(5)
s (MZ) = 0.1189 has been used. The result reads mb(mb) = 4.163 GeV. In the

Mathematica version of RunDec it is not recommended to use mMS2mSI since in intermediate
steps ΛQCD is used and thus the final result does not have the required precision.

Compute mt(mt) from the top quark on-shell mass

The on-shell top quark mass has been measured at the Tevatron experiments D0 and
CDF to Mt = 173.2± 0.9 GeV [4]. If this value shall be transformed to mt(mt) one proceeds
in the following way

CRunDec cmpmt(6);

double MtOS = 173.2;

cmpmt.nfMmu[0].nf = 6;

cmpmt.nfMmu[0].Mth = MtOS;

cmpmt.nfMmu[0].muth = MtOS;

double as6Mt = cmpmt.AlL2AlH(asMz,Mz,cmpmt.nfMmu,MtOS,4);

double mtMt = cmpmt.mOS2mMS(MtOS,cmpmt.mq,as6Mt,MtOS,3);

double mtmt = cmpmt.mMS2mSI(mtMt,as6Mt,MtOS,4);

The final result reads mt(mt) = 164.0 GeV.

Compute on-shell charm and bottom quark mass from mc(mc) and mb(mb)

After defining a pointer (pObjnf5) to a CRunDec object with five active flavours (as in
the example above) one obtains α(5)

s (mb(mb)) via

double alpha5mub = pObjnf5 -> AlphasExact(asMz, Mz, mub, 4);

and subsequently the on-shell mass Mb with two and three-loop accuracy with the help of

double mbOS2 = pObjnf5 -> mMS2mOS(mub, pObjnf5->mq, alpha5mub, mub, 2);

double mbOS3 = pObjnf5 -> mMS2mOS(mub, pObjnf5->mq, alpha5mub, mub, 3);

The results read Mb = 4.762 GeV and Mb = 4.909 GeV, respectively.
In the case of the charm quark one proceeds in analogy by evaluating in a first step

α(4)
s (mc(mc))
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pObjnf5 -> nfMmu[0].nf = 4;

pObjnf5 -> nfMmu[0].Mth = Mc;

pObjnf5 -> nfMmu[0].muth = 2*Mc;

double alpha4muc = pObjnf5 -> AlH2AlL(asMz, Mz, pObjnf5 -> nfMmu, mub, 4);

and afterwards the on-shell mass Mc to two and three loops

double mcOS2 = pObjnf5 -> mMS2mOS(muc, pObjnf5->mq, alpha4muc, muc, 2);

double mcOS3 = pObjnf5 -> mMS2mOS(muc, pObjnf5->mq, alpha4muc, muc, 3);

leading to Mc = 1.494 GeV and Mc = 1.573 GeV.
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