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Abstract

An analysis of the cross section for hadronic production of gluino-squark pairs
close to threshold is presented. Within the framework of non-relativistic QCD a
significant enhancement compared to fixed order perturbation theory is observed
which originates from the characteristic remnants of the gluino-squark resonances
below the nominal pair threshold. The analysis includes all colour configurations
of S-wave gluino-squark pairs, i.e. triplet, sextet and 15 representation. Matching
coefficients at leading order are separately evaluated for all colour configurations.
The dominant QCD corrections, arising from initial- and final-state radiation are in-
cluded. The non-relativistic dynamics of the gluino pair is solved by calculating the
Green’s function in Next-to-Leading Order (NLO). The results are applied to bench-
mark scenarios, based on Snowmass Points and Slopes (SPS). As a consequence of
the large decay rate of at least one of the constituents squark or gluino annihila-
tion decays of the bound state (g̃q̃) → gq, qγ, qZ or q′W± are irrelevant. Thus
the signatures of gluino-quark production below and above the nominal threshold
are identical. Numerical results for the cross section at the Large Hadron Collider
(LHC) at

√
s = 7TeV and 14TeV are presented. The enhancement of the total

cross section through final state interaction amounts to roughly 3%.



1 Introduction

The search for new particles, predicted in supersymmetric models, is one of the most
important tasks of the experiments at the LHC. The detailed determination of particle
masses and couplings will be crucial for the discrimination between various manifestations
of supersymmetry (SUSY) and alternative models, even more so if one wants to distin-
guish between the different variants of supersymmetric models, to identify the origin of
breaking of supersymmetry and to measure the model parameters. One of the SUSY sig-
nals will be events with missing energy or missing transverse momentum, resulting from
cascade decays of squarks and gluinos into the lightest supersymmetric particle (LSP)
which escapes detection. The existence of squarks, gluinos and the LSP is definitely a key
prediction of supersymmetry.

Depending on details of the models, in particular the mass of the LSP, gluinos and squarks
with masses up to 3 TeV [1] could be detected. The decay rates of gluinos and squarks
depend strongly on the ratio of squark and gluino masses. If the gluino is heavier (mg̃ >
mq̃), the two-body decay of the gluino into a squark and an antiquark (or its charge
conjugate) is possible with the squark decaying into a quark plus a chargino or neutralino.
In the opposite case (mg̃ < mq̃) the two-body decay of the gluino is kinematically forbidden
and the now dominant three-body decay into quark, antiquark and neutralino or chargino,
mediated by the virtual squark, leads to a small decay rate for the gluino while the squark
decays into the gluino plus a quark.

The importance of squark and gluino searches has motivated a series of detailed studies
of hadroproduction cross sections for squarks and gluinos. The lowest order has been
evaluated long time ago [2–4]. Subsequently NLO SUSY-QCD corrections were calculated
[5–7], more recently the effect of soft-gluon resummation [8–14] was included. The present
paper will be concerned with gluino-squark-pair production close to threshold, which
exhibits a number of peculiar features.

The sum of gluino and squark single decay width is expected to be much larger than the
annihilation decay width of the squark-gluino system. In this case the bound state decay
proceeds through the decay of the constituents and for decay rates of several GeV no well
defined bound states exist. Nevertheless, final state interaction will lead to a significant
lowering of the effective production threshold, to an enhancement of the cross section and
a strong distortion of the differential cross section, in particular of the distribution in the
invariant mass of the gluino-squark pair, with details depending on the masses and single
decay widths of gluinos and squarks.

This scenario has many similarities with hadronic top quark- [15–17] and gluino-pair
production [18,19] close to threshold. In particular the distribution in the invariant mass
of the gluino-squark pair can be calculated with similar methods.

A gluino-squark pair can be combined into bound states transforming under three irre-
ducible representations, two of them attractive and one repulsive. As in Refs. [15, 18]
the NLO result for the hard corrections is approximated by including the logarithmically
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enhanced terms from initial- and final-state radiation. The Green’s function is evaluated
in NLO approximation.

The paper will be organized as follows: For a self-contained treatment we recall in Section 2
the quantum numbers of the bound states, discuss various SUSY scenarios and present
the qualitative features of threshold production for the case of interest, i.e. for gluino-
squark bound states with decay rates comparable to the level spacing of the would-be
bound states.

In Section 3.1 we will present the threshold enhancement (or suppression) for the vari-
ous colour configurations using Green’s functions in NLO approximation. These will be
evaluated similar to those of the tt system discussed in Refs. [15, 16] or the g̃g̃ system
studied in [18, 19]. (For earlier investigations of squark and gluino bound state produc-
tion at hadron colliders see [20–26].) The important difference is the non-degeneracy of
the constituent masses, namely the gluino and squark mass. In Section 3.2 the effect of
initial- and final-state radiation is investigated. Only S waves will be considered. The
choice of the proper value of the strong coupling αs is discussed.

Using this input, the hadronic production cross section can be evaluated in a straightfor-
ward way in Section 4. We limit the discussion to proton-proton collisions at 7 and 14
TeV and give results for several of the SUSY scenarios discussed in Section 2 and com-
pare the results to those obtained without final-state corrections. Section 5 contains our
conclusions.

2 SUSY scenarios, gluino-squark bound states and

threshold behaviour

Let us briefly recall the quantum numbers of gluino-squark pairs in the threshold region,
classified according to their colour configurations [26]. While the combination of a spin 1/2
and a spin 0 particle is trivial, a colour-octet and a colour-triplet state can be combined
into irreducible representations as follows (See also Appendix A.):

3 ⊗ 8 = 3 ⊕ 6 ⊕ 15 , (1)

while the same equation with a conjugate triplet on the left-hand side (representing an
antisquark) results in

3 ⊗ 8 = 3 ⊕ 6 ⊕ 15 . (2)

The interaction can be either attractive or repulsive. In lowest order the coefficient of the
QCD potential which governs the final state interaction is given by the expectation value
of the product of the colour generators of the fundamental and the adjoint representation
T a

ijF
a
kl. This product, in turn, can be expressed by the eigenvalues of the quadratic
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R CR T a,1 · F a,2 interaction

3, 3 4
3

−3
2

attractive

6, 6 10
3

−1
2

attractive

15, 15 16
3

1
2

repulsive

Table 1: Colour interaction of a SU(3) octet and triplet respectively antitriplet.

Casimir operator of the constituents, CF = 4/3 and CA = 3, and of the boundstate in
representation R, CR = (T a + F a)2

R:

T a,1 · F a,2 =
1

2

[

(T a,1 + F a,2)2
R − (T a,1)2 − (F a,2)2

]

=
1

2
(CR − CF − CA) . (3)

The results are listed in Tab. 1.

The interaction potential between gluino and squark in lowest order is then given by the
“Coulomb” potential and depends on the spatial difference r ≡ |r| of the two constituents

V
[R]
C,Born

(r) = −C
[R] αs

r
, (4)

with

C [R] = C [R] =
3

2
,

1

2
, −1

2
for R = 3, 6, 15 . (5)

For the cases with negative (positive) coefficients, corresponding to attraction (repulsion),
the cross section will be enhanced (suppressed). NLO corrections are discussed in the next
chapter.

The amplitudes for the production and decay of gluino and squark have to be disentangled
according to the corresponding representation. It is convenient to define the projectors

P
[R]
ai,bj ≡ a[R] δab 1ij + b[R] dabm T

m
ij + c[R] i fabm T

m
ij , (6)

with the coefficients listed in Tab. 2 which obey
∑

i

P
[Ri]
aj,bk = δab 1jk ,

P
[R1]
ai,bjP

[R2]
bj,ck = P

[R1]
ai,ck δR1R2

,

P
[R]
ai,ai = R . (7)

The corresponding projectors for a general SU(N) and a sketch of their derivation are
given in Appendix A, together with the results for the coefficient of the potential, C [R].

Restricting ourselves to the threshold region, only S-wave configurations will be retained.
The cross section of states with higher angular momenta is suppressed by at least two
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R a[R] b[R] c[R]

3, 3 1
8

3
8

3
8

6, 6 1
4

−3
4

1
4

15, 15 5
8

3
8

−5
8

Table 2: Coefficients of the projectors from Eq. (6) within SU(3).

Figure 1: Feynman diagrams contributing at LO to g̃q̃ → gq.

powers of the relative velocity v of the two constituents. The classification described in
Tab. 1 is applicable to bound state and continuum production and will be important for
the description of final state interaction.

As mentioned in the Introduction the phenomenology of bound state production is gov-
erned by the relative size of the sum of the decay rates of constituents, i.e. of gluino and
squark, Γg̃ + Γq̃, compared to the the level spacing ∆M between the ground state and
the first radial excitation of the strongest bound colour triplet configuration. The choice
of ∆M is motivated by the fact that the binding energy per se depends evidently on the
choice of the mass definition (pole mass, potential subtracted mass, . . . ) while ∆M is
convention independent. The full decay width of the gluino-squark system is given as the
sum of the two single decay rates plus the annihilation decay rate.

The annihilation of the gluino-squark system is dominated by the strong decay into a
gluon and a quark. The corresponding Feynman diagrams are given in Fig. 1. We assume
massless quarks and “Minimal Flavour Violation” (MFV) where squarks couple only the
quarks of the same flavour. Let us in a first step evaluate the amplitude for g̃q̃ production
by a gluon and a quark, a result also required for the gluino-squark annihilation. At
threshold (i.e. for pg̃ = mg̃/(mg̃ +mq̃)P and pq̃ = mq̃/(mg̃ +mq̃)P ) the amplitude M can
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be decomposed into the contributions from three irreducible representations

M (gq → g̃q̃i) = i
√

2 g2εµ (pg) u (pg̃, mg̃)

×
{

1

s
(mq̃i

+mg̃) γ
µ T b

jkT
a
ki

+
1

t−m2
g̃

γµ (mg̃ − pq̃i
/ ) ifbacT

c
ji

+
2pµ

q̃i

u−m2
q̃i

T a
jkT

b
ki

}

(PRUi,2 − PLUi,1)u (pq, 0) , (8a)

= −i
√

2 g2

6(mg̃ +mq̃i
)mg̃

u (pg̃, mg̃) ε/(pg) (PRUi,2 − PLUi,1) u (pq, 0)

×
[

(mg̃ + 9mq̃) P
[3]
bj,ai + 3 (mg̃ +mq̃) P

[6]
bj,ai − 3 (mg̃ +mq̃) P

[15]
bj,ai

]

.

(8b)

(Here we have used pg · ε(pg) = P · ε(pg) = 0.) with the Mandelstam variables s, t, u and
the elements of the orthogonal squark-mixing matrix

U (q̃) =

(

U
(q̃)
11 U

(q̃)
12

U
(q̃)
21 U

(q̃)
22

)

. (9)

For the decay of the triplet and sextet ground state we find (in agreement with [27])

Γ
(

(g̃q̃)
3/3 → gq

)

=
α2

s

∣

∣R
[3]
1 (0)

∣

∣

2
(mg̃ + 9mq̃)

2(mg̃ +mq̃)

144m3
g̃ m

2
q̃

,

Γ
(

(g̃q̃)
6/6 → gq

)

=
α2

s

∣

∣R
[6]
1 (0)

∣

∣

2
(mg̃ +mq̃)

3

16m3
g̃ m

2
q̃

. (10)

The elements of the squark-mixing matrix drop out after summation over quark helicities
and in the limit of massless quarks.

The radial part of the Schrödinger wave function at the origin can be derived from the
one of the quarkonia or gluinonia by replacing the colour factor and the reduced mass

∣

∣R[3/6]
n (0)

∣

∣

2
=

4
(

C [3/6] αs

)3
m3

red

n3
, (11)

with mred = mg̃mq̃/(mg̃ + mq̃). Numerically, for mg̃ ∼ mq̃ ∼ m ∼ 1 TeV, this leads to
a decay rate Γ = (75/32)α2

sα
3
s m which is of O (10 MeV) and thus dramatically smaller

than the constituent decay rate discussed below. Gluino-squark annihilation into quarks
and electroweak gauge bosons (Fig. 2) is further suppressed by the electromagnetic or
weak coupling and thus completely negligible.

The threshold behaviour, i.e. the dependence of the cross section on the invariant mass
of the gluino-squark system is governed by the relative size of the constituent decay rate
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γ, Z,W±

Figure 2: Feynman diagrams contributing at LO to g̃q̃ → γq, Zq,W±q′.

and the binding energy, or more precisely, the excitation energy of the dominant ground
state1 ∆M ≡ E

[3]
2 −E

[3]
1 with

E[3]
n = −

(

C [3] αs

)2
mred

2n2
. (12)

(Higher order corrections are included in our evaluation of the Green’s function in Sec-
tion 3.1.)

In Tab. 3 the sum of the single decay rates, calculated with the program SDECAY [28],
is compared to the level spacing ∆M for the 17 benchmark points defined in Tab. 4
of Ref. [19] (the spectrum of the SUSY masses has been derived with SuSpect [29]).
Due to MFV and the structure of the proton only the gluino-squark systems of the first
generation are of interest. For the level spacing ∆M g̃q̃ the averaged squark mass of the
first generation

m1̃ ≡ mũ1
+mũ2

+md̃1
+md̃2

4
, (13)

has been used. Obviously the sum of the single decay rates is of order ∆M g̃q̃ (benchmark
points (a)-(i) and (o)-(q)) or far larger (benchmark points (j)-(n)). In the latter cases the
width of the gluino is small but the one of the squark is huge in comparison with the open
two-body decay, as stated above.

The annihilation decay rate is negligible and thus not shown here. Qualitatively the
dominance of constituent decays is easily understood: For squark masses significantly
larger than gluino masses the squark decay rate with its kinematically enhanced two-
body mode becomes large. In the opposite case the gluino decay rate increases. Only in
the degenerate case mg̃ ∼ mq̃ both rates are relatively small, i.e. comparable to ∆M , and
it is only in this case that resonant structures will arise. Nevertheless, even in the case
where the decay rate is significantly larger than ∆M , final state interaction will lead to
a broad enhancement. Therefore results for two benchmark points will be presented in
Section 4, one with Γg̃ + Γq̃ comparable to ∆M , the second one with Γg̃ + Γq̃ significantly
larger.

Hence formation of bound states [25] or of sharp resonances in the differential cross section
(as discussed for the gluino-pair production in [18,19]) is not possible here. Nevertheless,

1Final state interaction for g̃q̃ in the sextet representation is suppressed by powers of C [6]/C [3] = 1/3.
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benchmark mg̃ m1̃ Γg̃ + Γũ1
Γg̃ + Γũ2

Γg̃ + Γd̃1
Γg̃ + Γd̃2

∆M g̃q̃

point [GeV] [GeV] [GeV] [GeV] [GeV] [GeV] [GeV]

(a) 606.11 555.39 10.00 5.69 9.80 4.83 3.28

(b) 493.05 453.62 7.65 4.07 7.40 3.38 2.82

(c) 381.45 349.95 6.12 3.31 5.80 2.78 2.34

(d) 717.12 655.32 12.37 7.35 12.21 6.34 3.72

(e) 826.71 753.94 14.73 9.02 14.58 7.85 4.13

(f) 935.18 851.53 17.05 10.68 16.92 9.36 4.53

(g) 1042.60 948.11 19.33 12.31 19.22 10.84 4.91

(h) 1149.42 1044.12 21.57 13.91 21.47 12.29 5.29

(i) 936.42 859.67 16.42 9.97 16.28 8.63 4.55

(j) 802.21 1554.00 79.95 65.25 80.04 62.71 5.16

(k) 566.65 1299.75 79.29 67.00 79.40 64.93 4.13

(l) 319.59 1055.75 79.34 69.31 79.45 67.68 2.90

(m) 1030.98 1812.80 81.51 64.35 81.59 61.35 6.08

(n) 1255.61 2073.80 83.80 64.20 83.87 60.71 6.95

(o) 933.03 841.02 17.63 11.36 17.50 10.06 4.50

(p) 734.11 753.47 9.59 3.34 9.52 2.17 3.95

(q) 719.66 664.46 17.96 12.85 17.87 11.82 3.74

Table 3: Comparison of the gluino mass, the averaged squark mass of the first generation,
the sum of the single decay widths and the level spacing for 26 benchmark points defined
in Tab. 4 of Ref. [19].
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for the benchmark points (a)-(i) and (o)-(q) the binding effects of the colour triplet and
octet will be visible in the differential cross section.

The technical aspects of the calculation for threshold production are very similar to the
ones for top-quarks [15, 16] and gluinos [18, 19]. The cross section, differential in M , the
invariant mass of the gluino-squark pair, can be decomposed into a factor representing the
hard, short distance part and a factor determined by the imaginary part of the Green’s
function, evaluated at the origin. This partonic cross section is then convoluted with the
luminosity function:

M
dσPP→R

dM
(S,M2) =

∑

i,j

∫ 1

ρ

dτ

[

dLij

dτ

]

(

τ, µ2
F

)

M
dσ̂ij→R

dM
(ŝ,M2, µ2

R, µ
2
F ) , (14)

with

M
dσ̂ij→R

dM
(ŝ,M2, µ2

R, µ
2
F ) = Fij→R(ŝ,M2, µ2

R, µ
2
F )

4 Im
{

G[R]
(

0,M + i
2
(Γg̃ + Γq̃i

)
)}

m2
red

,

[

dLij

dτ

]

(

τ, µ2
F

)

=

∫ 1

0

dx1

∫ 1

0

dx2 fi|P (x1, µ
2
F ) fj|P (x2, µ

2
F ) δ (τ − x1x2) . (15)

The quantities S and ŝ denote as usual the hadronic and the partonic center of mass
energy squared, and τ ≡ ŝ/S. The lower limit of the integration is given by ρ ≡ M2/S.
The superscript of the Green’s function refers to the colour representation R of the cor-
responding S wave and µF and µR denote the factorization and renormalization scale,
respectively.

The only reaction present at leading order (LO) is gq → g̃q̃i where in the Feynman
diagrams of Fig. 1 initial and final states have to be exchanged. For the four squark types
under consideration and including both squark and antisquark the hard parts of the cross
sections are given as

F (0)
ij→R = N [R]

ij

π2α2
s(µR)

12ŝ
δ(1 − z) , (16)

with z = M2/ŝ. The non-vanishing normalization factors N [R]
ij are obtained from Eqs. (8a)

and (8b):

N [3]
gq = N [3]

gq =
(mg̃ + 9m1̃)

2

3mg̃(mg̃ +m1̃)
,

N [6]
gq = N [6]

gq =
6(mg̃ +m1̃)

mg̃

,

N [15]
gq = N [15]

gq =
15(mg̃ +m1̃)

mg̃
, (17)

which do not depend on the squark mixing.
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The Green’s function depends on the energy E = M − (mg̃ +mq̃i
) and on the sum of the

decay rates. It is obtained from the non-relativistic Schrödinger equation
{[

2 (−i∇)2

mred
+ V [R](r)

]

−
(

E +
i

2
(Γg̃ + Γq̃i

)

)

}

G[R]

(

r,M +
i

2
(Γg̃ + Γq̃i

)

)

= δ(3) (r) ,

(18)

with the potential being V
[R]
C,Born

(r), the Coulomb potential of Eqs. (4) and (5). NLO
corrections to both, the hard parts of the cross section as far as the Green’s function are
studied in the next section.

3 Next to leading order corrections

The NLO corrections of the cross section can be split up into those for the imaginary part
of the Green’s function Im

{

G[R]
}

and those for the hard coefficients Fij→R as defined in
Eq. (15).

3.1 Green’s function

Following the idea of the Green’s function method developed in Refs. [30, 31] we start
with the interaction potential in position space. With the colour coefficients of Eq. (5) it
is given up to NLO

V
[R]
C (r) = −C [R]αs

(

µ
[R]
G

)

r

{

1 +
αs

(

µ
[R]
G

)

4π

[

2β0

(

ln
(

µ
[R]
G r
)

+ γE

)

+ a1

]

}

, (19)

The coefficient a1 = 31/9CA − 20/9TFnf is identical to the one relevant for the NLO
corrections to the potentials of gluinonia and quarkonia [32]. The coefficient of the QCD-
beta function is β0 = 11/3CA−4/3TFnf with CA = 3 and TF = 1/2 and γE = 0.5772. The
choice of nf = 5 active quark flavours is motivated by the scale of the Green’s function
(see Eq. (25)) for the gluino and squark masses under consideration. Effects of massive
top quarks could be incorporated, however, are irrelevant at the present level of precision.
For both LO and NLO we adopt αs(MZ = 91.1876 GeV) = 0.12018 as provided from
MSTW2008NLO [33] and employ the two-loop running as provided by RunDec [34].

The Green’s function for the top-antitop system is known in compact analytic form [35]
(see also [36]) and the result is easily applied to the present case

G[R]

(

E +
i

2
(Γg̃ + Γq̃i

)

)

≡ G[R]

(

0, E +mg̃ +mq̃i
+
i

2
(Γg̃ + Γq̃i

)

)

= i
v m2

red

π
+
C [R] αs

(

µ
[R]
G

)

m2
red

π

[

gLO +
αs

(

µ
[R]
G

)

4π
gNLO + . . .

]

,

(20)
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with

gLO ≡ L− ψ(0) ,

gNLO ≡ β0

[

L2 − 2L
(

ψ(0) − κψ(1)
)

+ κψ(2) +
(

ψ(0)
)2 − 3ψ(1) − 2κψ(0)ψ(1)

+4 4F3 (1, 1, 1, 1; 2, 2, 1− κ; 1)

]

+ a1

[

L− ψ(0) + κψ(1)

]

, (21)

and

κ ≡ i
C [R] αs

(

µ
[R]
G

)

2 v
, v ≡

√

E + i
2
(Γg̃ + Γq̃i

)

2mred

, L ≡ ln
i µ

[R]
G

4mred v
. (22)

The n-th derivative ψ(n) = ψ(n)(1−κ) of the digamma function ψ(z) = γE +(d/dz) ln Γ(z)
is evaluated at (1−κ). The numerical solution of the Schrödinger equation of Eq. (18) in-
volves multiple poles in the binding energy which have to be resummed to single poles [35].
The definition of the Generalized Hypergeometric Function 4F3 together with comments
about its numerical evaluation can be found in Ref. [25]. In particular, attention has to
be paid to the evaluation of 4F3 at the beginning of a branch cut for its last argument.

3.2 Short distance corrections

The complete NLO corrections to the hard part of the cross section involve virtual correc-
tions to the process gq → g̃q̃ plus real radiation (for the gluino-pair production see [19]).
The production of the final state g̃ũ1 in colour representation R, for example, will receive
contributions from the processes gg → Ru, ug → Rg, uu → Ru, uu → Ru, uq → Rq,
uq → Rq and qq → Rq with q 6= u.

For the present analysis the complete calculation has been replaced by an approximation
employed in [15, 18] for tt and g̃g̃ production which includes the leading logarithms from
initial and final state radiation, affecting the subprocess gq → g̃q̃ which was present at
LO already. One gets

Fij→R = N [R]
ij

π2 α2
s(µR)

12 ŝ

[

1 +
αs(µR)

π

βSQCD

0

2
ln

(

µ2
R

(mg̃ +m1̃)
2

)]

×
(

δ(1 − z) +
αs(µR)

π
R[R](z)

)

, (23)

with

R[R](z) = (CA + CF )

{

2

[

ln(1 − z)

1 − z

]

+

− ln

(

µ2
F

(mg̃ +m1̃)
2

)[

1

1 − z

]

+

}

−CR

[

1

1 − z

]

+

− δ(1 − z)
βSQCD

0 + 3CF

2
ln

(

µ2
F

(mg̃ +m1̃)
2

)

, (24)
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where βSQCD

0 = 3CA − 2TFnf is the one-loop coefficient of the SUSY QCD beta function.

The normalization factors N [R]
ij are given in Eq. (17), the constants CR in Tab. 1. The

conventional plus-distribution2 has been employed to regularize singularities appearing
at z = 1. The terms of the first line of Eq. (24) stem from initial-state radiation and
are therefore proportinal to the sum of the Casimirs of the adjoint and the fundamental
representation. The first term in the second line originates from final-state radiation and
depends on the representation of the gluino-squark state. The last term originates from
the renormalization of the parton densities. We do not include the estimate of the virtual
corrections based on the colour summed open production – as performed in [18] for the
gluino-gluino case.

4 Numerical results

4.1 Benchmark Points

From now on we limit our discussion to the benchmark points (p) and (q). First we focus
on (p), where the gluino mass and the four squark masses of the first generation lie in a
range of less than 30 GeV. For the right handed squarks (i = 2) the sum of the decay
widths is slightly smaller than the level spacing ∆M g̃q̃, for the left handed ones (i = 1)
approximately twice as big. Thus, the enhancement from the lowest lying resonance will
be visible in the differential cross section.

As an alternative we consider benchmark point (q). In this case the constituent decay rates
are significantly larger than the level spacing. Final state interaction will, nevertheless,
lead to a significant enhancement and distortion of the cross section in the threshold
region.

4.2 Green’s Function

As a characteristic scale for the strong coupling in the potential we have chosen the Bohr
radius

µ
[R]
G ≡ 2mred

∣

∣C [R]
∣

∣ αs

(

µ
[R]
G

)

. (25)

The normalized imaginary part of the Green’s function at the origin is displayed in Fig. 3.
The plots involving the thresholds with up-type (down-type) squarks can be found at the

2The plus-distribution follows the prescription
∫ 1

0 dz
[

lnn(1−z)
1−z

]

+
f(z) ≡

∫ 1

0 dz lnn(1−z)
1−z

[f(z) − f(1)]

for n = 0, 1, . . . and any test function f(z). If the lower integration boundary is given by ρ > 0 the

plus distribution can be replaced by the ρ-description via
[

lnn(1−z)
1−z

]

+
→ lnn+1(1−ρ)

n+1 δ(1− z)+
[

lnn(1−z)
1−z

]

ρ

where the latter is defined through
∫ 1

ρ
dz
[

lnn(1−z)
1−z

]

ρ

f(z) ≡
∫ 1

ρ
dz lnn(1−z)

1−z
[f(z) − f(1)].
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Figure 3: Imaginary part of the Green’s function for scenario (p) for the up-type (at the
top) and the down-type (at the bottom) squarks. LO and NLO curves are plotted for
all three colour configurations, whereas both curves lie on top of each other for the 15
representation.

top (at the bottom) while left-handed (right-handed) squarks can be found on the left
(right) side. LO and NLO curves are displayed separately and the bad convergence of
the binding energies, which had been observed for the quarks [37–39] as well as for the
gluinos [25], results in a shift of 2 GeV between the ground state of the most attractive
colour-triplet configuration going from LO to NLO. The effect of the larger decay widths
for the left-handed squarks manifests itself in the smearing of this resonance compared to
the right-handed particles. The attractive potential of the colour-sextet representation is
suppressed by a factor of three such that no resonances can be seen. The contribution of
the repulsive 15 configuration is negligible in the threshold region and the LO and NLO
curve lie on top of each other.
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4.3 Cross section

Combining the results of the previous section, the threshold behaviour of gluino-squark
production in proton-proton collision can be computed. For the numerical evaluation of
the strong coupling we used the program RunDec [34] and the starting values αs(MZ) =
0.13939 for the MSTW2008LO PDFs and αs(MZ) = 0.12018 for the MSTW2008NLO
set [33]. For µH (Eq. (26)) the running is performed at the two-loop level. Decoupling
of the top-quark at mt = 172.0 GeV and decoupling of the gluino and squarks at µH is
performed at one-loop precision (see for example [40]).

For simplicity the squark mass entering the reduced mass of the cross section and the
determination of the coupling is understood as averaged mass of the squarks of the first
generation from Eq. (13). The information of the four different squarks is only encoded
in the decay widths Γq̃i

and in the total mass of the gluino-squark system entering the
Green’s function via the relative velocity v from Eq. (22) and determining the position of
the threshold.

In Fig. 4 the LO result for the production cross section, differential in the invariant mass
of the two supersymmetric particles, can be found. The contributions of the channels
gq → g̃q̃ and gq → g̃q̃∗ are both included. We have employed the parton distribution
functions (PDF) of MSTW2008LO [33]. Both factorization and the renormalization scale
have been set to the hard scale

µF = µR = µH ≡ mg̃ +m1̃ . (26)

Up to NLO Green’s function and hard kernel are separately renormalization scale invari-
ant, such that the cross section involves the two scales µ

[R]
G and µH .

The upper four plots of Fig. 4 are arranged as in Fig. 3. They show the contributions
from the three representations and their sum. In the lower plot the contributions of the
four gluino-squark channels are shown as well as their sum. It is clearly visible that, due
to MFV and the quark content of the proton, the contributions from up-type squarks are
twice as big as the ones of the curves involving down-type squarks. The resonances of the
right-handed squarks nearly coincide so that a relatively sharp resonance will be visible
in the invariant mass distribution.

For a degenerated squark and gluino mass, as it is roughly realized in this scenario (p),
the normalization factors of Eq. (17) are comparable for all three colour representations.
Therefore, the relative magnitudes of the cross sections are largely governed by the Green’s
function. Furthermore, the hard kernel does not vary strongly in in the threshold region,
hence the shapes of the curves shown in Figs. 3 and 4 exhibit a similar behaviour.

Let us now consider the (approximate) NLO result. The NLO values for the Green’s
function will be used together with the approximation of Eqs. (23) and (24) for the hard
part of the invariant mass distribution.

The result for benchmark point (p) is displayed in Fig. 5 for two regions of the invariant
mass. The shapes of LO (Fig. 4) and NLO predictions (Fig. 5) look quite similar, differing
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and their sum.
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mainly in their relative normalization by about 20%. Furthermore, the difference between
the masses of ũ1 and ũ2, respectively, becomes irrelevant for high energies, hence the
difference between the configurations with left- and righthanded squarks vanishes far
above the threshold. The contribution of the g̃ũ1/2 final states is twice the contribution of
the down-type squarks due to the structure of the proton. We also show the sum of the
fixed order (FO) curves where the Green’s function is replaced by its leading perturbative
expansion in αs, furthermore, in the limit Γg̃,Γq̃i

→ 0. Hence one gets

Im

{

G[R]

(

M +
i

2
(Γg̃ + Γq̃i

)

)}

−→ m2
red

π
v
(

1 + C [R] αs π

2 v

)

. (27)

with v as in Eq. (22). In the threshold region the four different values of the sum mg̃ +mq̃i

are clearly visible from the kinks of the dashed FO curve. Above aboutM = 1700 GeV the
two curves of the FO ansatz and the one using the full Green’s function roughly coincide
and binding effects are no longer of importance. The integrated difference between the
two functions

∆σ ≡
∫ M1

M0

dM

[(

dσ

dM

)

Green

−
(

dσ

dM

)

FO

]

, (28)

for M0 = 1415 GeV and M1 = 1650 GeV represents a measure for the effect of the final
state interaction and amounts to a relative enhancement of about 2.57% compared to the
total cross section of σtot = 7.29 pb which has been calculated at NLO using Prospino2 [5].
It should be mentioned that also effects of squarks from the second and third generation
are included in the total cross section.

The sensitivity of our results on the factorization scale µF and the renormalization scale
µR is shown in Fig. 6, both for LO and NLO predictions. The scales µF and µR are
chosen to be equal and varied between µH/2 and 2µH (see Eq. 26). As expected, the
scale dependence is significantly reduced for the NLO approximation, amounting to less
than ±10%. An estimate of the theoretical uncertainty may either be based on this scale
dependence, or, more conservatively, on the difference between LO and NLO results,
amounting to roughly 20%.

As a second option we study the prediction for benchmark point (q) with constituent
decay rates significantly larger than the level spacing. The Green’s functions are shown
in Fig. 7. The strong enhancement of the triplet Green’s function is evident, as well as
the strong suppression for the 15 representation. The predictions for the differential cross
sections are shown in Fig. 8, again separately for the different squark species and the
different representation. The step in dσ/dM slightly below the nominal threshold is still
visible for the individual squark species, it is, however, smeared out when one considers
the sum of all four channels. Nevertheless, again one observes a significant enhancement
of the differential cross section in the threshold region, which extends from approximately
20 GeV below to 50 GeV above the nominal threshold.

The NLO result for benchmark point (q) is displayed in Fig. 9 again for two regions of
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Figure 7: Imaginary part of the Green’s function for scenario (q) for the up-type (at the
top) and the down-type (at the bottom) squarks. LO and NLO curves are plotted for
all three colour configurations, whereas both curves lie on top of each other for the 15
representation.

the invariant mass. The effect of the NLO correction and the dependence on factorization
and renormalization scale is similar to the one discussed for benchmark point (p).

5 Conclusions

The threshold behaviour of gluino-squark production at hadron colliders has been inves-
tigated. The NLO Green’s function has been evaluated for gluino and squark in the three
possible irreducible representations with dimensions 3, 6 and 15. The logarithmically
enhanced part of the NLO corrections to the ”hard kernel” for the evaluation of the cross
section is included in the analysis.

In contrast to the case of gluino pairs the constituent decay rate is always comparable or
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larger than the binding energy, independent of the choice of the the SUSY parameters.
Hence it is only for the exceptional case of gluino and squark masses being comparable,
that pronounced resonance behaviour might occur. Nevertheless, attractive final state
interaction, in particular for squark and gluino in the triplet representation, will lead
to a modification of the cross section in the threshold region. The effective threshold
is lowered by about 20 GeV. Most of the enhancement is concentrated in an interval
of about 50 GeV around the nominal location of the threshold. Final state interaction,
thus, leads to a significant distortion of the differential distribution dσ/dM . Compared
the total cross section evaluated in NLO without inclusion of the rescattering effects final
state interaction increases the result by about 2 – 3%.

A Tensor product in a general SU(N)

The tensor product of the adjoint and the fundamental representations of SU(N) can be
obtained following standard methods and is given by

(N2 − 1) ⊗N =
N(N + 2)(N − 1)

2
⊕ N(N + 1)(N − 2)

2
⊕N , (29)

where the second representation on the right hand side of Eq. (29) is understood to be a
conjugate one. (See also [26].)

The projectors for these three representations are given as (for SU(3) see also Eq. (6))

P
[R]
ai,bj = a[R] δab 1ij + b[R] dabm T

m
ij + c[R] i fabm T

m
ij . (30)

The constants a[R], b[R] and c[R] can be determined using the completeness relation
∑

i

P
[Ri]
aj,bk = δab 1jk , (31)

the projector properties

P
[R1]
ai,bjP

[R2]
bj,ck = P

[R1]
ai,ck δR1R2

, (32)

as well as the proper dimensionality of the representations

δab δij P
[R]
bj,ai = dR . (33)

The result is given in Tab. 4 and the values for N = 3 coincide with those of Tab. 2.

The coefficients governing the strength of the potential, C [R], are easily obtained by pro-
jecting the amplitude for the one gluon exchange T a

ijF
a
bc onto the three different represen-

tations

dRC
[R] = P

[R]
dh,bi T

a
ijF

a
bc P

[R]
cj,dh , (34)

and the result is listed in Tab. 4.

22



R a[R] b[R] c[R] C [R]

N 1
N2−1

N
N2−1

N
N2−1

N
2

N(N+1)(N−2)
2

N−2
2(N−1)

− N
2(N−1)

N−2
2(N−1)

1
2

N(N+2)(N−1)
2

N+2
2(N+1)

N
2(N+1)

− N+2
2(N+1)

−1
2

Table 4: Coefficients of the projectors from Eq. (30) for a general SU(N).
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[5] W. Beenakker, R. Höpker, M. Spira and P. M. Zerwas, Nucl. Phys. B 492 (1997) 51
[arXiv:hep-ph/9610490].
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