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Heavy quark and gluino potentials to two loops
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Abstract

The static potentials for systems of a heavy quark and anti-quark, two gluinos
and a quark and a gluino are computed for all possible colour configurations of a
SU(Nc) gauge group.

PACS numbers: 12.38.Bx, 12.38.-t, 14.65.-q

The potential energy between two heavy quarks is one of the fundamental quantities of
the strong interaction and has been in the focus of the theoretical investigations already in
the early days of QCD [1]. The potential arises in a natural way when considering the non-
relativistic limit of a heavy quark and anti-quark system as an ingredient of the resulting
Schrödinger-like equations (see Ref. [2] for a review). Thus, the potential constitutes a
crucial input whenever the production of heavy particles is considered at threshold or
bound state properties are calculated. Examples of Standard Model processes are the
production of top quark pairs in electron positron collisions for a center-of-mass energy
in the vicinity of twice the mass or the invariant-mass distribution of tt̄ pairs at hadron
colliders. Furthermore, one should also mention the evaluation of the energy levels and
corrections to the wave function for heavy quark bounds states like the Υ or Ψ systems.

As far as processes beyond the Standard Model are concerned there have been recent
publications where bound states of two gluinos, the massive super partners of the gluons,
have been examined. Again, the corresponding potential, which has been used to two-loop
order, plays a crucial role [3,4]. Similarly, in Ref. [5] the threshold production of a gluino-
squark pair is considered. The required potential can be obtained from the quark-gluino
potential which is discussed below.

In this Letter we systematically compute the potentials of all colour configurations of a
quark-anti-quark, gluino-gluino and quark-gluino bound state. To be precise, we consider
the heavy-particle systems given in Tab. 1 and compute the potentials for the correspond-
ing colour decomposition.



bound state colour representation irreducible representations

qq̄ 3 ⊗ 3̄ 1 ⊕ 8

g̃g̃ 8 ⊗ 8 1 ⊕ 8S ⊕ 8A ⊕ 10 ⊕ 10 ⊕ 27 ⊕ R7

qg̃ 3 ⊗ 8 1 ⊕ 6 ⊕ 15

Table 1: Heavy-particle systems and their colour decomposition into irreducible represen-
tations. The subscripts “S” and “A” distinguish the symmetric and anti-symmetric octet
representations.

Note that in our framework both the heavy quark q and gluino g̃ are treated as external
static colour sources added to the (massless) dynamical degrees of freedom of QCD. Thus
except for colour there is no difference in the treatment of the gluino and the quark. As
a consequence the potential of an anti-quark and a gluino is identical to the qg̃ potential.

One comment concerning the colour decomposition of the g̃g̃ potential is in order: As it
is common practice we consider only the combination of 10⊕10. Furthermore, the colour
structure R7 is only non-vanishing for Nc 6= 3 and thus it is not relevant for QCD [6–10].

We define the various potentials introduced above as follows
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where ij ∈ {qq̄, g̃g̃, qg̃} and c defines the colour state as given in Tab. 1. The renormal-
ization scale is set to µ2 = ~q 2 to suppress the trivial renormalization group terms on the
r.h.s. of Eq. (1). For the potential V

[10]
g̃g̃ we have to modify Eq. (1) slightly since there is

no tree and one-loop contribution. Thus we write
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In Eq. (1) the coefficients a1 and a2 are the one- and two-loop corrections which are
already present in the singlet contribution of the qq̄ potential. They have been computed
in Refs. [11–15] and can be found in Ref. [16] including higher order terms in (d − 4)
(where d is the space-time dimension). The three-loop coefficient a3 has been computed
in Refs. [16–18]. In less than four dimensions the static potential has recently been
studied in Ref. [19], see also [20], and the N = 4 supersymmetric Yang-Mill theory has
been considered in Ref. [21].

At tree-level and at one-loop order the only difference among the various potentials is due
to the overall colour factor. At two-loop order we have introduced the quantity δa

[c]
2,ij which

parametrizes the difference to the singlet result. It is currently only known for V
[8]
qq̄ [22].
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Furthermore, also for V
[1]
g̃g̃ the two-loop corrections have been computed [4, 23] with the

result δa
[c]
2,g̃g̃ = 0. (In Ref. [23] also the three-loop term of V

[1]
g̃g̃ has been evaluated.) In

this Letter we present the two-loop results for all remaining potentials listed in Tab. 1.

For the calculation we have employed standard techniques which include the automatic
generation of the diagrams, the classification into different families of integrals, the ap-
plication of projectors [6–10] and the reduction to master integrals using the Laporta
algorithm [24–26]. The latter have been taken over from Ref. [27]. The colour factors
have been computed with the help of the program color [28]. We have performed the
calculation for general gauge parameter and have checked that it drops out in the final
result.

The standard techniques for the evaluation of the loop integrals appearing at one and two
loops (see, e.g., Refs. [20,27]) can only be applied in a straightforward way to the singlet
case since there, apart from light-fermion contributions, only the maximally non-Abelian
parts contribute. In particular, no diagrams involving pinches occur, i.e. the integrals do
not contain propagators of the form 1/(k0 + i0) × 1/(k0 − i0) where k is a loop momen-
tum. However, for the non-trivial colour configurations also such contributions have to
be taken into account. The corresponding integrals are evaluated by either exploiting the
exponentiation of the colour singlet potential or by carefully evaluating the potential in
coordinate space starting from the Wilson loop definition. Both methods are described in
detail in Refs. [20, 22]. In this Letter we have checked that they lead to the same result.

In Tab. 2 we present our results for C [c] and δa
[c]
2,ij for SU(Nc). Note that δa2 is zero for the

singlet contributions but also for gluino bound states in the symmetric octet configuration.
One furthermore obtains a vanishing result for the representation 6 (qg̃) when specifying
to QCD, i.e., setting Nc = 3. It is remarkable that all non-vanishing contributions are
proportional to the same combination (π4−12π2) with a prefactor depending of the colour
state.

As far as the numerical importance of δa2 is concerned one can compare the results in
the last column of Tab. 2 with a2 for the bottom and top system given by

a2(nl = 4) ≈ 211.1 ,

a2(nl = 5) ≈ 155.8 . (3)

(The corresponding numbers for a1 are 5.889 and 4.778, respectively.) In some cases one
observes a significant reduction of the two-loop coefficient (see, e.g., the 27 configuration

for nl = 4 where a2 + δa
[10]
2,g̃g̃ ≈ 0.8) whereas in other cases the large value of a2 is even

further increased.

To conclude, in this Letter the quark-anti-quark, gluino-gluino and quark-gluino potentials
have been computed for all possible colour configurations up to two loops. In all cases
it is possible to identify the two-loop coefficient a2 originating from the quark-anti-quark
singlet potential. The additional contributions are given by a colour factor times (π4 −
12π2).
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ij c C [c] δa
[c]
2,ij δa

[c]
2,ij(Nc = 3)

qq̄ 1 (N2
c
−1)

2Nc

0 0

8 − 1
2Nc

N2
c (π4 − 12π2) −189.2

g̃g̃ 1 Nc 0 0

8S
Nc

2
0 0

8A
Nc

2
−6 (π4 − 12π2) 126.2

10 — −3Nc

2
(π4 − 12π2) 94.62

27 −1 1
2
(Nc + 2) (Nc + 1) (π4 − 12π2) −210.3

R7 1 1
2
(Nc − 2) (Nc − 1) (π4 − 12π2) —

qg̃ 3 Nc

2
− (π4 − 12π2) 21.03

6 1
2

1
2
Nc (Nc − 3) (π4 − 12π2) 0

15 −1
2

1
2
Nc (Nc + 3) (π4 − 12π2) −189.2

Table 2: Results for the C [c] and δa
[c]
2,ij for the various colour configurations. In the right

column we set Nc = 3 and evaluate δa
[c]
2,ij numerically. Note that c = 10 refers to the

combination 10 ⊕ 10. Furthermore, R7 has dimension zero for Nc = 3.
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