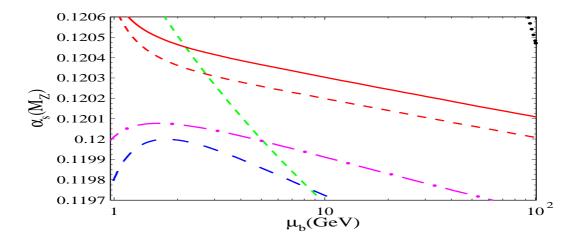
Running and decoupling of α_s

Matthias Steinhauser

Karlsruhe Institute of Technology

The β function governs the renormalization scale dependence of the strong coupling and is known to four-loop accuracy since almost 14 years [1][2]. There are different ways to solve the corresponding differential equation. The prefered method is the numerical solution with truncation of $\beta(\alpha_s)$ at the desired order. There are also several approximate (analytical) expressions, e.g., the one based on the iterative (perturbative) solution where the result for $\alpha_s(\mu)$ is given as an expansion in $1/L = 1/\ln(\mu^2/\Lambda^2)$ [3]. This formula should be used with care, in particular for small renormalization scales μ . If one considers, e.g., $\mu = M_{\tau}$ one observes a shift of +0.004 after including the four-loop corrections and negative shift of approximately the same order of magnitude at five-loop level. These numbers have to be compared with the current experimental precision which is cited as ±0.005 in Ref. [4] (see also the other contributions on α_s from τ decays in these proceedings).

Next to the running itself also the decoupling of heavy quarks form the running of the strong coupling constant is a crucial ingredient of the precision determination of α_s . Every time a heavy quark threshold is crossed one has to apply the decoupling constants which relate α_s with n_f active quark flavours, usually denoted by $\alpha_s^{(n_f)}$, to the coupling with only $n_f - 1$ active quark flavours. The decoupling constants are obtained by matching n_f -flavour QCD to the effective theory with the number of quarks equal to $n_f - 1$. The theoretical framework for the calculation of the decoupling constants has been set up in Ref. [5] where formulae are given relating *l*-loop corrections to *l*-loop vacuum integrals.



As a consequence of the decoupling relations $\alpha_s(\mu)$ is not a continuous function of μ but has finite steps at the energy scale where the heavy quark is integrated out, μ_{dec} . This energy is not fixed by theory, should, however, be in the vicinity of the heavy quark mass. On general grounds the dependence on μ_{dec} should become weaker if higher order perturbative corrections are included in the analysis. This is demonstrated in the figure above where $\alpha_s^{(5)}(M_Z)$ is computed using $\alpha_s^{(3)}(M_{\tau})$ as a starting point. The decoupling of the charm

quark is performed at the fixed scale $\mu_c = 3$ GeV and the decoupling scale of the the bottom quark μ_b is varied in the broad range between 1 GeV and 100 GeV. N-loop running goes along with (N-1)-loop decoupling. Results are shown for N = 1 (upper right dotted line), N = 2 (steep dashed line), N = 3 (lower dashed line) and N = 4 (dash-dotted line). One observes a dramatic reduction of the μ_b dependence with increasing N resulting in a quite flat four-loop result (Note that the scale on the ordinate only varies by 0.0009.).

For comparison we show in the figure two more curves which correspond to N = 5. They incorporate the four-loop decoupling relations [6][7]. For the unknown five-loop coefficient of the β function we have chosen $\beta_4 = 0$ (solid line) and $\beta_4 = 150$ (dashed line parallel to the solid one; the normalization corresponding to $\{\beta_0, \beta_1, \beta_2, \beta_3\} \approx \{1.92, 2.42, 2.83, 18.85\}$ has been chosen).

From the figure above it is possible to estimate an uncertainty on $\alpha_s^{(5)}(M_Z)$ as obtained from $\alpha_s^{(3)}(M_{\tau})$ due to missing higher order corrections. If we restrict ourselves to a range of μ_b between 2 GeV and 10 GeV and take the difference between the three- and four-loop curve as an estimate for the uncertainty we obtain $\delta \alpha_s^{(5)}(M_Z) \approx 0.0002$. The difference between the four- and five-loop (dashed) curve would even lead to $\delta \alpha_s^{(5)}(M_Z) \approx 0.0003$. The variation of $\alpha_s^{(5)}(M_Z)$ due to the variation of μ_b leads to an additional uncertainty of $\delta \alpha_s^{(5)}(M_Z) \approx 0.0002$. A similar uncertainty is obtained from the variation of μ_c between 2 GeV and 5 GeV. (This can easily be checked with the program RunDec [8].) Thus a total uncertainty of ± 0.0004 (obtained by adding the three uncertainties in quadrature) should be assigned to $\alpha_s^{(5)}(M_Z)$. The uncertainties induced by the errors in the quark masses are much smaller.

References

- J. A. M. Vermaseren, S. A. Larin and T. van Ritbergen, Phys. Lett. B 405 (1997) 327 [hep-ph/9703284].
- [2] M. Czakon, Nucl. Phys. B **710** (2005) 485 [hep-ph/0411261].
- [3] K. Nakamura et al. (Particle Data Group), J. Phys. G 37 (2010) 075021.
- [4] P. A. Baikov, K. G. Chetyrkin and J. H. Kuhn, Phys. Rev. Lett. 101 (2008) 012002 [arXiv:0801.1821 [hep-ph]].
- [5] K. G. Chetyrkin, B. A. Kniehl and M. Steinhauser, Nucl. Phys. B 510 (1998) 61 [arXiv:hep-ph/9708255].
- [6] Y. Schröder and M. Steinhauser, JHEP 0601 (2006) 051 [arXiv:hep-ph/0512058].
- [7] K. G. Chetyrkin, J. H. Kühn and C. Sturm, Nucl. Phys. B 744 (2006) 121 [arXiv:hepph/0512060].
- [8] K. G. Chetyrkin, J. H. Kuhn and M. Steinhauser, Comput. Phys. Commun. 133 (2000) 43 [arXiv:hep-ph/0004189].