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The β function governs the renormalization scale dependence of the strong coupling and
is known to four-loop accuracy since almost 14 years [1][2]. There are different ways to solve
the corresponding differential equation. The prefered method is the numerical solution with
truncation of β(αs) at the desired order. There are also several approximate (analytical)
expressions, e.g., the one based on the iterative (perturbative) solution where the result for
αs(µ) is given as an expansion in 1/L = 1/ ln(µ2/Λ2) [3]. This formula should be used
with care, in particular for small renormalization scales µ. If one considers, e.g., µ = Mτ

one observes a shift of +0.004 after including the four-loop corrections and negative shift of
approximately the same order of magnitude at five-loop level. These numbers have to be
compared with the current experimental precision which is cited as ±0.005 in Ref. [4] (see
also the other contributions on αs from τ decays in these proceedings).

Next to the running itself also the decoupling of heavy quarks form the running of the
strong coupling constant is a crucial ingredient of the precision determination of αs. Every
time a heavy quark threshold is crossed one has to apply the decoupling constants which

relate αs with nf active quark flavours, usually denoted by α
(nf )
s , to the coupling with only

nf − 1 active quark flavours. The decoupling constants are obtained by matching nf -flavour
QCD to the effective theory with the number of quarks equal to nf − 1. The theoretical
framework for the calculation of the decoupling constants has been set up in Ref. [5] where
formulae are given relating l-loop corrections to l-loop vacuum integrals.

µb(GeV)

α s(M
Z)

0.1197

0.1198

0.1199

0.12

0.1201

0.1202

0.1203

0.1204

0.1205

0.1206

1 10 10
2

As a consequence of the decoupling relations αs(µ) is not a continuous function of µ
but has finite steps at the energy scale where the heavy quark is integrated out, µdec. This
energy is not fixed by theory, should, however, be in the vicinity of the heavy quark mass. On
general grounds the dependence on µdec should become weaker if higher order perturbative
corrections are included in the analysis. This is demonstrated in the figure above where
α

(5)
s (MZ) is computed using α

(3)
s (Mτ ) as a starting point. The decoupling of the charm
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quark is performed at the fixed scale µc = 3 GeV and the decoupling scale of the the bottom
quark µb is varied in the broad range between 1 GeV and 100 GeV. N -loop running goes
along with (N − 1)-loop decoupling. Results are shown for N = 1 (upper right dotted line),
N = 2 (steep dashed line), N = 3 (lower dashed line) and N = 4 (dash-dotted line). One
observes a dramatic reduction of the µb dependence with increasing N resulting in a quite
flat four-loop result (Note that the scale on the ordinate only varies by 0.0009.).

For comparison we show in the figure two more curves which correspond to N = 5. They
incorporate the four-loop decoupling relations [6][7]. For the unknown five-loop coefficient
of the β function we have chosen β4 = 0 (solid line) and β4 = 150 (dashed line parallel to
the solid one; the normalization corresponding to {β0, β1, β2, β3} ≈ {1.92, 2.42, 2.83, 18.85}
has been chosen).

From the figure above it is possible to estimate an uncertainty on α
(5)
s (MZ) as obtained

from α
(3)
s (Mτ ) due to missing higher order corrections. If we restrict ourselves to a range of

µb between 2 GeV and 10 GeV and take the difference between the three- and four-loop curve
as an estimate for the uncertainty we obtain δα

(5)
s (MZ) ≈ 0.0002. The difference between the

four- and five-loop (dashed) curve would even lead to δα
(5)
s (MZ) ≈ 0.0003. The variation of

α
(5)
s (MZ) due to the variation of µb leads to an additional uncertainty of δα

(5)
s (MZ) ≈ 0.0002.

A similar uncertainty is obtained from the variation of µc between 2 GeV and 5 GeV. (This
can easily be checked with the program RunDec [8].) Thus a total uncertainty of ±0.0004

(obtained by adding the three uncertainties in quadrature) should be assigned to α
(5)
s (MZ).

The uncertainties induced by the errors in the quark masses are much smaller.
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