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Abstract

We consider moments of the non-diagonal vector, axial-vector, scalar and
pseudo-scalar current correlators involving two different massive quark flavours up
to three-loop accuracy. Expansions around the limits where one mass is zero and the
equal-mass case are computed. These results are used to construct approximations
valid for arbitrary mass values.

PACS numbers: 12.38.Bx, 14.65.Dw, 14.65.Fy



1 Introduction

Current correlators are building blocks for a number of physical quantities. Among them
is the total cross section of hadrons in electron positron annihilation which is obtained
from the imaginary part of the vector correlator. The axial-vector correlator leads in an
analogue way to contributions to the Z boson decay rate. The scalar and pseudo-scalar
correlators govern the decay rate of Higgs bosons with the respective CP property.

An important role in the context of current correlators is taken over by moments obtained
from an expansion of the two-point functions for small external momenta. As far as the
correlators are concerned where the current couples to the same quark flavour they have
been used to extract precise values for the charm and bottom quark masses by comparing
the results for the vector correlator up to four-loop order [1–8] with the moments obtained
from the experimentally measured cross section (see, e.g., Refs. [9–11]). Also the moments
for the other correlators [6–8] can be employed once the experimental data is replaced by
precise lattice simulations as has been done in Refs. [12,13]. Besides the mass values also
the strong coupling constant can be extracted from the comparison of moments of the
pseudo-scalar currents obtained both in perturbation theory and with the help of lattice
gauge theory calculations [12, 13].

The focus of the paper lies on moments of heavy-light current correlators, i.e., two-point
functions involving two quark flavours with different masses. Results for the case where
one of the masses is zero have been obtained in Refs. [14, 15] and [16, 17] to two- and
three-loop order, respectively. These results have been used in [16, 17] to reconstruct, in
combination with high-energy expansions and information about the threshold behaviour,
approximations valid for all external momenta and quark masses. Applications of these
results are corrections for single-top production or decay rates of charged Higgs bosons in
extensions of the Standard Model [16, 17]. The three-loop corrections have furthermore
been used to obtain precise results for the B and D meson decay constants, fB and fD,
based on sum rules [18,19]. Also the extraction of fB and fD from lattice gauge simulations
requires perturbative input. As discussed in Ref. [20] it is particularly desirable to have
moments of the heavy-light currents for general values of the two quark masses, not only
for the physical masses of the involved quarks in order to perform simulations for a variety
of different masses, which then can be extrapolated to the mass values of physical interest.
We therefore extend the known three-loop results for the moments of the vector, axial-
vector, scalar and pseudo-scalar current correlators where one of the quark masses is zero
to the case of two different masses. This is done by computing analytic expansions around
two limiting cases, the one for equal masses, the other for one of the masses equal to zero.
Subsequently, approximations are constructed which cover the whole range.

In the next Section we provide details on the calculation, the results for the pseudo-
scalar correlator are presented in Section 3. We conclude with a summary in Section 4.
Long analytic formulae are relegated to the Appendix where also numerical results for
the vector, axial-vector and scalar correlator can be found. All results for the moments
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can be downloaded from [21].

2 Calculation

Let us in a first step present our notation. We define the vector (v), axial-vector (a),
scalar (s) and pseudo-scalar (p) currents via

jv
µ = ψ̄1γµψ2 ,

ja
µ = ψ̄1γµγ

5ψ2 ,

js = ψ̄1ψ2 ,

jp = ψ̄1iγ
5ψ2 , (1)

where ψ1 and ψ2 denote the two quark flavours. Using these currents the vector and
axial-vector correlator is defined through (δ = v, a)

(

−q2gµν + qµqν
)

Πδ(q2) + qµqν Πδ
L(q2) = i

∫

dx eiqx〈0|Tjδ
µ(x)j

δ†
ν (0)|0〉 , (2)

where Πδ(q2) and Πδ
L(q2) are the transverse and longitudinal contributions, respectively.

The scalar and pseudo-scalar polarization function reads (δ = s, p)

q2 Πδ(q2) = i

∫

dx eiqx〈0|Tjδ(x)jδ†(0)|0〉 . (3)

Throughout this paper we consider anti-commuting γ5 which is justified as for ψ1 6= ψ2

only non-singlet diagrams contribute. As a consequence the axial-vector (pseudo-scalar)
correlator coincides with the vector (scalar) one if either m1 or m2 is zero. Sample
Feynman diagrams occurring at one-, two- and three-loop order are shown in Fig. 1.

It is convenient to introduce the dimensionless variables

z =
q2

m2
1

, (4)

x =
m2

m1
, (5)

which enables us to cast Πδ(q2) for q2 → 0 in the form

Π̄δ(q2) =
3

16π2

∑

n≥−1

C̄δ
n(x)zn , (6)

where the bar indicates that the overall renormalization of the polarization function is
performed in the MS scheme. Note that we have the symmetry relations C̄s

n(x) = C̄p
n(−x)

and C̄v
n(x) = C̄a

n(−x) (see, e.g., Ref. [22]).
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Figure 1: Sample diagrams contributing to Πδ at one, two and three loops. The thick
(lower) and thin (upper) lines correspond to quarks with mass m1 and m2, respectively,
and the curly lines represent gluons.

We perform an explicit calculation only for the transverse part of the vector and axial-
vector current and reconstruct the coefficients for the longitudinal part with the help of
(n = −1, . . . , 3)

C̄v
L,n = (1 − x)2C̄s

n+1 ,

C̄a
L,n = (1 + x)2C̄p

n+1 . (7)

For n = −1, 0, 1 and 2 and six expansion terms in x and (1 − x) we have checked that
these equations hold.

The expansion of the coefficients in αs is given by

C̄δ
n = C̄(0),δ

n +
αs

π
C̄(1),δ

n +
(αs

π

)2

C̄(2),δ
n + . . . . (8)

where the arguments x and µ are suppressed. Often it is advantageous to require a
QED-like normalization Πδ(0) = 0 where the relation to Π̄δ(q2) is given by

Πδ(q2) = Π̄δ(q2) −
3

16π2

(

C̄δ
0 +

C̄δ
−1

z

)

. (9)

For the practical calculation we use a well tested set-up which is highly automated in order
to avoid errors. All Feynman diagrams are generated with QGRAF [23] and the various
diagram topologies are identified and transformed to FORM [24] with the help of q2e and
exp [25, 26]. exp also applies the asymptotic expansion for x → 0 on a diagrammatic
level. The expansion around x = 1 leads to a naive Taylor series. In a next step the
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expressions are passed to FORM where appropriate projectors are applied, the expansions
in small quantities are performed and traces are taken. Once the analytical expressions
for each diagram are reduced to scalar integrals the program MATAD [27] is called in order
to handle vacuum integrals up to three loops.

The three-loop calculation requires the inclusion of counterterms up to two-loop order
(see, e.g., Ref. [28]) which we implement in the MS scheme both for the parameters m1,
m2 and αs and the renormalization of the current itself. The latter is equal to the mass
renormalization for the scalar and pseudo-scalar case and unity for the vector and axial-
vector current. At that point all remaining poles are local and can be subtracted in the
MS scheme in order to arrive at Π̄δ(q2). (See Ref. [22] for details.)

Following this procedure we were able to evaluate the coefficients C̄n(x) with n ≤ 4 where
terms up to order x8 and (1−x)9 are included in the expansions around x = 0 and x = 1,
respectively.

3 Results

In this Section we discuss the quality of our expansions in x. At one and two loops we
can compare to the exact result which provides confidence concerning the validity of the
three-loop approximations. In the main text we restrict ourselves to the pseudo-scalar
case. Results for the remaining three correlators are presented in the Appendix and in
Ref. [21].

3.1 One- and two-loop results for the pseudo-scalar moments

The exact dependence on x of the one-loop results for the pseudo-scalar moments C̄p
n(x)

with n ≤ 4 is given by

C̄
(0),p
−1 (x) = − 4 (1 + lµ)

(

1 − x+ x2
)

+ lx
8 x3

1 + x
,

C̄
(0),p
0 (x) =

1 + 4 x+ x2

(1 + x)2 − lx
4 x3 (2 + x)

(−1 + x) (1 + x)3 + 2 lµ ,

C̄
(0),p
1 (x) =

2 (1 − x+ x2) (1 + 4 x+ x2)

3 (−1 + x)2 (1 + x)4 − lx
8 x3

(−1 + x)3 (1 + x)5 ,

C̄
(0),p
2 (x) =

1 + 4 x− 7 x2 + 40 x3 − 7 x4 + 4 x5 + x6

6 (−1 + x)4 (1 + x)6 − lx
4 x3 (2 − x+ 2 x2)

(−1 + x)5 (1 + x)7 ,

C̄
(0),p
3 (x) =

1 + 5 x− 14 x2 + 145 x3 − 94 x4 + 145 x5 − 14 x6 + 5 x7 + x8

15 (−1 + x)6 (1 + x)8

− lx
8 x3 (1 − x+ 3 x2 − x3 + x4)

(−1 + x)7 (1 + x)9 ,
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C̄
(0),p
4 (x) =

1 + 6 x− 23 x2 + 356 x3 − 398 x4 + 956 x5

30 (−1 + x)8 (1 + x)10

+
−398 x6 + 356 x7 − 23 x8 + 6 x9 + x10

30 (−1 + x)8 (1 + x)10

− lx
4 x3 (2 − 3 x+ 12 x2 − 8 x3 + 12 x4 − 3 x5 + 2 x6)

(−1 + x)9 (1 + x)11 , (10)

where lµ = ln(µ2/m2
1) and lx = ln(x2)/2. These results have been extracted from Ref. [15]

where Πp(q2) is given in analytic form up to two loops. We have checked the results of
Eq. (10) evaluating directly the moments both exactly in x and restricting ourselves to
expansions in xn and (1 − x)n. Note that the latter method has to be applied at three
loops.

In Fig. 2 we discuss C̄
(0),p
n (x) for n = 1, 2, 3 and 4 and show the curves including x0,

x7 and x8 for the small-x expansion as dashed lines where longer dashes correspond to
approximations including higher order power corrections. The dotted lines correspond
to expansions around the equal-mass case where curves including (1 − x)0, (1 − x)8 and
(1 − x)9 (decreasing distance between dots) are shown. The exact result is shown as
solid curve. One observes that the approximation including corrections up to order x8

coincides with the exact result up to x ≈ 0.2, for n = 1 even up to x ≈ 0.3. On the other
hand, the approximation based on the O((1 − x)9) terms is indistinguishable from the
solid line for x ∼> 0.2− 0.3. These limits are close to the ones obtained by considering the
approximations including x7 and (1 − x)8 terms only. It is obvious that the small gap in
between can easily be closed with the help of a polynomial interpolation.

The exact analytic results for the two-loop moments of the pseudo-scalar current are
already quite lengthy. Thus we exemplify the structure by showing C̄

(1),p
1 (x) in the main

text. The results for C̄
(1),p
n (x) for n 6= 1 can be found in Appendix A.1. For C̄

(1),p
1 (x) we

have

C̄
(1),p
1 (x) =

1 + 36 x− 22 x2 + 36 x3 + x4

9 (−1 + x)2 (1 + x)4 +
[

Li2
(

x2
)

+ 2 lx l1−x2 − ζ2
] 8 (1 + 3 x+ x2)

9 (−1 + x) (1 + x)3

+
16 lx x

2 (1 + 6 x+ x2)

9 (−1 + x)3 (1 + x)5 −
16 l2x x

3 (18 + 9 x2 − 2 x3 + 3 x4 + x5)

9 (−1 + x)4 (1 + x)6 , (11)

where l1−x2 = ln(1−x2) and ζ2 = π2/6. Note that in Eq. (11) the coefficient of ln(µ2/m2
1)

is zero. Using the same notation as in Fig. 2 we show in Fig. 3 the results for C̄
(1),p
n (x).

The same conclusions as in the one-loop case can be drawn: The expansion for x → 0
provides reliable results for x ∼< 0.2 whereas the expansion around x = 1 is trustworthy
for x ∼> 0.2 − 0.4. This is true both for the approximations containing the ninth and the
ones containing only the eighth order in x and 1−x, respectively. Thus it is promising to
proceed at three-loop level, where the computation of the exact dependence on x is quite
complex, in the following way: using the combination of computer programs described in
Section 2 it is straightforward to compute expansions in x and (1 − x). Afterwards we
combine the expansions applying a simple interpolation.
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Figure 2: One-loop contribution to C̄p
n. The dashed and dotted lines correspond to

the expansions in x and (1 − x), respectively, where the lowest and the two highest
approximations are shown. The solid line represents the exact result. Note that for n = 4
the curve including terms up to order (1 − x)8 and the one including terms up to order
(1 − x)9 lie on top of each other in the shown interval.

The approximations for moments of the vector, axial-vector and scalar correlators have
the same quality as in the pseudo-scalar case, i.e. they approximate the exact result in the
same regions of x. We refrain from an explicit discussion in this paper, however, provide
the figures corresponding Fig. 2 and 3 in Appendix B.

3.2 Three-loop results

Let us in a first step present the expansions around x = 0 and x = 1. Since they are quite
lengthy we show in the main part of the paper only results for the first moment adopting
µ2 = m2

1 to exemplify the structure of the result. Furthermore, we restrict ourselves to the
first three terms in the expansion. The complete expressions for general µ and the results
for the moments with n = −1, 0, 2, 3 and 4 are provided in the Mathematica file [21]. For
x→ 0 we have

C̄
(2),p
1 (x) =

35

16
+

1055

162
ζ2 −

88

9
ζ3 −

134

27
ζ4 +

2

27
D3 +

105

4
S2
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Figure 3: Two-loop contribution to C̄p
n. The same notation as in Fig. 2 is adopted.

+ x

(

13465

972
+

4493

243
ζ2 +

409

27
ζ3 −

137

27
ζ4 +

D3

9
−

39

4
S2

)

+ x2

(

−
176603

3888
−

12557

486
ζ2 −

5564

81
ζ3 +

94

27
ζ4 −

10

27
D3 +

761

4
S2

)

+ x3

(

163867

1944
+

401977

1620
ζ2 +

221

81
ζ3 +

5327

324
ζ4

+
50

27
D3 −

2228

243
Sǫ

2 + 600S2 +
1114

81
T ǫ

1

)

+ lx x
3

(

2368

27
−

1114

3
S2 −

80

27
ζ2 −

16

3
ζ3

)

− l2x
1024 x3

9
+ l3x

1264 x3

9

+ nl

[

−
5

72
−
ζ2
9

+
8

27
ζ3 + x

(

−
55

36
−

8

27
ζ2 +

8

27
ζ3

)

+ x2

(

823

216
+
ζ2
9
−

8

27
ζ3

)

+ x3

(

−
571

54
+

28

9
ζ2 +

176

27
ζ3

)

+lx x
3

(

88

27
+

16

3
ζ2

)

+ l2x
80 x3

9
− l3x

32 x3

9

]

+ O(x4) , (12)
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Figure 4: Three-loop contribution to C̄p
n. The dash-doted line represents the result based

on the fit as described in the text. For the rest the same notation as in Fig. 2 is adopted.

where D3 ≈ −3.0270, S2 ≈ 0.2604, Sǫ
2 ≈ 7.8517, T ǫ

1 ≈ −24.2089 [27] and ζ3 ≈ 1.2021.
nl is the number of massless quarks and the total number of quarks is nf = nl + 2. For
x→ 1 one obtains

C̄
(2),p
1 (x) = −

13139

2592
+

6977

1728
ζ3 + (1 − x)3

(

14229845

93312
−

13342139

103680
ζ3

)

+ (1 − x)

(

8267

2592
−

6977

1728
ζ3

)

+ (1 − x)2

(

−
72234997

933120
+

13760759

207360
ζ3

)

+ nl

[

25

162
−

2

81
(1 − x) −

289

4860
(1 − x)2 +

409

4860
(1 − x)3

]

+ O
(

(1 − x)4
)

.

(13)

In Fig. 4 we show C̄
(2),p
n as a function of x using the same notation as at one and two

loops. We have chosen nl = 3 which corresponds to a massive charm and bottom quark.
We again observe that the approximations based on the x7 terms and the one including
x8 terms coincide up to x ≈ 0.1 − 0.2. Furthermore, also for the expansion around the
equal-mass case the two highest approximations overlap for x ∼> 0.2−0.3, depending on n.
From the experience gained from the one- and two-loop considerations we can conclude
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that in these regions our expressions constitute perfect approximations to the exact result.
Furthermore, it is again straightforward to obtain approximations which are valid for all
x values by a simple interpolation. In order to obtain handy expressions we perform a
polynomial fit which is valid for the intermediate region x ∈ [0.1, 0.5]. Allowing also for
half-integer exponents of x we obtain

C̄
(2),p
1,appr(x)

∣

∣

∣

∣

µ2=m2

1

= 0.382 + 22.191 x1/2 + 5.126 x− 138.613 x3/2 + 149.094 x2 − 39.042 x3 ,

C̄
(2),p
2,appr(x)

∣

∣

∣

∣

µ2=m2

1

= 0.284 + 21.369 x1/2 − 45.897 x+ 11.032 x3/2 + 26.207 x2 − 13.199 x3 ,

C̄
(2),p
3,appr(x)

∣

∣

∣

∣

µ2=m2

1

= −0.307 + 15.358 x1/2 − 50.366 x+ 61.164 x3/2 − 27.39 x2 + 1.475 x3 ,

C̄
(2),p
4,appr(x)

∣

∣

∣

∣

µ2=m2

1

= 0.129 + 4.414 x1/2 − 16.562 x+ 20.537 x3/2 − 8.586 x2 − 0.031 x3 . (14)

These results are valid for nl = 3 and are shown as dash-dotted lines in Fig. 4. We applied
the same procedure to the one- and two-loop moments. The comparison with the exact
result provides an estimate for the accuracy of the approximations in Eqs. (14) to better
than 5% for x ∈ [0.1, 0.5]. For x < 0.1 or x > 0.5 the corresponding expansions should
be used for the evaluation of the moments since in these regions they provide excellent
approximations to the (unknown) exact result. Analogue results for the vector, axial-
vector and scalar correlators can be found in [21] where again nl = 3 has been chosen. If
necessary it is straightforward to obtain formulae for other values for nl.

4 Summary

We have computed three-loop QCD corrections to the moments of the current correlators
formed by quark fields with different masses. Our final expressions are based on expansions
around the known limits where either one mass is zero or both masses are equal. We
present results which are valid for arbitrary quark masses by combining the expansions
and a simple polynomial fit in the intermediate region.

In the main part of the paper we concentrate on the discussion of the pseudo-scalar
correlator. However, numerical results for the vector, axial-vector and scalar correlator
can be found in the Appendix and analytical expressions are provided in a Mathematica

file which comes together with this paper.

One- and two-loop results with exact quark mass dependence and analytic results for
the expansions at three-loop order are presented in Mathematica format on the internet
page [21]. Also the exact renormalization scale dependence of the three-loop moments are
provided and numerical approximations valid for arbitrary m2/m1.

The results obtained in this paper constitute important input for lattice calculations in
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the context of semileptonic and leptonic B meson decays. For such simulations non-
perturbative Z factors for heavy-light currents are needed which can be extracted from
the corresponding current-current correlators. Whereas in the case of the Bs meson
expansions for small strange quark mass might be sufficient this is not true in the case
of Bc since mc/mb ≈ 0.23 is in a region where the small-mass expansion already breaks
down.
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A Results for the moments of the pseudo-scalar cor-

relator

In this Appendix we want to complete the results for the moments of the pseudo-scalar
correlator. The one-loop expressions can be found in Eq. (10) and C̄

(1),p
1 (x) is given in

Eq. (11). In Subsection A.1 we provide the results for C̄
(1),p
n (x) with n = −1, 0, 2, 3

and 4. As far as the three-loop results are concerned we list in Subsection A.2 the exact
x-dependence of the µ-dependent terms which complement the results in Eq. (14).

A.1 Exact two-loop results

C̄
(1),p
−1 (x) = −

40
(

1 − x + x2
)

3
+ lx

80 x3

3 (1 + x)
− l2x

32 x3

1 + x

+ lµ

[

−
40

(

1 − x + x2
)

3
+ lx

32 x3

1 + x

]

− 8 l2µ
(

1 − x + x2
)

, (15)

C̄
(1),p
0 (x) =

13 + 66 x + 13 x2

6 (1 + x)
2 −

[

Li2
(

x2
)

+ 2 lx l1−x2 − ζ2

] 4 (−1 + x)

3 (1 + x)

− lx
8 x2

(

1 + 5 x + x2
)

3 (−1 + x) (1 + x)
3 + l2x

16 x3
(

−6 − 3 x + 3 x2 + 2 x3
)

3 (−1 + x)
2
(1 + x)

4

+ lµ

[

4
(

1 + 5 x + x2
)

3 (1 + x)2
− lx

8 x3 (2 + x)

(−1 + x) (1 + x)3

]

+ 2 l2µ , (16)

C̄
(1),p
2 (x) =

3 + 72 x − 127 x2 + 112 x3 − 127 x4 + 72 x5 + 3 x6

36 (−1 + x)
4
(1 + x)

6

+ lx
2 x2

(

2 + 122 x− 27 x2 + 230 x3 − 22 x4 + 12 x5 + 3 x6
)

9 (−1 + x)
5
(1 + x)

7
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− l2x
4 x3

(

72 − 36 x + 216 x2 − 68 x3 + 136 x4 − 3 x5 + 4 x6 + x7
)

9 (−1 + x)6 (1 + x)8

+ lµ

[

−
1 + 4 x − 7 x2 + 40 x3 − 7 x4 + 4 x5 + x6

3 (−1 + x)
4
(1 + x)

6 + lx
8 x3

(

2 − x + 2 x2
)

(−1 + x)
5
(1 + x)

7

]

+
[

Li2
(

x2
)

+ 2 lx l1−x2 − ζ2

] 2
(

1 + 4 x + 4 x3 + x4
)

9 (−1 + x)
3
(1 + x)

5 , (17)

C̄
(1),p
3 (x) = −

11 − 219 x + 658 x2 + 1479 x3 + 1326 x4 + 1479 x5 + 658 x6 − 219 x7 + 11 x8

270 (−1 + x)6 (1 + x)8

+ lx

[

8 x2
(

1 + 263 x − 184 x2 + 1109 x3 − 424 x4
)

45 (−1 + x)
7
(1 + x)

9

+
8 x2

(

683 x5 − 44 x6 + 15 x7 + 3 x8
)

45 (−1 + x)
7
(1 + x)

9

]

− l2x

[

8 x3
(

180 − 180 x + 1260 x2 − 800 x3 + 1940 x4
)

45 (−1 + x)
8
(1 + x)

10

+
8 x3

(

−535 x5 + 545 x6 − 4 x7 + 5 x8 + x9
)

45 (−1 + x)8 (1 + x)10

]

+
[

Li2
(

x2
)

+ 2 lx l1−x2 − ζ2

] 4
(

1 + 5 x − x2 + 20 x3 − x4 + 5 x5 + x6
)

45 (−1 + x)5 (1 + x)7

+ lµ

[

lx
32 x3

(

1 − x + 3 x2 − x3 + x4
)

(−1 + x)
7
(1 + x)

9

−
4

(

1 + 5 x − 14 x2 + 145 x3 − 94 x4 + 145 x5 − 14 x6 + 5 x7 + x8
)

15 (−1 + x)
6
(1 + x)

8

]

, (18)

C̄
(1),p
4 (x) = −

61 − 201 x + 978 x2 + 19344 x3 − 7591 x4 + 51570 x5

810 (−1 + x)
8
(1 + x)

10

−
−7591 x6 + 19344 x7 + 978 x8 − 201 x9 + 61 x10

810 (−1 + x)
8
(1 + x)

10

+ lx

[

2 x2
(

2 + 1512 x− 1780 x2 + 11358 x3 − 7758 x4 + 16758 x5
)

45 (−1 + x)
9
(1 + x)

11

+
2 x2

(

−5155 x6 + 4662 x7 − 214 x8 + 54 x9 + 9 x10
)

45 (−1 + x)
9
(1 + x)

11

]

− l2x

[

4 x3
(

360 − 540 x + 4500 x2 − 4400 x3 + 13200 x4 − 7055 x5
)

45 (−1 + x)10 (1 + x)12

+
4 x3

(

9810 x6 − 2169 x7 + 1476 x8 − 5 x9 + 6 x10 + x11
)

45 (−1 + x)
10

(1 + x)
12

]

+
[

Li2
(

x2
)

+ 2 lx l1−x2 − ζ2

]

2
(

1 + 6 x − 2 x2 + 54 x3 − 18 x4 + 54 x5 − 2 x6 + 6 x7 + x8
)

45 (−1 + x)
7
(1 + x)

9

12



+ lµ

[

−
1 + 6 x − 23 x2 + 356 x3 − 398 x4 + 956 x5

5 (−1 + x)
8
(1 + x)

10

−
−398 x6 + 356 x7 − 23 x8 + 6 x9 + x10

5 (−1 + x)8 (1 + x)10

+lx
24 x3

(

2 − 3 x + 12 x2 − 8 x3 + 12 x4 − 3 x5 + 2 x6
)

(−1 + x)
9
(1 + x)

11

]

. (19)

A.2 Analytic three-loop results

Let us decompose the the three-loop coefficients as

C̄(2),p
n (x) = C̄(2),p

n (x)

∣

∣

∣

∣

µ2=m2

1

+ lµC̄
(2),p
n,1 (x) + l2µC̄

(2),p
n,2 (x) , (20)

with lµ = ln(µ2/m2
1). For nl = 3 one can find approximations for C̄

(2),p
n (x)

∣

∣

µ2=m2

1

in

Eq. (14). The exact x-dependence of C̄
(2),p
n,1 (x) and C̄

(2),p
n,2 (x), which can be obtained using

renormalization group techniques, reads

C̄
(2),p
1,1 (x) =

(

−
29

2
+ nl

)

{

−
1 + 36 x− 22 x2 + 36 x3 + x4

54 (−1 + x)
2
(1 + x)

4

−
[

Li2
(

x2
)

+ 2 lx l1−x2 − ζ2

] 4
(

1 + 3 x + x2
)

27 (−1 + x) (1 + x)
3

−lx
8 x2

(

1 + 6 x + x2
)

27 (−1 + x)
3
(1 + x)

5 + l2x
8 x3

(

18 + 9 x2 − 2 x3 + 3 x4 + x5
)

27 (−1 + x)
4
(1 + x)

6

}

, (21)

C̄
(2),p
1,2 (x) = 0 ,

C̄
(2),p
2,1 (x) = −

19
(

1 + 4 x − 7 x2 + 40 x3 − 7 x4 + 4 x5 + x6
)

36 (−1 + x)
4
(1 + x)

6 + lx
38 x3

(

2 − x + 2 x2
)

3 (−1 + x)
5
(1 + x)

7

+

(

−
5

2
+ nl

)

{

7 − 32 x + 57 x2 + 288 x3 + 57 x4 − 32 x5 + 7 x6

216 (−1 + x)4 (1 + x)6

−
[

Li2
(

x2
)

+ 2 lx l1−x2 − ζ2

] 1 + 4 x + 4 x3 + x4

27 (−1 + x)
3
(1 + x)

5

− lx
x2

(

2 + 182 x− 57 x2 + 290 x3 − 22 x4 + 12 x5 + 3 x6
)

27 (−1 + x)5 (1 + x)7

+l2x
2 x3

(

72 − 36 x + 216 x2 − 68 x3 + 136 x4 − 3 x5 + 4 x6 + x7
)

27 (−1 + x)
6
(1 + x)

8

}

, (22)

C̄
(2),p
2,2 (x) =

(

−
5

2
+ nl

)

[

1 + 4 x − 7 x2 + 40 x3 − 7 x4 + 4 x5 + x6

36 (−1 + x)
4
(1 + x)

6

−lx
2 x3

(

2 − x + 2 x2
)

3 (−1 + x)
5
(1 + x)

7

]

, (23)

13



C̄
(2),p
3,1 (x) = −

13
(

1 + 5 x − 14 x2 + 145 x3 − 94 x4 + 145 x5 − 14 x6 + 5 x7 + x8
)

15 (−1 + x)6 (1 + x)8

+ lx
104 x3

(

1 − x + 3 x2 − x3 + x4
)

(−1 + x)7 (1 + x)9
+

(

19

2
+ nl

)

{

71 + 81 x − 182 x2 + 10179 x3 − 4314 x4 + 10179 x5 − 182 x6 + 81 x7 + 71 x8

1620 (−1 + x)
6
(1 + x)

8

−
[

Li2
(

x2
)

+ 2 lx l1−x2 − ζ2

] 2
(

1 + 5 x − x2 + 20 x3 − x4 + 5 x5 + x6
)

135 (−1 + x)
5
(1 + x)

7

− lx
4 x2

(

1 + 413 x− 334 x2 + 1559 x3 − 574 x4 + 833 x5 − 44 x6 + 15 x7 + 3 x8
)

135 (−1 + x)
7
(1 + x)

9

+l2x
4 x3

(

180 − 180 x + 1260 x2 − 800 x3 + 1940 x4 − 535 x5 + 545 x6 − 4 x7 + 5 x8 + x9
)

135 (−1 + x)
8
(1 + x)

10

}

,

(24)

C̄
(2),p
3,2 (x) =

(

19

2
+ nl

)

[

1 + 5 x − 14 x2 + 145 x3 − 94 x4 + 145 x5 − 14 x6 + 5 x7 + x8

45 (−1 + x)
6
(1 + x)

8

−lx
8 x3

(

1 − x + 3 x2 − x3 + x4
)

3 (−1 + x)
7
(1 + x)

9

]

, (25)

C̄
(2),p
4,1 (x) = −

59
(

1 + 6 x − 23 x2 + 356 x3 − 398 x4 + 956 x5 − 398 x6 + 356 x7 − 23 x8 + 6 x9 + x10
)

60 (−1 + x)
8
(1 + x)

10

+ lx
118 x3

(

2 − 3 x + 12 x2 − 8 x3 + 12 x4 − 3 x5 + 2 x6
)

(−1 + x)
9
(1 + x)

11 +

(

43

2
+ nl

)

{

196 + 609 x− 2127 x2 + 67404 x3 − 61321 x4 + 180630 x5

4860 (−1 + x)8 (1 + x)10

+
−61321 x6 + 67404 x7 − 2127 x8 + 609 x9 + 196 x10

4860 (−1 + x)
8
(1 + x)

10

−
[

Li2
(

x2
)

+ 2 lx l1−x2 − ζ2

] 1 + 6 x − 2 x2 + 54 x3 − 18 x4 + 54 x5 − 2 x6 + 6 x7 + x8

135 (−1 + x)
7
(1 + x)

9

− lx x2

[

2 + 2412 x− 3130 x2 + 16758 x3 − 11358 x4 + 22158 x5

135 (−1 + x)9 (1 + x)11

+
−6505 x6 + 5562 x7 − 214 x8 + 54 x9 + 9 x10

135 (−1 + x)
9
(1 + x)

11

]

+ 2 l2x x3

[

360 − 540 x + 4500 x2 − 4400 x3 + 13200 x4 − 7055 x5

135 (−1 + x)
10

(1 + x)
12

+
9810 x6 − 2169 x7 + 1476 x8 − 5 x9 + 6 x10 + x11

135 (−1 + x)
10

(1 + x)
12

]}

, (26)

C̄
(2),p
4,2 (x) =

(

43

2
+ nl

)

[

−
2 lx x3

(

2 − 3 x + 12 x2 − 8 x3 + 12 x4 − 3 x5 + 2 x6
)

(−1 + x)9 (1 + x)11

14
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Figure 5: One-loop contribution to C̄v
n. The same notation as in Fig. 2 is adopted.

+
1 + 6 x − 23 x2 + 356 x3 − 398 x4 + 956 x5 − 398 x6 + 356 x7 − 23 x8 + 6 x9 + x10

60 (−1 + x)8 (1 + x)10

]

.

(27)

B Results for vector, axial-vector and scalar correla-

tor

In this appendix we present the results for the moments C̄δ
n(x) for n = 1, . . . , 4 of the

vector, axial-vector and scalar correlator. For the analytic results and numerical approxi-
mations for the three-loop moments in the intermediate x-region we refer to [21] and show
in the following the corresponding numerical result in analogy to Figs. 2, 3 and 4.
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Figure 6: Two-loop contribution to C̄v
n. The same notation as in Fig. 2 is adopted.
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Figure 7: Three-loop contribution to C̄v
n. The same notation as in Fig. 4 is adopted.
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Figure 8: One-loop contribution to C̄a
n. The same notation as in Fig. 2 is adopted.
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Figure 9: Two-loop contribution to C̄a
n. The same notation as in Fig. 2 is adopted.
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Figure 10: Three-loop contribution to C̄a
n. The same notation as in Fig. 4 is adopted.
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Figure 11: One-loop contribution to C̄s
n. The same notation as in Fig. 2 is adopted.
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Figure 12: Two-loop contribution to C̄s
n. The same notation as in Fig. 2 is adopted.
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Figure 13: Three-loop contribution to C̄s
n. The same notation as in Fig. 4 is adopted.
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