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Abstract

We calculate the two-loop matching corrections for the gauge couplings at the
Grand Unification scale in a general framework that aims at making as few assump-
tions on the underlying Grand Unified Theory (GUT) as possible. In this paper we
present an intermediate result that is general enough to be applied to the Georgi-
Glashow SU(5) as a “toy model”. The numerical effects in this theory are found to
be larger than the current experimental uncertainty on αs. Furthermore, we give
many technical details regarding renormalization procedure, tadpole terms, gauge
fixing and the treatment of group theory factors, which is useful preparative work
for the extension of the calculation to supersymmetric GUTs.
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1 Introduction

Grand Unified Theories (GUTs) provide an appealing framework for physics beyond the
Standard Model (SM) of particle physics. Particularly supersymmetric (SUSY) GUTs
have gained a lot of interest in the past decades as they seem to be consistent with the
measured values of αs(MZ), αem(MZ) and sin θW (MZ) [1–3] and offer many other beau-
tiful features. Up to date most Renormalization Group (RG) analyses that study gauge
coupling unification use two-loop Renormalization Group Equations (RGEs) and one-loop
matching at the SUSY and GUT scales [4–11]. These matching corrections arise from in-
tegrating out heavy particles at the SUSY and GUT thresholds. They depend sensitively
on the mass splittings between the heavy particles and can be used to constrain the mass
spectrum of the theory. As experimental accuracy is increasing, also higher order correc-
tions become more and more important. It has been shown thatO(α3

s) effects at the SUSY
decoupling scale can be as large as the current experimental uncertainties on the gauge
couplings [12–14]. Furthermore, in GUT models that contain large representations, as for
example the so-called Missing Doublet Model [15,16], the decoupling scale dependence at
the GUT scale can exceed the experimental uncertainty by an order of magnitude [14].

These facts encourage us to try to improve the theoretical accuracy of the unification
study and aim at a complete three-loop RGE analysis. This requires three-loop RGEs
for the SM, the Minimal Supersymmetric Standard Model (MSSM) and the SUSY GUT
model under consideration and two-loop matching corrections at the SUSY scale and the
GUT scale. In Quantum Chromodynamics (QCD) the gauge β function in the modified
minimal substraction scheme (MS) is known to four loops [17, 18], though a complete
three-loop SM gauge β function is still missing. For the MSSM full three-loop RGEs
are available [19, 20] in the so-called DR scheme. The same is true for the most general
single gauge coupling theory in MS and a general supersymmetric GUT in DR [21, 22].
Matching corrections at the SUSY scale are known to one-loop order for the U(1) and
SU(2) gauge couplings α1/2 [7] and to two-loop for the strong coupling αs [12,13]. For the
GUT scale thresholds a general formula at the one-loop level is known [23–25], but two-
loop corrections have still been missing up to date and thus are not included in present
unification analyses [4–6, 10, 11, 14].

The aim of this paper is to provide a first step towards a general formula for the two-loop
GUT matching corrections in a similar fashion as the one-loop corrections in refs. [23–25].
Unfortunately it turns out that at the two-loop level it is much harder to carry out the
calculation in a general way, making as few assumptions about the underlying GUT model
as possible. Therefore, the result given in this paper is not yet applicable to SUSY GUT
models, as it is not yet general enough. Nevertheless, by applying it to the Georgi-Glashow
SU(5) [26] as a “toy model”, we provide an important intermediate step on the way to
a full three-loop unification analysis. The generalization for SUSY GUTs actually is in
progress.
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The remainder of the paper is organized as follows: in the next section we describe the
theoretical framework that is used for the calculation. There the Lagrangian is defined
and it is shown how delicate issues, as gauge fixing and renormalization are carried out.
In section 3 we present an academic study of our general formula when applied to the
Georgi-Glashow model, which is the simplest (yet already ruled out) possible GUT model.
In particular the issue of reducing the decoupling scale dependence is discussed. Finally,
we present our conclusions. In appendix A of this paper we describe the procedure of
defining and reducing the group theory factors that appear in our calculation. The rest
of the appendix is dedicated to some supplementary material to the main text.

2 Theoretical framework

Since there is a host of well motivated GUT models, we want our final result to be applica-
ble to as many of them as possible. Therefore, it is desirable to carry out the calculation
of two-loop matching corrections at the GUT scale in a framework that makes as few
assumptions on the underlying GUT model as possible. The idea is to have a general for-
mula that depends on the Casimir invariants and the spectrum of the theory. Choosing a
specific model specifies those Casimir invariants and gives an expression that depends only
on the masses and couplings of the model. The actual calculation that is presented in this
paper is not yet done in full generality, but makes some additional assumptions about the
model. These assumptions are described in subsection 2.3. Nevertheless, we present the
theoretical framework that is needed for the calculation of the relevant Green’s functions
(almost) as general as possible below in order to be armed for future improvements of the
calculation.

2.1 The Lagrangian

We consider a general renormalizable quantum field theory defined by the following La-
grangian:

L = −1

4
F µν

α F α
µν + ΨiDµγµΨ +

1

2
(DµΦ)T DµΦ− V (Φ) + LY + Lgf + Lgh. (1)

The chiral Dirac fermion field Ψ and the real scalar field Φ reside in (not necessarily
irreducible) representations of the gauge group G. The dynamics of the gauge field
that transforms according to the adjoint representation of G, is described by the Yang
Mills curl F µν

α = ∂µAν
α − ∂νAµ

α + gfαβγA
µ
βA

ν
γ . Moreover, V (Φ), LY, Lgf and Lgh are the

scalar potential, the Yukawa interactions, the gauge fixing and the ghost parts of the
Lagrangian, respectively. They will be described in detail later in this section. V (Φ) is
chosen such that the scalar field Φ = v + Φ′ contains one G-irreducible subspace that
develops a vacuum expectation value (vev) v, that breaks G down to the SM gauge group
∏

k Gk = SU(3)× SU(2)×U(1). Models that have more than one vev of O(MG), where
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MG is the Grand Unification scale, are not covered by our framework yet. The indices
α, β, γ... belong to the adjoint representation and label the generators of G which fulfill
the commutation relations

[T α, T β] = ifαβγ T γ and also: [T̃ α, T̃ β] = ifαβγ T̃ γ , (2)

with the structure constants fαβγ. We use the tilde to denote the generators of the
real1 scalar representation which fulfill (T̃ α)T = −T̃ α . The generator that acts on the
fermion field satisfies (T α)† = T α. Again, T α and T̃ α need not necessarily be defined
on irreducible representations of G, but can also have block diagonal form. In order to
distinguish between broken and unbroken generators, we introduce the notation:

{α} =
∑

i

{Ai}+
∑

i

{ai} = {A}+ {a} , (3)

where Ai label the broken generators of G belonging to the SM-irreducible subspace
labeled by i. If there is only one SM-irreducible subspace in the adjoint representation of
G, as e.g. is practically the case in SU(5), we can omit the sub-index i. In contrast, ai

label the unbroken generators belonging to the subgroup2 Gi:

T̃ aiv = 0 ,

T̃Aiv 6= 0 . (4)

The Lagrangian in eq. (1) is invariant under local gauge transformations with the real
parameter θ = θ(x):

Ψ → Ψ− iθαT αΨ ,

Φ → Φ− iθαT̃ αΦ ,

Aα
µ → Aα

µ + fαβγθβAγ
µ −

1

g
∂µθα . (5)

The covariant derivatives are defined as:

DµΨ = (∂µ − igT αAα
µ)Ψ ,

DµΦ = (∂µ − igT̃ αAα
µ)Φ . (6)

Using eq. (2), eq. (4), and faibjAk = 0 (cf. appendix A), the gauge-kinetic term for the
scalar field Φ = v + Φ′ can be written as:

1

2
(DµΦ)T DµΦ =

1

2
(∂µΦ′)T ∂µΦ′ +

1

2
g2vT̃AT̃BvAµ

AAµB

+igvT̃A∂µΦAµ
A + ig2fABaA

µ
BAµavT̃AΦ′

+igΦ′T̃ α∂µΦ′Aµ
α +

1

2
g2Φ′T̃ αT̃ βΦ′Aµ

αAµα

+g2vT̃AT̃BΦ′Aµ
AAµB , (7)

1This is no loss of generality since every complex scalar can be written as two real scalars.
2Please note the different meanings of the sub-index i when attached to the capital adjoint index

opposed to when attached to a lowercase adjoint index.
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where we can identify the (diagonal) gauge boson mass matrix

(MX)AiBi
≡ g2vT̃AiT̃Biv , (8)

with eigenvalues denoted by MXi
. Again, the sub-index i labels the SM-irreducible sub-

space that is meant, because each SM-irreducible subspace can be assigned to a definite
gauge boson mass. Note that the position of the adjoint indices α, Ai, ai... is irrelevant.
Furthermore, it is understood that a partial derivative acts only on the single field, which
is next to it. The gauge-kinetic term for the scalars contains the undesired quadratic
mixing igvT̃A∂µΦAµ

A between Goldstone bosons and heavy gauge bosons. As we will see
in a moment, the gauge fixing Lagrangian Lgf can be chosen in such a way that this term
is cancelled, at least at tree-level.

In order to fix the gauge, we choose the Rξ gauge fixing functional [27]

fAi
=

1√
ξ1i

∂µA
µ
Ai
− ig

√

ξ2ivT̃AiΦ′ ,

fai
=

1√
ηi

∂µA
µ
ai

. (9)

Note that we have chosen two distinct gauge parameters ξ1 and ξ2 for each SM-irreducible
subspace of the heavy gauge bosons. They renormalize differently and thus can only be
equated with each other after renormalization. Otherwise not all the Green’s functions can
be made finite. In the same way each SM group factor receives its own gauge parameter ηi.
This subtlety arises first at the two-loop level and is not relevant for computing one-loop
matching coefficients. Although there are other ways to treat the gauge fixing [23,28–30],
we find this one most convenient for our purposes. Employing the procedure described
e.g. in ref. [31], eq. (9) gives us the gauge fixing Lagrangian and the ghost interactions:

LRξ

gf = −1

2

∑

i

f 2
Ai
− 1

2

∑

i

f 2
ai

=
∑

i

[

− 1

2ξ1i
(∂µA

µ
Ai

)2 − 1

2
g2ξ2i Φ

′T̃AivvT̃AiΦ′ + ig

√

ξ2i

ξ1i
vT̃AiΦ′∂µAAi

µ

]

−
∑

i

1

2ηi
(∂µA

µ
ai

)2 , (10)
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LRξ

gh =
∑

ij

[

∂µc†Ai
(δAiBj

∂µ − gfAiBjαAα
µ)cBj

−g2
√

ξ1iξ2i vT̃AiT̃Bjv c†Ai
cBj
− g2

√

ξ1iξ2i vT̃AiT̃BjΦ′c†Ai
cBj

]

−
∑

ij

[

g(ηj/ξ1i)
1/4fAibjBi

∂µc†Ai
ABi

µ cbj
+ ig2(ξ

1/4
1i η

1/4
j ξ

1/2
2i )fAibjBi

vT̃BiΦ′c†Ai
cbj

]

−
∑

ij

g (ξ1j/ηi)
1/4faiBjAj

∂µc†ai
AAj

µ cBj

+
∑

i

∂µc†ai
(δaibi

∂µ − gfaibici
Aci

µ )cbi
. (11)

Here cAi
and cai

denote the ghost fields belonging to the heavy and light gauge bosons,
respectively. Note again that for an SU(5) GUT we could do the replacement Ai → A
for the capital adjoint indices and the notation would become less clumsy. Here, however,
we keep the sub-index i in order to stay as general as possible. As mentioned before,
after partial integration the term ig

√

ξ2i/ξ1i vT̃AiΦ′∂µAAi
µ in eq. (10) exactly cancels the

corresponding term in eq. (7) at tree level, where ξ1i = ξ2i
is a valid choice. However, when

considering higher orders in perturbation theory, the bare gauge parameters ξ1i and ξ2i

are not equal to each other and the above term must be kept explicitly as a counterterm in
our calculation (cf. also subsection 2.2). The quadratic term in eq. (10) can be identified
with the (unphysical) Goldstone boson mass matrix:

M2
Gold ≡

1

2
g2
∑

i

ξ2i T̃
AivvT̃Ai (12)

with the property Tr(M2
Gold) =

∑

i ξ2i M
2
Xi

DA
i , where DA

i is the dimension of the i-th
SM-irreducible representation of the heavy gauge bosons. From the Goldstone theorem it
follows that the structure vT̃Ai projects on the subspace of Goldstone bosons, i.e. on the
subspace that obtains no mass term from V (Φ). Hence, the matix M2

Gold has non-zero
entries only on the subspace of Goldstone bosons.

For V (Φ) we consider the most general renormalizable scalar potential with the discrete
symmetry Φ→ −Φ:

V (Φ) = −1

2
µ2

ijΦiΦj +
1

4!
λijkl ΦiΦjΦkΦl , (13)

with totally symmetric tensors µ2
ij and λijkl. We impose the requirements

0 = [µ2, T̃ α] ,

0 = T̃ α
im λmjkl + T̃ α

jm λimkl + T̃ α
km λijml + T̃ α

lm λijkm , (14)

in order to make V (Φ) gauge invariant under G. The first equation implies that the
matrix µ2 is proportional to the unit matrix on each subspace irreducible under G.
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To break the GUT symmetry, there has to be one G-irreducible Higgs representation con-
tained in Φi that develops a vev. In order to treat the symmetry breaking appropriately, we
define the projector ΠH on this particular G-irreducible subspace (clearly, [T̃ α, ΠH] = 0).
This subspace is further divided into the subspace of Goldstone bosons and the subspace of
physical Higgs bosons with projectors P G and P H̃, respectively ([T̃ a, P G] = 0 = [T̃ a, P H̃]).
The physical Higgs bosons receive masses of order MG from V (Φ), the Goldstone bosons
do not. Using the Goldstone boson mass matrix from eq. (12), the projector on the space
of Goldstone bosons can be explicitly written down as [32]:

(P G)ij = (ΠH − P H̃)ij = g2T̃A
ikvk

(
1

M2
X

)

AB

vlT̃
B
lj . (15)

Now we can parametrize the scalars in the following way:

Φi = vi + Φ′
i = vi + Hi + Gi + Si (16)

where v, H and G live only on the subspace defined by ΠH. S parametrizes all the other
scalars3:

(1l− ΠH)ijΦ
′
j = Si ,

ΠH
ijΦ

′
j = Hi + Gi ,

P H̃
ij Φ′

j = Hi ,

P G
ijΦ

′
j = Gi . (17)

First let us focus on the subspace that ΠH projects on. In order to develop a vev on this
subspace, the parameter µ2

H, defined by ΠHµ2 ≡ µ2
H1l, has to be positive. If this is the

case, it is convenient to parametrize this part of the scalar potential in terms of physical
parameters as the Higgs mass, the heavy gauge boson mass, the gauge coupling g and the
tadpole instead of the unphysical couplings µ2

H and

λH
ijkl ≡ λi′j′k′l′Π

H
i′iΠ

H
j′jΠ

H
k′kΠ

H
l′l . (18)

In principle, this is analogous to what is usually done for the SM Higgs potential [33].
Here, however, it is more involved due to the appearance of the general invariant tensor
λH

ijkl. Using essentially eq. (14) and Schur’s lemma, it is possible to rewrite the up to
quadratic terms of the potential in terms of new parameters M2

H (diagonal Higgs mass
matrix) and t (tadpole). For the trilinear and quartic terms this does not seem to be
possible at the level of the Lagrangian. Thus, for the moment, we leave those terms
expressed by the old parameters λH

ijkl. They have to be eliminated in favor of M2
H , g and

M2
X at diagram level to make our choice of parameters consistent.

3To see that the number of Goldstone bosons is equal to the number of broken generators it is also

possible to define the Goldstone field as GA := g
(

i
MX

)

AB
viT̃

B
ij Φ′

j
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Now, including also the scalars on the subspace defined by 1l− ΠH, which is straightfor-
ward, the scalar potential can be parametrized as follows4:

V (Φ) = t viHi +
1

2
(M2

H)ijHiHj +
1

2
t HiHi +

1

2
t GiGi +

1

2
(M2

S)ijSiSj

+
1

2
viλ

H
ijklHjGkGl +

1

2
viλ

H
ijklHjHkGl +

1

6
viλ

H
ijklHjHkHl

+
1

2
viλijklHjHkSl + viλijklHjGkSl +

1

2
viλijklGjGkSl

+
1

2
viλijklHjSkSl +

1

2
viλijklGjSkSl +

1

6
viλijklSjSkSl

+
1

24
λH

ijklGiGjGkGl +
1

6
λH

ijklGiGjGkHl +
1

6
λH

ijklGiHjHkHl

+
1

4
λH

ijklGiGjHkHl +
1

24
λH

ijklHiHjHkHl

+
1

6
λijklHiHjHkSl +

1

2
λijklHiHjGkSl +

1

2
λijklHiGjGkSl

+
1

6
λijklGiGjGkSl +

1

4
λijklHiHjSkSl +

1

2
λijklHiGjSkSl

+
1

4
λijklGiGjSkSl +

1

6
λijklHiSjSkSl +

1

6
λijklGiSjSkSl

+
1

24
λijklSiSjSkSl (19)

where

t = −µ2
H +

1

6v2
λH

ijklvivjvkvl , (20)

(M2
H)ij =

1

2
λH

ijklvkvl −
1

6v2
λH

klmnvkvlvmvn ΠH
ij , (21)

(M2
S)ij =

1

2
λS

ijklvkvl − (µ2(1l− ΠH))ij . (22)

Due to gauge invariance under the SM group (eqs. (4) and (14) ), both mass matrices
are diagonal and proportional to the unit matrix on each SM-irreducible subspace. M2

H

has only non-zero entries on the subspace defined by P H̃ and M2
S only on the subspace

defined by (1l−ΠH) (we have defined λS
ijklvkvl ≡ (1l−ΠH)ii′(1l−ΠH)jj′λ

S
i′j′klvkvl ).

It is important to see that M2
S must have only positive or zero entries. If there are negative

entries, some of the Si would develop a vev and our formalism would not apply. Strictly
speaking, we have (M2

S)ij < 0 for the SM Higgs doublet that is contained in Si, which
would exclude it from our treatment. But since in that case the scales involved have the
strong hierarchy O(MW ) ≪ O(MGUT ), we can safely set the entry to zero here. To do
this, some of the λS

ijklvkvl must be fine-tuned against the corresponding (µ2(1l − ΠH))ij

in eq. (22) which is known as the doublet triplet splitting problem, inherent to generic
GUTs.

4For more details of how this reparametrization is done, please refer to appendix B.
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Note that the classical minimum of the GUT-breaking Higgs potential is defined by the
equation t = 0. However, if we compute higher order corrections, the parameter t ≡ 0−δt,
where δt = O(α) is a counterterm, has to be adjusted in such a way that the renormalized
Higgs one point function is zero at all orders of perturbation theory.

The last term in eq. (1) to be specified is LY. The most general Yukawa interaction of
the chiral Dirac fermion multiplet Ψ with the real scalar multiplet Φ can be written as
follows:

LY = −1

2

(
Y k

ijΨ
T
i CΨjΦk + Y k⋆

ij ΨcT
i CΨc

jΦk

)
. (23)

Here Y k is a complex, symmetric matrix and C ≡ iγ2γ0 denotes the Dirac charge con-

jugation matrix. Ψc ≡ CΨ
T

is the charge conjugated Dirac spinor (the T refers only to
Lorentz space). We take Ψ = 1

2
(1−γ5)Ψ to be left-handed so that Ψc will be right-handed.

Furthermore, due to gauge invariance Y k
ij satisfies the following relation:

0 = Y k
mjT

α
mi + Y k

imT α
mj + Y m

ij T̃ α
mk . (24)

In the following we will need to distinguish between fields with the mass of O(MG) and
massless fields. We will follow the convention of appendix A and use the projectors P x

i

for heavy fields and px
i for the light fields.

2.2 Renormalization

In order to do a two-loop calculation of the matching corrections, a one-loop renormaliza-
tion program has to be carried out for the theory. The counterterms are adjusted in such
a way that all the one-loop Green’s functions of the theory are finite. For convenience
we use the on-shell scheme for the mass parameters of the theory and MS for the gauge
couplings, the gauge parameters and the fields. The renormalized Lagrangian is obtained
from eq. (1) by the following replacements:

Aai
µ →

√

Z3i Aai
µ , AAi

µ →
√

ZX
3i AAi

µ ,

pFi Ψ→
√

Z2i pFi Ψ , PF
i Ψ→

√

Zh
2i PF

i Ψ ,

cai →
√

Z̃3i cai , cAi →
√

Z̃X
3i cAi ,

P H̃
i H →

√

ZHi P H̃
i H , P G

i G→
√

ZGi P G
i G ,

pSi S →
√

ZSi pSi S , P S
i S →

√

Zh
Si P S

i S ,

M2
Xi
→ Z2

MXi
M2

Xi
, M2

Hi
→ Z2

MHi
M2

Hi
,

MFi
→ ZMF i

MFi
,

ξ1i → Zξ1i
ξ , ξ2i → Zξ2i

ξ ,

ηi → Z3i η , g → Zg g . (25)
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Again, we have used the sub-index i to take care of the fact that there might be several
SM-irreducible representations for a field that all renormalize differently. No summation
is performed over that index. P x

i and px
i are projectors on the various SM-irreducible

subspaces of heavy and light fields, respectively. MF is the fermion mass matrix that can
arise from the Yukawa interactions eq. (23). Presently, heavy fermions are not included
in the calculation, so the corresponding renormalization constants are only defined for
future convenience.

In the following we list the counterterm Feynman rules that are important for our cal-
culation. They are obtained by inserting the renormalization prescriptions from eq. (25)
into eq. (1) and considering the up to quadratic terms. For each counterterm we give an
expression that is valid to arbitrary loop order in the first line and in the second line a
more convenient expression that is valid only for one-loop renormalization. We use the
notation Zi ≡ 1− δZi and t ≡ 0− δt where δZi and δt are of order α. All the parameters
that appear in the equations are renormalized ones.

Heavy gauge boson:

Aµ Bν×←−
k

= iδAB

[

(ZX
3 −

ZX
3

ξZξ1

+
1

ξ
−1)kµkν−(ZX

3 −1)k2gµν+(ZX
3 Z2

MX
−1)M2

Xgµν

]

= iδAB

[

−δZξ1kµkν−(M2
X−k2)δZX

3 gµν−2δZMX
M2

Xgµν

]

Heavy ghost:

A B×←−
k

= iδAB

[

(Z̃X
3 −1)k2−(Z̃X

3

√

Zξ1

√

Zξ2Z
2
MX
−1)ξM2

X

]

= iδAB

[

δZ̃X
3 (ξM2

X−k2)+(
1

2
δZξ1+

1

2
δZξ2+2δZMX

)ξM2
X

]

Goldstone boson:

i j×←−
k

= iP G
ij

[

(ZG−1)k2−(ZGZξ2Z
2
MX
−1)ξM2

X − t
]

= iP G
ij

[

δZG(ξM2
X−k2)+(δZξ2+2δZMX

)ξM2
X + δt

]

Physical Higgs boson:

i j×←−
k

= iδij

[

(ZH−1)k2−(ZHZ2
MH
−1)M2

H − t
]

= iδij

[

δZH(M2
H−k2)+2δZMH

M2
H + δt

]
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Mixed counterterm:

i A, µ×←−
k

= ig
[
√

ξ2

ξ1
− 1
]

vkT̃
A
kikµ

= ig
1

2
(δZξ1 − δZξ2) vkT̃

A
kikµ

Heavy fermion:

i j×←−
k

= iδij

[

(Zh
2−1)/k−(Zh

2 ZMF
−1)MF

]

PL

= iδij

[

δZh
2 (MF−/k)+δZMF

MF

]

PL

Higgs tadpole:

i × = iviδt

In order to avoid clutter with the notation, we have omitted the sub-index i here. From
the context it is always unambiguous that the SM-irreducible representation of the field
under consideration is meant. For our calculation we need the renormalization constants
of all mass and gauge parameters at one-loop. As can be seen from the above Feynman
rules, the set of equations that is used to determine δZξ1 , δZξ2 and δt is overconstrained
(cf. also refs. [34, 35]). This provides a useful check for our calculation: we computed
δZξ1 − δZξ2 from the pole of a combination of the heavy gauge boson and heavy ghost
propagator as well as from the mixed Goldstone boson heavy gauge boson propagator.
Both calculations lead to the same result. In the same way δt was computed from the pole
of the physical Higgs tadpole as well as from the Goldstone propagator yielding the same
result. Furthermore, the MS renormalization constant for the gauge coupling Zg will
be needed to two-loop order (cf. subsection 2.3), including corrections from the Yukawa
couplings. We did the calculation in our framework and found agreement with the known
result in the literature [21, 36, 37].

2.3 Decoupling of heavy particles

When studying gauge coupling unification, it is most convenient to use RGEs defined
in mass-independent renormalization schemes, such as MS or DR. In these “unphysical”
schemes the computation of β functions is simplified significantly, which makes them most
suitable for this application. However, these schemes have the well known drawback that
the decoupling theorem [38] does not hold in its naive form. As a consequence observables
of low energy processes will depend logarithmically5 on all the heavy particle masses of
the GUT. This is unacceptable, since it would spoil perturbation theory by the presence
of large logarithms ln(MG/µ), where µ is the typical energy scale of the process. The way
out of this dilemma is to use an effective theory [24, 39], where the heavy particles are

5At the two-loop order also more complicated functions of the heavy masses can appear.
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integrated out at the GUT scale. This means that the dynamical degrees of freedom of the
heavy particles are removed, which manifestly leads to power-suppressed contributions of
O(1/MG) in the effective Lagrangian. Moreover, the effects of the heavy particles are
encoded in a multiplicative redefinition of all the masses and couplings of the theory. For
the case of the gauge coupling this so-called decoupling relation reads:

αi(µGUT) = ζαi
(µGUT, α(µGUT), Mh) α(µGUT) ,

α ≡ g2

4π
, αi ≡

g2
i

4π
, i = 1, 2, 3 . (26)

Here αi and α stands for the MS gauge coupling6 in the effective theory (the SM or
the MSSM) and full theory (GUT), respectively. µGUT is the unphysical scale, at which
the decoupling is performed. At sufficiently high loop order predictions of physical ob-
servables must not depend on µGUT anymore. The remaining dependence on this scale
gives us an estimation of the theory uncertainty of the prediction. ζαi

is the so-called
matching coefficient that depends on all the mass parameters of the particles that have
been integrated out. They are abbreviated by Mh in eq. (26). The construction of the
effective Lagrangian is described in detail e.g. in refs. [40,41] for the case of QCD. Here we
only list the formulas that are relevant for the computation of ζαi

. For our calculation we
find it most convenient to use the three-point Green’s function with light ghosts and light
gauge bosons as external particles. Applying Slavnov-Taylor identities to this vertex, the
formula for the MS matching coefficient reads:

ζαi
=

(

Zg

Zgi

ζ̃0
1i

ζ̃0
3i

√

ζ0
3i

)2

, i = 1, 2, 3 . (27)

The MS renormalization constants for the gauge coupling in the full and effective theory
are denoted by Zg and Zgi

, respectively. The bare matching coefficients for the light
ghost-gauge-boson vertex, the light ghost field and the light gauge field respectively are
given by:

ζ̃0
1i = 1 + Γ0,h

Ac†c,i
(0, 0) ,

ζ̃0
3i = 1 + Π0,h

c,i (0) ,

ζ0
3i = 1 + Π0,h

A,i(0) (28)

i.e. they are computed from the “hard part”7 of the one particle irreducible Green’s
functions with zero external momentum. All the masses of SM particles are set to zero
and therefore only masses of O(MG) appear in the diagrams. The external particles for
these Green’s functions are: two light ghosts with one light gauge boson, two light ghosts
and two light gauge bosons, respectively. In all cases the relevant group structure has to

6For simplicity we will only speak about MS parameters from now on. If a SUSY GUT is considered,
all MS parameters will be replaced by DR parameters.

7This denotes all the diagrams that contain at least one heavy particle.
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be projected out and in the case of the light gauge boson propagator only the transverse
part is needed. The index i takes care of the fact that the SM gauge group is not simple
and labels whether an external gauge bosons and ghosts belonging to U(1), SU(2) or
SU(3) have to be taken.

Before we come to the technical details of the calculation, it is in order to describe all the
assumptions that have been made about the underlying GUT model:

• There is no trilinear scalar coupling in V (Φ).

• There is only one vev of O(MG) in the theory.

• There are no heavy fermions in the theory.

• The heavy gauge bosons decompose in SM-irreducible representations with a com-
mon mass.

• The GUT-breaking Higgs decomposes into three SM-irreducible representations (+
Goldstone bosons) at most. They can all have different masses.

• The other scalars in the theory decompose in SM-irreducible representations that
have a common mass (+ light scalars).

• The light particles in the theory can decompose in arbitrarily many SM-irreducible
representations.

As can be seen, the main limitation comes from the number of heavy degrees of freedom
in the theory. The above constraints are designed such that the resulting formula for ζαi

is applicable to the simplest GUT, the Georgi-Glashow model, yet keeping the calculation
as simple as possible. The computational framework for our calculation is set up in such
a way that it can be generalized to more heavy degrees of freedom, in order to apply it
to SUSY GUTs in the future.

Given the large number of Feynman diagrams, an automated computation is indispens-
able. The diagrams were generated with QGRAF [42] and further processed with q2e and
exp [43,44]. In the next step we used a FORM [45] implementation of the two-loop topolo-
gies of ref. [46] by the authors of ref. [13] and also the FORM packages MINCER [47] and
MATAD [48]. Let us emphasize that no assumptions about the mass hierarchies of the
heavy particles have been made. Therefore, the result is valid for arbitrary numerical
values of the mass parameters as long as their mass splitting is not to large which would
lead to power enhanced contributions and spoil perturbation theory. The reduction of the
group theory factors, which was the most time consuming part, has been automated and
implemented in FORM. The relevant group theory and notational conventions are collected
in appendix A of this paper.

Although the present calculation is just general enough to be applied to the simplest
GUT, the number of Feynman diagrams for the two-loop Green’s functions described
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above already is considerable. For the light gauge boson two-point function it amounts
to 6278, whereas for the ghost-gauge-boson vertex and the light ghost two-point function
we have 4109 and 374 diagrams, respectively. Sample diagrams8 for all three processes
are depicted in fig. 1.

In order to subtract the subdivergencies that occur in these two-loop Green’s functions, the
mass and gauge parameters as well as the gauge coupling that appear in the corresponding
one-loop Green’s functions have to be renormalized as described in subsection 2.2. We
have performed our calculation for arbitrary gauge parameters and verified that they
cancel out in the final result, which is a powerful and highly non-trivial check of the
calculation. The result for ζαi

is available in general form, i.e. with group theory factors
and couplings not specified to a particular Lie group or model. In the next section we
will assign definite values to these quantities in order to show the application of the result
exemplarily. Note also that we always need three different sets of group theory factors for
i = 1, 2, 3, respectively.

3 Numerical study for the Georgi-Glashow model

In the following we perform an academic study of our results applied to the simplest
possible GUT, the Georgi-Glashow model [26]. Although this theory is ruled out experi-
mentally [2], we use it as a toy model to demonstrate some simple numerics. It is based
on the gauge group SU(5) and the SM fermions sit in the representations

5 → (3, 1, 1
3
)⊕ (1, 2,−1

2
) , (29)

10 = [5× 5]a → (3, 1,−2
3
)⊕ (3, 2, 1

6
)a ⊕ (1, 1, 1) . (30)

where we have displayed their decomposition into SM multiplets.9 The gauge bosons as
well as the SU(5)-breaking Higgs bosons Σ live in the real 24 representation:

24→ (8, 1, 0)⊕ (1, 3, 0)⊕ (1, 1, 0)⊕ (3, 2,−5
6
)⊕ (3, 2, 5

6
) . (31)

In the case of the gauge bosons the first three parts of the decomposition constitute the
light SM gauge bosons and the last two parts the heavy gauge bosons with a common mass
MX. For the GUT-breaking Higgs bosons the first three parts represent the three physical
Higgs bosons with masses MΣ, 2 MΣ and M24, respectively. The last two multiplets give
the Goldstone bosons with the unphysical mass

√
ξ2 MX (cf. eq. (12)). Note that we write

the field Σ as a 24-dimensional vector multiplet in order to be consistent with our notation
in section 2, and not as a hermitian 5 × 5 matrix as usually done. Therefore, the vev of
Σ simply is 〈Σ〉 = v, where v is a 24-dimensional vector with a single non-zero entry in

8The figure has been created with help of the LATEX package AXODRAW [49]
9The first and second number label the SU(3) and SU(2) representations, respectively and the third

number is the hypercharge of the multiplet. The index a indicates that the antisymmetric part of the
representation has to be taken.
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Figure 1: Sample two-loop diagrams that appear in the calculation of ζαi
. The first

line shows the process Aai
µ → Abi

ν contributing to Π0,h
A,i(0). The second and third line

depict cai → cbi and cai → cbi + Aci
µ contributing to Π0,h

c,i (0) and Γ0,h
Ac†c,i

(0, 0), respectively.

Colored (bold) lines represent fields with mass of O(MG) and black (thin) lines massless
fields. Furthermore, curly lines denote gauge bosons, dotted lines ghosts, dashed lines
scalar fields and solid lines fermions. Goldstone bosons are marked green (light gray,
short-dashed), physical Higgs bosons red (gray, long-dashed) and other heavy scalars blue
(dark, short-dashed). Note also that two identical lines in one diagram need not have the
same mass because of the non-degenerate mass spectrum.

the 24th component. Additionally we have a complex scalar in the 5 representation that
decomposes according to eq. (29) and contains the SM Higgs doublet as well as a heavy
colored triplet with the mass MHc .

For the convenience of the reader it might be helpful to explicitly give the parametrization
of the quartic scalar coupling λijkl from eq. (13) for the Georgi-Glashow model. It splits
up into three parts. The first part is a quartic coupling of the 24 Higgs, the second one
a quartic coupling of the 5 Higgs and the last one is a mixed 5− 24 coupling [32, 50]:

λ24
αβγδ = A sTr(T αT βT γT δ) +

1

3
B (δαβδγδ + δαγδβδ + δαδδβγ) ,

λ5
ijkl =

1

3
b (δijδkl + δikδjl + δilδjk) , i, j, k, l = 1, ..., 10 ,

λ5−24
αβij = c (τατβ + τβτα)ij , α, β, γ, δ = 1, ..., 24 . (32)
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We have used the symmetrized trace

sTr(T α1 ...T αn) ≡ 1

n!

∑

π

Tr(T απ(1) ...T απ(n)) (33)

where the sum is over all the permutations of the indices. Furthermore, it is noticeable
that the indices i, j, k, l run from 1 to 10 although they belong to the fundamental 5

representation. This is because the corresponding scalar is complex and we have written
it as twice as many real scalars that are transformed by the 10× 10 generator matrices τ :

τα =

(
i Im(T α) i Re(T α)
−i Re(T α) i Im(T α)

)

, (34)

where in this section T α is the 5× 5 generator matrix in the fundamental representation.
Inserting eq. (32) into eqs. (21) and (22), we obtain the scalar mass matrices. Addition-
ally we need to impose the tree-level fine-tuning condition µ2

5
= 3

20
cv2, where µ2

5
is the

quardatic term of the 5 Higgs in eq. (13), in order to obtain massless Higgs doublets. Note
that in principle one would need to calculate the one-loop fine-tuning condition in order
to obtain massless Higgs doublets in a two-loop calculation. However, the light Higgs
doublets show up at the first time in the two-loop Green’s functions in the matching
calculation so that it is sufficient to use the tree-level fine-tuning condition. This gives us
the relations between the physical scalar masses and the parameters in eq. (32):

M2
Σ = 1

144
A v2 , M2

24 = 1
3
( 7

120
A + B) v2 , M2

Hc
= 1

12
c v2 . (35)

The vev is connected to the physical gauge boson mass by

M2
X = 5

12
g2 v2 . (36)

The Yukawa interactions of the Georgi-Glashow model [26, 32] are obtained by inserting
the Yukawa matrix

Y n
sr =

(

−Y U
IJǫijklm T α

ijT
β
klS

∗
mn 2i Y D

IJ Im(T α
kl)Sln

2i Y D
IJ Im(T α

kl)Sln 0

)

sr

(37)

into the general Yukawa Lagrangian eq. (23). Here s = (I, s̃) and r = (J, r̃) are multi-
indices, where I, J stand for the flavor indices of the SU(5) Yukawa matrices Y U and
Y D. The indices s̃, r̃ = 1, ..., 29 run over {α, j} and {β, k}, respectively. Note that we
have written the fermions of the 10 representation as a 24-dimensional vector instead
of an antisymmetric 5 × 5 matrix as usually. The Clebsch-Gordan coefficients for this
transformation are given by the following equations:

10α =
√

2 T α
ij 10ij , 10ij = −

√
2 i Im(T α

ij) 10α , (38)

where 10ij is the usual antisymmetric 5× 5 matrix with the normalization as in ref. [26].
Furthermore, S = 1√

2
(1l, i1l) is a 5 × 10 matrix and ǫijklm is the totally antisymmetric
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tensor with ǫ12345 = 1. As can be seen from eq. (37), the chiral fermion multiplet Ψ
from subsection 2.1 is written as a 3 (24 + 5) = 87-dimensional vector for the case of
Georgi-Glashow SU(5) model.

Using the definitions from this section, we computed the numerical values of all the group
theory factors that appear in our general result. Furthermore, we set VCKM = 1l and
kept only the third generation Yukawa couplings yt and yb. We obtained three two-loop
formulas for ζαi

(i = 1, 2, 3) that depend on the parameters

α(µGUT), yt(µGUT), yb(µGUT), MX, MHc , MΣ, M24, µGUT . (39)

The Mathematica package that contains the expressions can be downloaded from

http://www-ttp.particle.uni-karlsruhe.de/Progdata/ttp10/ttp10-46/

In order to examine the numerical impact of the two-loop matching corrections in this
model, we have implemented a RGE analysis in Mathematica. Since in this model the
gauge couplings do not unify, we just focus on examining the reduction of the decoupling
scale dependence, as an illustration of our results. We start with the precise values of
the three gauge couplings at the electroweak scale. They are obtained from the effective
weak mixing angle in the MS scheme [51], the QED coupling constant at zero momentum
transfer and its hadronic [52] contribution in order to obtain its counterpart at the Z-boson
scale, and the strong coupling constant [53].10 These quantities need to be transformed to
a six-flavor theory, which is described in detail in ref. [14]. Our starting values are then:

α(6),MS
em (MZ) = 1/(128.129± 0.021) ,

sin2 Θ(6),MS(MZ) = 0.23138± 0.00014 ,

α(6)
s (MZ) = 0.1173± 0.0020 . (40)

These quantities are related to the three gauge couplings via

α1 =
5

3

α(6),MS

cos2 Θ(6),MS
,

α2 =
α(6),MS

sin2 Θ(6),MS
,

α3 = α(6)
s . (41)

which holds for any renormalization scale µ. We also need the W and Z boson pole
masses MW and MZ , the top quark and tau lepton pole masses Mt and Mτ and the

10We adopt the central value from ref. [53], however, use as our default choice for the uncertainty 0.0020
instead of 0.0007.
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running bottom quark mass mMS
b . For the convenience of the reader we also specify their

numerical values [51, 54, 55]:

MW = 80.398 GeV ,

MZ = 91.1876 GeV ,

Mt = 173.3 GeV ,

Mτ = 1.77684 GeV ,

mMS
b (mMS

b ) = 4.163 GeV . (42)

The corresponding uncertainties are not important for our analysis. These parameters are
converted to six-flavor theory using RunDec [56] and then used to compute the starting
values for yt, yb and yτ at the electroweak scale. The RGE running in the SM was imple-
mented at two loops [36,37,57,58] for the electroweak sector and at three loops [59,60] for
QCD. We take into account the tau, bottom and top Yukawa couplings and thus solve the
coupled system of six differential equations. Since the quartic SM Higgs coupling b enters
the equations of the Yukawa couplings starting from two-loop order only, we neglect its
contribution. After taking into account the two-loop decoupling relations, we compute
the running from µGUT to the Planck scale using three-loop RGEs for the gauge coupling
and one-loop RGEs for the Yukawa couplings. The RGEs are obtained by inserting the
general expressions for the Yukawa and scalar couplings (eqs. (37) and (32)) as well as
the numerical values for the group theory factors into the general formulas of refs. [21,37]
(see appendix C for the details).

In figure 2 the dependence on the decoupling scale of α(1018GeV) is shown. Since only
for QCD the full three-loop β function could be implemented and there is no unification
of gauge couplings anyway, we took α(µGUT) = ζ−1

α3
(µGUT) α3(µGUT) as a starting value

for the gauge coupling above the GUT scale. For illustration we use the following set of
mass parameters:

MX = 1015 GeV ,

MHc = 4 · 1013 GeV ,

MΣ = 1014 GeV ,

M24 = 6 · 1013 GeV (43)

which are chosen to obey the restriction MX & Mi for i = Hc, Σ, 24 . Otherwise the scalar
self-couplings easily become non-perturbative and blow up the gauge coupling above the
GUT scale. The scale dependence is shown for n-loop running and (n−1)-loop decoupling
with n = 1, 2, 3. We observe a dramatic improvement when going from n = 2 to n = 3.
In particular the three-loop corrections can be larger than the experimental error band
depending on µGUT. Note also that for n = 2 choosing µGUT naively as a mean value of
the GUT masses which would be of O(1014 GeV) in our case is not a good choice.
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Figure 2: Dependence of α(1018 GeV) on the decoupling scale µGUT. The red (dotted),
green (dashed) and blue (solid) lines correspond to the one-, two- and three-loop analysis,
respectively. For the three-loop curve also the experimental error band with δαs = 0.0020
has been indicated.

The described qualitative behavior does not depend much on our choice of the GUT
masses. Though the numerical effect of the two-loop matching is already significant
in the Georgi-Glashow model, we emphasize that in certain models that contain large
representations, as e.g. the Missing Doublet Model [15, 16], we expect these corrections
to be even larger [14]. Our goal for the future, of course, is to generalize the formula for
ζαi

to make it applicable to these models.

To provide a check of the result for the Georgi-Glashow model, we have verified analyti-
cally that the matching coefficients ζαi

(µGUT) exhibit the correct µGUT dependence. This
can be derived from the knowledge of the two-loop beta functions of the SM and the
SU(5) model by computing the derivative w.r.t. tGUT ≡ ln(µGUT) of eq. (26). Solving
the resulting differential equation order by order, we arrive at a general formula11 for the
µGUT -dependent terms in ζαi

(µGUT):

ζαi
(µGUT) = 1 +

α(µGUT)

π

[
1
2
(βi

0 − β0) tGUT − C0(Mh)
]

(44)

+

(
α(µGUT)

π

)2
[

1
4
(βi

0 − β0)
2 t2GUT +

[
1
8
(βi

1 − β1)− C0(Mh) (βi
0 − β0)

]

tGUT + C1(Mh)

]

.

C0 and C1 are µGUT-independent terms that depend only on the heavy GUT masses.

11For simplicity we neglect the Yukawa corrections in this formula. However, the generalization is
straightforward. Of course, in our analytical check we took care of them too.
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The β function coefficients are defined by:

1

2

d

dt

α

4π
=

N−1∑

k=0

( α

4π

)k+2

βk , α =
g2

4π
(45)

and similarly for αi. We find agreement in the µGUT dependence of our explicit calculation
with the form of eq. (44).

4 Conclusions and Outlook

As experimental accuracy for αs, αem and sin Θ is increasing, also theoretical unification
analyses must improve their precision in order to find better exclusion limits for GUTs.
Therefore, we have performed a first step towards the calculation of the two-loop matching
corrections for the gauge couplings at the GUT scale in a framework that aims at making
as few assumptions on the underlying GUT as possible. The assumptions that were made
can be found in subsection 2.3. The result is general enough to be applied to the simplest
GUT, the Georgi-Glashow SU(5). The numerical impact in this model was found to be
larger than the current experimental uncertainty on αs depending on the choice of the
decoupling scale µGUT. We expect even larger effects in GUT models that contain large
representations, as the so-called Missing Doublet Model. Moreover, the two-loop matching
coefficients provide a significant stabilization of our predictions w.r.t the variation of the
decoupling scale.

Furthermore, we have described in detail the proper treatment of the gauge fixing and
the renormalization procedure for this calculation. In this context also the issue of Higgs
tadpoles in theories with spontaneous symmetry breaking was discussed in a general man-
ner. The appendix contains an in-depth introduction of the group theoretical framework
that we used. There we also give many useful reduction identities that are essential for
performing multi-loop calculations in GUTs and can also be applied to SUSY GUTs.

We consider the result computed in this paper only as an intermediate step towards a
more general calculation of ζαi

. Particularly, we are interested in performing a consistent
three-loop RGE analysis for SUSY GUTs, where two-loop matching at the GUT scale
is needed. In order to apply our result to the simplest SUSY GUT, the minimal SUSY
SU(5), several generalizations are needed:

• Add a trilinear term to the scalar potential eq. (13).

• Add two massive Dirac and three massive Majorana fermion SM-irreducible repre-
sentations as well as all possible kinds of Yukawa interactions for them.

• Increase the number of SM-irreducible representations within RH by one in order
to cover the case of the non-renormalizable version of minimal SUSY SU(5)
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• Allow for unitary mixing matrices in the interactions of heavy Dirac fermions with
gauge bosons.

• Convert the result to the DR renormalization scheme.

Though there is quite some work to be done, to achieve this, we have already built a solid
basis to start with and have overcome many of the main difficulties that were expected
to occur.
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Appendix

A Group theoretical framework

When performing multi-loop calculations for GUTs, one necessarily has to deal with the
reduction of the color structure12 [21,23,36,37,61,62]. The aim is to reduce all the color
factors of the diagrams to a set of basic invariants. In this way nontrivial cancellations
among different diagrams are possible without inserting the actual numerical values for
those invariants. In this appendix we develop a notational framework that is appropriate
for this task and also give some useful reduction identities that will hopefully prove helpful
also for future calculations. For similar reduction algorithms and identities applied to
unbroken gauge theories see e.g. refs. [63, 64] and references therein. Here we focus on
spontaneously broken gauge theories.

We start with a simple GUT group G that is broken to a (in general not simple) gauge
group

∏

k Gk. In the following the Gk are called group factors. The generators of G in a

12For convenience we will use the terms “color structure”, “color factor” etc. in this appendix following
QCD terminology. However, obviously our formalism is not restricted to SU(3), but is meant to be applied
to GUT groups.
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general reducible representation R are denoted by T α in this appendix13. They fulfill the
commutation relation

[T α, T β] = ifαβγ T γ , (46)

where fαβγ are the structure constants of G. In order to distinguish between broken and
unbroken generators, we use the notation of subsection 2.1:

{α} =
∑

i

{Ai}+
∑

i

{ai} = {A}+ {a} (47)

where Ai label the broken generators of G belonging to the
∏

k Gk-irreducible subspace
labeled by i. If there is only one

∏

k Gk-irreducible subspace in the adjoint representation
of G, we can omit the sub-index i in Ai. In contrast, ai label the unbroken generators
belonging to the subgroup Gi. As the Gi are regular subgroups of G, also the following
cummutation relations hold:

[T ai , T bj ] = ifaibjck T ck (48)

where faibjck = 0 unless i = j = k. Furthermore, because the subgroup Gi is closed,
we have faibjAk = 0 for all i, j, k. Otherwise the commutator [T ai , T bj ] would contain
terms proportional to the broken generators TAk . Note that if not explicitly stated,
the sub-indices i, j... of the indices ai, bj ..., Ai, Bj ... are not summed. A repeated index
a, b... or A, B... without sub-index means that the sub-index has been summed over. The
representation R that T α is defined on generally is reducible under G. It decomposes into
G-irreducible representations where the gauge bosons, fermions and scalars of the theory
live in:

R→
⊕

x

Rx = RA ⊕RH ⊕RSI ⊕RSII ⊕ ...⊕RFI ⊕RFII ⊕ ... . (49)

RA stands for the adjoint representation and RH for the representation of the GUT-
breaking scalar. The other symbols represent the irreducible representations for the scalars
and fermions, respectively, numbered by roman numerals for convenience. We define
projectors on these subspaces denoted by Πx with x = A,H,SI,SII...,FI,FII.... Clearly,
[Πx, T α] = 0 holds for all x and α. Each of those representations decomposes further
under

∏

k Gk:

Rx →
⊕

n

Rx
n = Rx

1 ⊕Rx
2 ⊕Rx

3 ⊕ ... (50)

with projectors P x
n and px

n. We use a capital P to denote that the respective
∏

k Gk-
irreducible representation contains fields with a mass of O(MG) and a lowercase p for
projectors on a subspace with massless fields. Because the Lagrangian is still invariant
under

∏

k Gk after symmetry breaking, each of those
∏

k Gk-irreducible subspaces can
be assigned to a definite mass of the respective field. The indices n = 1, 2, 3... label the

13In the main text we employed the symbol T α only for the fermion representation. In this appendix,
however, we will use the symbol for a generic generator of the gauge group.
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∏

k Gk-irreducible representation in Rx. The projectors fulfill [P x
n , T ai ] = 0 = [px

n, T
ai] for

all x, a, n and i. Furthermore, we have

∑

n

̺x
n ≡

∑

n

px
n +

∑

n

P x
n ≡ px + P x = Πx (51)

where ̺ can be P or p depending on n. Armed with these definitions, we can define
some basic Dynkin indices I2(...) and Casimir invariants C2(...) which have real numerical
values for a given group.

Tr(ΠxT αT β) = I2(Π
x) δαβ ,

Tr(̺x
nT aiT bi) = I2(̺

x
n)i δaibi ,

Tr(̺x
nT

Ai̺x
mTBi) = I2(̺

x
n, ̺x

m)i δAiBi ,

ΠxT αT α = C2(Π
x) Πx ,

̺x
nT

aiT ai = C2(̺
x
n)i ̺x

n ,

̺x
nTAi̺x

mTAi = C2(̺
x
n, ̺

x
m)i ̺x

n . (52)

Again ̺ can stand for either P or p. Furthermore, we can define the dimensions of the
various irreducible representations by

∆x ≡ Tr(Πx) ,

Dx
n ≡ Tr(P x

n ) ,

dx
n ≡ Tr(px

n) , (53)

and specifically for the adjoint representation:

∆A ≡ δαα ,

DA
n ≡ δAnAn ,

dA
n ≡ δanan . (54)

which gives us the relations

I2(Π
x) ∆A = C2(Π

x) ∆x ,

I2(P
x
n )i dA

i = C2(P
x
n )i Dx

n ,

I2(p
x
n)i dA

i = C2(p
x
n)

i dx
n ,

I2(P
x
n , ̺x

m)i DA
i = C2(P

x
n , ̺x

m)i Dx
n ,

I2(p
x
n, ̺

x
m)i DA

i = C2(p
x
n, ̺

x
m)i dx

n . (55)

Let us emphasize again that no summation over the sub-indices i that label the
∏

k Gk-
irreducible representation is implied here.
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However, we introduce the convention that omitting this sub-index implies summation:

C2(...) ≡
∑

i

C2(...)
i ,

C2(̺
x
n, ̺

x)i ≡
∑

m

C2(̺
x
n, ̺

x
m)i ,

I2(...̺
x...)i ≡

∑

m

I2(...̺
x
m...)i . (56)

Note also that the invariants I2(Π
x) and C2(Π

x) have only been defined for convenience.
Actually they can be decomposed into other “more elementary” invariants:

I2(Π
x) = I2(p

x)i + I2(P
x)i = I2(p

x, px)i + I2(P
x, P x)i + 2 I2(P

x, px)i , (57)

C2(Π
x) = C2(p

x
i ) + C2(p

x
i , p

x) + C2(p
x
i , P

x) = C2(P
x
i ) + C2(P

x
i , px) + C2(P

x
i , P x) ,

where the summation convention introduced before has been used. The right hand side
of these equations does not depend on i anymore due to the summation of the projectors
over the full representation space Rx. Since in the calculation of matching coefficients
one has to distinguish between heavy and light particles, it is more convenient to use the
“more elementary” invariants on the right hand side.

The definitions that have been introduced are general enough to be applied to all color
factors that appear in our calculations. However, some of the fields live in representations
that deserve special attention. First let us focus on the adjoint representation. The
generators here are defined by

(T α
A)βγ ≡ (ΠA T α)βγ = −ifαβγ . (58)

Clearly, the operators PA
i and pAi project on the subspaces with indices Ai and ai, re-

spectively. Because now x = A in eq. (55) and faibjAk = 0, things simplify for the adjoint
representation. In fact it is sufficient to define four invariants:

fαγδfβγδ = I2(Π
A) δαβ ,

faicidif bicidi = I2(p
A
i )i δaibi ,

faiCjDjf biCjDj = I2(P
A
j )i δaibi ,

fAjciDjfBjciDj = I2(P
A
j , pAi )j δAjBj (59)

where we followed the notation of eq. (52). We keep the redundant sub-indices i and j
in lines 2 and 4 of this equation in order to be consistent with the notation of eq. (52).
Note that faiBjCk = 0 for j 6= k because the indices j and k are used here to label
the

∏

k Gk-irreducible representation of the generator T ai

A . There is another quadratic
Casimir invariant for the adjoint representation that can be expressed through these and
one that vanishes:

fAjCDfBjCD =
[

I2(Π
A) − 2 I2(P

A
j , pA)j

]

δAjBj ,

fAiCDf bjCD = 0 . (60)
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Furthermore, there are relations between these invariants:

I2(Π
A) = I2(P

A)i + I2(p
A
i )i ,

I2(P
A
j , pAi )j DA

j = I2(P
A
j )i dA

i . (61)

At the two-loop level these relations are not sufficient to reduce all adjoint color factors
because products of up to six structure constants with various contractions can appear in
the diagrams. Using the Jacobi identity for fαβγ, we can derive relations for products of
three contracted structure constants that have three open indices:

fαδǫfβǫφfγφδ =
1

2
I2(Π

A) fαβγ ,

faidieif bieifif cifidi =
1

2
I2(p

A
i )i faibici ,

faiDEf biEFf ciFD =
1

2
I2(P

A)i faibici ,

faiDEf biEFfCFD = 0 ,

faiDEfBjEFfCjFD =
1

2

[

I2(Π
A)− 2 I2(P

A
j , pA)j

]

faiBjCj ,

faidieifBjeiF fCjFdi =
1

2
I2(p

A
i )i faiBjCj ,

faiDEfBkEfjfCkfjD =
1

2

[

2 I2(P
A
k , pAj )k − δij I2(p

A
i )i
]

faiBkCk ,

fAjDefBjeFfCjFD =
1

2
I2(P

A
j , pA)jfAjBjCj ,

fAjDEfBjEFfCjFD =
1

2

[

I2(Π
A)− 3 I2(P

A
j , pA)j

]

fAjBjCj . (62)

These relations are sufficient to do all the reduction for two-point and three-point Green’s
functions for the adjoint representation at the two-loop level.

Next, let’s turn our attention to the representation RH where the GUT-breaking scalar
field H and the Goldstone field G live in. Some peculiarities occur here due to the
appearance of the vev v. RH decomposes under

∏

k Gk into the part of physical Higgs
fields and a part of Goldstone bosons:

RH →RH̃ ⊕RG = RH̃
1 ⊕RH̃

2 ⊕ ...⊕RG
1 ⊕RG

2 ⊕ ... (63)

As already explained in subsection 2.1, the explicit form of the projector on the subspace
RG is given by [32]:

P G
i = g2T̃Aiv

(
1

M2
X

)

AiBi

vT̃Bi , P G =
∑

i

P G
i (64)

where the (diagonal) gauge boson mass matrix

(M2
X)AiBi

≡ g2vT̃AiT̃Biv ≡M2
Xi

δAiBi (65)

has been used. The antisymmetric generators in the real representation RH have been
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denoted by T̃ α. Accordingly, the projectors on the subspace of physical Higgs bosons can
be written as

∑

i

P H̃
i = P H̃ ≡ ΠH − P G = ΠH − g2T̃Av

(
1

M2
X

)

AB

vT̃B . (66)

where P H̃
i projects on RH̃

i . With these definitions and using eq. (48) as well as the
antisymmetry of T̃ α, we already can derive a useful reduction identity for an invariant
tensor that appears frequently:

vT̃AiT̃Bj T̃Ckv =
i

2g2
(M2

Xi
−M2

Xj
+ M2

Xk
)fAiBjCk . (67)

One important property follows from T̃ aiv = 0:

T̃ ai T̃Ajv = [T̃ ai , T̃Aj ] v = −(T ai

A )AjBj
T̃Bjv . (68)

i.e. T̃ ai acts like the adjoint generator on the subspace of Goldstone bosons. This leads
to various relations between invariants in RH and in RA:

DG
j = DA

j ,

I2(P
G
j )i = I2(P

A
j )i ,

C2(P
G
j )i = I2(P

A
j , pAi )j ,

I2(P
H̃)i = I2(Π

H)− I2(P
A)i ,

I2(P
H̃, P H̃)i = I2(Π

H)− 2 C2(Π
H) +

3

2
I2(P

A
i , pA)i +

1

4
I2(Π

A) . (69)

There are also two nontrivial important reduction identities that involve both types of
invariants:

faiBjCj Tr(P x
n T̃BjP x

mT̃Cj T̃ bi) =
i

2
δaibi

[

I2(P
A
j )iI2(P

x
n , P x

m)j + C2(P
x
n , P x

m)jI2(P
x
n )i − C2(P

x
m, P x

n )jI2(P
x
m)i
]

, (70)

∑

jk

faiBjCjf biDkCk vT̃Bj T̃DkP H̃
n T̃Cj T̃Ekv =

δaibi

∑

j

M2
Xj

g2

[

I2(P
A
j )i I2(P

H̃
n , P G)j − 1

2
I2(P

H̃
n )i C2(P

H̃
n , P G)j

]

(71)

where x ∈ {H̃,SI,SII, ...,FI,FII...}. Additionally, w.l.o.g. we now define P H̃
1 to be the

operator that projects on the subspace where v 6= 0 (i.e. (P H̃
1 )ij =

vivj

v2 is a matrix with a

single non-zero entry in the component (k, k) where vk 6= 0). Then because of T̃ aiv = 0

and vT̃AiP H̃
n = vT̃AiP GP H̃

n = 0, any invariant that contains P H̃
1 vanishes:

C2(...P
H̃
1 ...) = I2(...P

H̃
1 ...) = 0 . (72)
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Since the Higgs mass matrix M2
H (cf. eq. (21)) commutes with all T̃ ai , it is diagonal and

proportional to the unit matrix on each
∏

k Gk-irreducible subspace. Therefore, it can be
written as:

M2
H =

∑

i

P H̃
i M2

Hi
, (73)

where M2
Hi

are masses of the physical Higgs bosons and particularly P G M2
H = 0 due to

the Goldstone theorem.

Next we will give some useful reduction identities that involve the quartic scalar coupling
λH

ijkl ≡ λi′j′k′l′ P
H
i′i PH

j′j PH
k′k PH

l′l , which is a totally symmetric invariant tensor under G.
These identities can be derived by using eq. (14) and Schur’s Lemma as well as the
definition of the Higgs mass matrix in eq. (21). Some of these identities can be obtained
by multiplying eq. (14) by ΦiΦjΦkΦl and performing derivatives w.r.t Φm. They are used
to eliminate the coupling λH

ijkl from the result by expressing it through the physical Higgs
masses.

λH
ijkl vkvmT̃A

ml = (M2
H T̃A)ij − (T̃AM2

H)ij ,

⇒ λH
ijkl vjvmT̃A

mkvnT̃B
nl = −(vT̃BT̃AM2

H)i ,

⇒ λH
ijkl vivmT̃A

mjvnT̃B
nkvrT̃

C
rl = 0 ,

λH
ijklvmT̃A

mivnT̃
B
njvrT̃

C
rkvsT̃

D
sl = vT̃DT̃CM2

H T̃AT̃Bv ,

+ vT̃DT̃BM2
H T̃AT̃Cv ,

+ vT̃C T̃BM2
H T̃AT̃Dv ,

λH
ijklλ

H
mjklvivm =

v2

∆HλH
ijklλ

H
ijkl ,

λH
klmn(vT̃Ai)k(vT̃Bj)l(P

H̃
s )mn = −λH

klmn(vT̃AiT̃Bj)kvl(P
H̃
s )mn ,

+2 Tr(P H̃
s M2

H T̃Bj T̃Ai)− 2 Tr(M2
H T̃BjP H̃

s T̃Ai) ,

λH
ijklvjvkvl =

3vi

v2
vM2

Hv ,

λH
ijkk = δij

[2 Tr(M2
H)

v2
+

vM2
Hv

v4
DH
]

,

λH
ijklvivj(P

H
s )kl = 2 Tr(M2

Hs
PH

s ) +
vM2

Hv

v2
DH

s . (74)

In the same way we obtain some important relations for the coupling λ that is not re-
stricted to the space RH:

λijk′l′(vT̃A)ivj(̺
S)k′k (̺S)l′l = (M2

ST̃A)kl − (T̃AM2
S)kl ,

λijkl(vT̃A)i(vT̃A)j (T̃ an T̃ an̺S
m)kl = 2 Tr(M2

ST̃AT̃AT̃ anT̃ an̺S
m) ,

− 2 Tr(T̃AM2
ST̃AT̃ anT̃ an̺S

m)

−C2(P
H) λijklvivj(T̃

an T̃ an̺S
m)kl ,
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λi1i2i3i4λj1j2j3j4 vi1vj1 (̺x
n1

)i2j2(̺
y
n2

T ak)i3j3(̺
z
n3

T ak)i4j4 =
1
2
λi1i2i3i4λj1j2j3j4vi1vj1(̺

x
n1

)i2j2(̺
y
n2

)i3j3(̺
z
n3

T akT ak)i4j4

−1
2
λi1i2i3i4λj1j2j3j4vi1vj1(̺

y
n2

)i2j2(̺
z
n3

)i3j3(̺
x
n1

T akT ak)i4j4

−1
2
λi1i2i3i4λj1j2j3j4vi1vj1(̺

x
n1

)i2j2(̺
z
n3

)i3j3(̺
y
n2

T akT ak)i4j4 (75)

with x, y, z ∈ {H,SI,SII, ...}. In the same way we can also derive reduction identities for
the Yukawa coupling Y n using eq. (24)

Tr(̺x
j Y

n̺y
kY

m⋆)(̺z
l T

aiT ai)nm = Tr(̺x
j Y

n⋆̺y
kY

mT aiT ai)(̺z
l )nm (76)

+Tr(̺y
kY

n⋆̺x
j Y

mT aiT ai)(̺z
l )nm

+Tr(̺x
j Y

n⋆̺y
kT

ai⋆Y mT ai)(̺z
l )nm

+Tr(̺y
kY

n⋆̺x
j T

ai⋆Y mT ai)(̺z
l )nm ,

Tr(̺x
j T

aiY n⋆̺y
kY

m)(̺z
l T

ai)nm = Tr(̺x
j Y

n⋆̺y
kY

mT aiT ai)(̺z
l )nm

+Tr(̺y
kY

n̺x
j T

aiY m⋆T ai⋆)(̺z
l )nm ,

Tr(̺x
j T

aiY n̺y
kY

m⋆)(̺z
l T

ai)nm = −Tr(̺x
j Y

n̺y
kY

m⋆T aiT ai⋆)(̺z
l )nm

−Tr(̺y
kY

n⋆̺x
j T

aiY mT ai)(̺z
l )nm ,

Tr(̺x
j T

aiT aiY n⋆̺y
kY

m)(vT̃Al)n(vT̃Bl)m = −Tr(̺x
j T

aiT aiTAlY n⋆̺y
kY

mTBl)vnvm

−Tr(̺x
j T

aiT aiY nTBl̺y
kT

AlY m⋆)vnvm

−Tr(̺x
j T

aiT aiTAlY n⋆̺y
kT

Bl⋆Y m)vnvm

−Tr(̺x
j T

aiT aiTBl⋆Y n̺y
kT

AlY m⋆)vnvm .

Here x, y ∈ {FI,FII, ...} and z ∈ {H,SI,SII, ...}. The list of reduction identities may
not be exhaustive, but it contains the most important relations. In a similar fashion also
other identities can be derived using the invariance relations eqs. (14) and (24) for the
invariant tensors.

In the following we briefly sketch the algorithm that is used for the reduction of all the
color factors in the diagrams: we have written a FORM program that treats the color factors
for each individual diagram and reduces them to a basic set of invariants. In a first step
all reduction identities that involve the quartic scalar coupling λijkl are applied to a given
expression. After that any expression will contain traces of strings of generators T ai,
TAi, projectors ̺x

n and Yukawa matrices Y n. The adjoint indices ai and Ai are either
contracted with each other or with some structure constants. First all the contracted
adjoint indices are removed, i.e. traces of the form

Tr(...T ai ...T ai ...), Tr(...TAi...TAi...), (77)

by applying the definitions of the quadratic Casimir invariants eq. (52). If the generators
are not next to each other, we commute them until they are and eventually arrive at
traces that contain no more contracted indices.
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Next, expressions of the form

f ciaibi Tr(...T ai ...T bi ...), fαAiBi Tr(...TAi...TBi ...), (78)

are reduced by using

f ciaibiT aiT bi = 1
2
f ciaibi [T aiT bi] = i

2
I2(p

A
i )i T ci (79)

and eq. (70). Again generators that are not next to each other are commuted. Expression
that contain the projector P G

i are treated separately. We insert the explicit form of P G
i

(eq. (64)) and write the traces in the form v...v, where “...” stands for a string of generators
T ai , TAi, and projectors ̺x

n. Here we additionally make use of the relations T aiv = 0 and

P H̃
i v = 0 (for i 6= 1) in order to eliminate all generators inside the string that have a

lowercase adjoint index. After that all color factors involving the Yukawa matrix Y n

are reduced to a basic set of invariants using eq. (76). Finally, we are left with various
contractions of structure constants which are expressed by the respective invariants using
eqs. (59) and (62). The actual program is slightly more complicated than described above
and one needs to introduce repetitive control structures because not all the reduction can
be done by a single run. However, the basic procedure is as described.

B Reparametrization of the scalar potential

In this appendix give some details on how the parametrization of the up to quadratic
terms in the scalar potential (eq. (19)) arises. We start with eq. (13) and insert the
decomposition of the scalar field Φ:

Φi = vi + Hi
︸ ︷︷ ︸

+ Gi
︸︷︷︸

+ Si
︸︷︷︸

(80)

RH̃ RG
︸ ︷︷ ︸

RS

RH

where v is the vev with a single non-zero component, H the physical Higgs field, G the
Goldstone field and S a field, representing all the other scalars, present in the theory.
For clarity we have also indicated the representations where the individual fields live in.
Considering only the up to quadratic terms, we arrive at the following expression:

V (Φ) = Hit̃i +
1

2
M̃2

ijHiHj +
1

2
M̃2

ijGiGj +
1

2
M̃2

ijSiSj +O(Φ3) (81)

where we have defined the quantities

t̃i = −µ2
ijvj +

1

6
λijklvjvkvl ,

M̃2
ij = −µ2

ij +
1

2
λijklvkvl . (82)
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Here we already have used the fact that, due to gauge invariance (eq. (14)), the matrix
µ2 is proportional to the unit matrix on each G-irreducible subspace and therefore

µ2
ijviGj = 0 , µ2

ijviSj = 0 , µ2
ijHiGj = 0 ,

µ2
ijHiSj = 0 , µ2

ijGiSj = 0 . (83)

Also due to gauge invariance (eq. (14)) we have λijklvjvkvl ∼ vi, because the matrix
K defined by Kij = λijklvkvl is diagonal and proportional to the unit matrix on each
SM-irreducible subspace. Hence

λijklGivjvkvl = 0 = λijklSivjvkvl (84)

since (PG)ijvj = 0 = (PS)ijvj. The parametrization in eq. (81) has the disadvantage that
the masslesness of Goldstone bosons is not manifest there due to the appearance of an
explicit mass matrix for the Goldstone field. Note furthermore that on the subspace RH

the parameter µ2 is redundant, because it depends on the tadpole term t̃, which has been
chosen as a physical parameter in the Lagrangian. Therefore we want µ2 also to disappear
from the mass matrix of the physical Higgs bosons H by trading it for t̃. To solve these
issues, we first rewrite the tadpole term by observing that t̃ ∼ vi due to arguments already
given above. Therefore we define

t̃i ≡ t vi , t ≡ 1

v2

(
−µ2

ijvivj + 1
6
λijklvivjvkvl

)

≡ −µ2
H +

1

6v2
λH

ijklvivjvkvl . (85)

The classical minimum of the potential can be found by setting t = 0. In a quantum
theory, however, we must keep t as a counterterm, as explained in subsections 2.1 and
2.2. Next we turn to the term 1

2
M̃2

ijGiGj in eq. (81). From the Goldstone theorem
it follows that this mass term must vanish at the classical level. But since we are also
interested in quantum corrections, care is needed here. We calculate the term by applying
the explicit form of the Goldstone projector PG which is given in eq. (15) to M̃2. Using
also the gauge invariance relations in eq. (14), we can show the identities

(PG)ijλjklmvlvm =
1

3v2
(PG)ikλjlmnvjvlvmvn ,

(PG)ijµ
2
jk =

1

v2
(PG)ikµ

2
jlvjvl = (PG)ik µ2

H . (86)

Therefore the following identity holds:

(PG)ijM̃
2
jk = t (PG)ik . (87)

As expected from the Goldstone theorem, the term vanishes at the classical level, but con-
tributes as a counterterm to the two-point function of the Goldstone field via t. Similarly,
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we calculate 1
2
M̃2

ijHiHj by applying the projector PH̃ = ΠH − PG to M̃2:

(PH̃)ijM̃
2
jk = (ΠH)ijM̃

2
jk − (PG)ijM̃

2
jk

= t (PH̃)ik + M̃2
jk − t (ΠH)ik

≡ t (PH̃)ik + (M2
H)jk (88)

where we have used eq. (87) and defined the physical Higgs mass matrix

(M2
H)ij =

1

2
λH

ijklvkvl −
1

6v2
λH

klmnvkvlvmvn ΠH
ij . (89)

Note that PGM2
H = 0 and therefore the Higgs mass matrix, as we have defined it, can

have non-zero entries only on the subspace RH̃. Also the parameter µ2
H does not appear

anymore in the definition of M2
H , as desired. For the fields Si no peculiarities occur, since

they have no vev. Their mass matrix is essentially given by M̃2:

(M2
S)ij =

1

2
λS

ijklvkvl − (µ2(1l− ΠH))ij . (90)

The up to quadratic terms of the scalar potential can now be written as

V (Φ) = t viHi +
1

2
(M2

H)ijHiHj +
1

2
t HiHi +

1

2
t GiGi +

1

2
(M2

S)ijSiSj +O(Φ3) (91)

which is the appropriate parametrization for renormalizing the theory.

C Three-loop gauge β function for the Georgi-

Glashow SU(5) model

For performing a consistent three-loop RGE analysis, apart from the two-loop GUT
matching corrections also the three-loop gauge β function for the Georgi-Glashow model
is needed. The authors of ref. [21] give a general formula for the gauge β function of a
general single gauge coupling theory. Specifiying the group theory factors that appear
there to the Georgi-Glashow model and insering the scalar self-couplings from eq. (32),
as well as the Yukawa coupling from eq. (37) into their general result gives us the desired
β function including scalar self-couplings and Yukawa corrections:
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4

( yt

4π

)4

+
47

4

( yb

4π

)4

+
839

8

y2
t y

2
b

(4π)4

− 493

11520

A2

(4π)4
− 47

144

AB

(4π)4
− 1

12

b2

(4π)4
− 65

36

B2

(4π)4
− 851

200

c2

(4π)4

]
( α

4π

)2

.

The first line of this equation represents the one-loop result, the second line the two-loop
result and the rest corresponds to the three-loop corrections. Since the Yukawa couplings
enter the gauge β function starting from two-loop level only, it is enough to employ the
one-loop RGEs for the Yukawa couplings for the precision we are aiming at. These can
be derived in a similar manner from the general formula in ref. [37]:

dyt

dt
= yt

[

− 108

5

( α

4π

)

− 6
( yb

4π

)2

+ 9
( yt

4π

)2
]

,

dyb

dt
= yb

[

− 18
( α

4π

)

+ 11
( yb

4π

)2

− 9

2

( yt

4π

)2
]

. (93)

The scalar self-couplings A, B and c that appear in eq. (92) only at the three-loop level
are approximated as constants in our analysis by replacing them by their relations to the
physical mass parameters MΣ, M24, MHc, MX, and the gauge coupling α by using eqs. (35)
and (36). The scalar self-coupling b that appears here can be approximated similarly by
a constant using the SM Higgs mass M2

H,SM and the mass of the W boson MW :

b =
3

4
g2

M2
H,SM

M2
W

. (94)
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