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Completing the Calculation of BLM corrections to B̄ → Xsγ
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Perturbative O(α2
s) corrections to B(B̄ → Xsγ) in the BLM approximation receive contributions

from two-, three- and four-body final states. While all the two-body results are well established
by now, the other ones have remained incomplete for several years. Here, we calculate the last
contribution that has been missing to date, namely the one originating from interference of the

current-current and gluonic dipole operators (K
(2)β0

18 and K
(2)β0

28 ). Moreover, we confirm all the
previously known results for BLM corrections to the photon energy spectrum that involve the

current-current operators (e.g., K
(2)β0

22 and K
(2)β0

27 ). Finally, we also confirm the recent findings of

Ferroglia and Haisch on self-interference of the gluonic dipole operator (K
(2)β0

88 ).

PACS numbers: 12.38.Bx, 13.20.He

I. INTRODUCTION

Weak radiative decay of the B meson is a well-known
probe of physics beyond the Standard Model (SM). Cal-
culations of its inclusive branching ratio in the SM for
Eγ > 1.6 GeV give [1, 2]

B(B̄ → Xsγ)SM = (3.15 ± 0.23) × 10−4, (1)

which agrees within 1.2σ with the world average [3]

B(B̄ → Xsγ)exp = (3.55 ± 0.24 ± 0.09) × 10−4. (2)

The above experimental result includes a model uncer-
tainty that is due to averaging several measurements
with various photon energy cuts E0 and extrapolat-
ing them to E0 = 1.6 GeV where the theory predic-
tion is most reliable. Measurements with energy cuts
1.8 GeV ≤ E0 ≤ 2.0 GeV [4–6] have significantly
smaller background-subtraction errors than those with
E0 = 1.7 GeV [4]. More work at balancing model-
dependence and background-subtraction uncertainties is
necessary in the future to obtain accurate experimental
averages.

As far as the SM calculations are concerned, further
improvements require another critical re-analysis of non-
perturbative effects [7], as well as a full perturbative
O(α2

s) evaluation of Γ(b → Xp
s γ), where Xp

s stands for
s, sg and sqq̄ partonic states (q = u, d, s). Such cal-
culations are most conveniently performed in the frame-
work of an effective low-energy theory that arises from
the SM via decoupling of the W boson and all the
heavier particles. So long as higher-order electroweak
and/or CKM-suppressed effects are neglected, the rele-
vant flavor-changing weak interactions at the renormal-
ization scale µb ∼ mb/2 are given by

Lweak =
4GF√

2

8
∑

i=1

Ci(µb)Qi, (3)

where Qi denote either dipole-type or four-quark opera-
tors (see below), and Ci(µb) stand for their Wilson coef-
ficients.

Following Refs. [2, 8], we shall normalize the radia-
tive decay rate to the charmless semileptonic one, and
parametrize their rato in terms of symmetric matrices
Kij(µb, E0) as follows:
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∑

i,j=1

Ceff
i Ceff

j Kij , (4)

where Ceff
i are certain linear combinations of Ci, see

Eq. (5) of Ref. [9]. Evaluation of all the Ceff
i (µb) up

to the Next-to-Next-to-Leading Order (NNLO) in QCD
has been already completed several years ago [10].

In the perturbative expansion of Kij

Kij = K
(0)
ij +

αs

4π
K

(1)
ij +

(αs

4π

)2

K
(2)
ij + . . . (5)

all the O(1) and O(αs) terms are known since a long

time [11]. As far as K
(2)
ij are concerned, the so-called pen-

guin four-quark operators Q3, . . . , Q6 can be neglected
thanks to smallness of their Wilson coefficients. We can
restrict our attention to

Q1 = (s̄LγµT acL)(c̄LγµT abL),

Q2 = (s̄LγµcL)(c̄LγµbL),

Q7 =
e

16π2
mb(s̄LσµνbR)Fµν ,

Q8 =
g

16π2
mb(s̄LσµνT abR)Ga

µν , (6)

i.e. consider K
(2)
ij with i, j ∈ {1, 2, 7, 8} only.

At present, K
(2)
ij are known in a complete manner [12–

14] for (ij) = (77) and (78), while the other cases are
estimated [15–17] using the BLM [18] approximation. In
Ref. [2], non-BLM contributions to the decay rate have
been calculated in the mc ≫ mb/2 limit, and then inter-
polated downwards in mc assuming that they vanish at
mc = 0. Such a treatment of non-BLM NNLO correc-
tions in the evaluation of Eq. (1) still remains the cur-
rent state-of-art for the numerically important but yet

unknown K
(2)
17 and K

(2)
27 .
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(ij) final state original confirmation

multiplicity calculation

(77) 2 [16] [12]

(77) 3, 4 [15] [12, 16]

(78) 2 [16] [13]

(78) 3, 4 [15] [13, 17]

(88) 3, 4 [17] this paper

(17),(27) 2 [16] [19]

(17), (27) 3, 4 [15] this paper

(11), (12), (22) 3, 4 [15] this paper

(18), (28) 3, 4 this paper

TABLE I: Present status of K
(2)β0

ij calculations.

The BLM and non-BLM contributions to K
(2)
ij are de-

noted by K
(2)β0

ij and K
(2)rem
ij , respectively. The latter are

independent on nl (the number of massless quark flavors),
while the former are proportional to β0 = 11− 2

3 (nl + 2).
In practice nl = 3 because masses of the light q = u, d, s
quarks are neglected in loops on the gluon lines in b → sγ
and b → sgγ, as well as for external qq̄ pairs in b →
sg∗γ → sqq̄γ. Although masses of the c and b quarks
are not neglected, all the quantities in Eq. (5) are MS-
renormalized at µb in the five-flavor theory, which justi-

fies the use of five-flavor β0 in K
(2)β0

ij . Effects of non-zero
values of mc and mb in loops on the gluon lines are known

from Refs. [14, 19] for all the K
(2)
ij with i, j ∈ {1, 2, 7, 8}.

No real cc̄ pair production is included in b → Xp
s γ by

definition, while bb̄ production is kinematically forbidden
anyway.

Contributions to K
(2)β0

ij from the b → sγ channel arise

for (ij) = (17), (27), (77) and (78) only. They were orig-
inally calculated in Ref. [16]. Three- and four-body final
state contributions (b → sgγ and b → sg∗γ → sqq̄γ) for

all the i, j ∈ {1, 2, 7} cases and for K
(2)β0

78 were evaluated

first in Ref. [15]. Recently, K
(2)β0

88 has been found by
Ferroglia and Haisch [17].

In the present paper, we provide the last two missing

contributions, namely K
(2)β0

18 and K
(2)β0

28 . Moreover, we
confirm the results for (ij) = (11), (12), (22), (17) and

(27) from Ref. [15], as well as for K
(2)β0

88 from Ref. [17].

Table I summarizes the present status of K
(2)β0

ij calcula-
tions.

The article is organized as follows. In Sec. II, our

evaluation of K
(2)β0

18 and K
(2)β0

28 is presented. Sec. III is
devoted to the remaining contributions that involve the
current-current operators (Q1 and Q2). Self-interference
of the gluonic dipole operator Q8 is considered in Sec. IV.
We conclude in Sec. V.
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FIG. 1: Feynman diagrams that determine K
(2)β0

28 .

II. CALCULATION OF K
(2)β0

18 AND K
(2)β0

28

Determination of K
(2)β0

18 and K
(2)β0

28 amounts to eval-

uating nl-dependent parts of K
(2)
18 and K

(2)
28 . The latter

originates from interference of decay amplitudes gener-
ated by the current-current operator Q2 and the gluonic
dipole operator Q8. The contributing Feynman diagrams
are most conveniently presented using Cutkosky rules [20]
as four-loop propagator diagrams with unitarity cuts.
They are displayed in Fig. 1. In dimensional regulariza-
tion, no diagrams with cuts through the gluon lines need
to be considered because the massless qq̄-loop integral is
scaleless for an on-shell gluon, which implies that all such
diagrams vanish. If Q2 is replaced by Q1, the color fac-
tor gets modified according to T a → T bT aT b = − 1

6T a,
which leads to a simple relation

K
(2)β0

18 = −1

6
K

(2)β0

28 . (7)

Following the conventions introduced in Ref. [15], we
exclude the diagrams depicted in Fig. 2 from the BLM ap-
proximation despite their nl-dependence. They are corre-
lated via renormalization group with tree-level b → sqq̄γ
matrix elements of the neglected four-quark operators
Q3, ..., Q6. Excluding those diagrams from the BLM cal-
culation is indeed reasonable. No other nl-dependent dia-
grams arise because the Q2-generated charm loops vanish
if the on shell photon alone is emitted from them.
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FIG. 2: Feynman diagrams excluded from K
(2)β0

28 .
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In our actual evaluation of K
(2)β0

28 , the method of Smith
and Voloshin [21] has been applied. It amounts to consid-
ering lower-order diagrams that are obtained from those
in Fig. 1 by removing the qq̄ loop from the gluon propa-
gators. However, an arbitrary auxiliary mass of the gluon
needs to be introduced. Next, integration over the gluon
mass should be performed according to the formulae of
Ref. [21].

We have carried out the calculation via direct integra-
tion over the 3-body partly massive phase space (ms = 0)
that is conveniently parametrized in terms of two vari-
ables: u = 2(pbpγ)/m2

b and s = (pg + pγ)2/m2
b . Explicit

results from Sec. 4 of Ref. [22] for the one-loop Q2 ampli-
tude with an external off-shell gluon have appeared to be
useful. Once the Dirac algebra is performed, we are left
with precisely the same two Feynman parameter integrals
as in Eqs. (4.21) and (4.22) of that paper, namely

Fb(s, z, v) =

∫ 1

0

dx

∫ 1

0

dy
1

v + ys − z−iε
x(1−x)

,

Fg(s, z, v) =

∫ 1

0

dx

∫ 1

0

dy
−xy

v + ys − z−iε
x(1−x)

, (8)

where z = m2
c/m2

b and v = m2
gluon/m2

b . Considering
them here in D = 4 dimensions is sufficient because the
calculation is free of ultraviolet, infrared or collinear di-
vergences. Integrations over the two Feynman param-
eters x and y and over the phase-space variable u are
performed analytically in a straightforward manner. The
remaining two integrations (over s and v) have been com-
pleted numerically. More details will be presented else-
where [23].

For K
(2)β0

ij with i, j 6= 7 we shall use the following

notation (consistent with Ref. [2]):

K
(2)β0

ij = 2(1 + δij)β0

[

φ
(1)
ij (δ)Lb + h

(2)
ij (δ)

]

, (9)

where δ = 1 − 2E0/mb, Lb = ln
(

µ2
b/m2

b

)

, and φ
(1)
ij (δ)

are the well-known NLO bremsstrahlung functions col-
lected in Appendix E of Ref. [8].

Our final result for the function h
(2)
28 (δ) reads

h
(2)
28 (δ) = 0.02605 + 0.1679 δ − 0.1970 δ2

+ (−0.03801 + 0.6017 δ − 0.7558 δ2) z
1

2

+ (2.755 − 10.03 δ + 11.27 δ2) z

+ (−27.05 + 68.47 δ − 72.51 δ2) z
3

2

+ (85.87 − 289.3 δ + 297.7 δ2) z2

+ (−91.53 + 399.8 δ − 399.9 δ2) z
5

2 . (10)

The above expression is a numerical fit that remains ac-
curate in the ranges 0 ≤ z ≤ 0.13 and 0.2 ≤ δ ≤ 0.6.
These ranges will also be valid for the fits in Sec III. The
central values used in Eq. (1) are δ = 1 − 2(1.6/4.68) ≃
0.316 and z = [mc(1.5GeV)/4.68]

2 ≃ 0.0584.

Eq. (10) is the main new result of the present pa-
per. Its numerical effect on the branching ratio turns out
to be miniscule (below 0.1%). However, the purpose of
the present calculation is not finding sizeable effects but
rather removing several minor uncertainties that had to
be taken into account in Refs. [1, 2] in estimating the
±3% perturbative error that was unrelated to the mc-
interpolation.

III. OTHER CONTRIBUTIONS FROM

CURRENT-CURRENT OPERATORS

Let us now consider K
(2)β0

ij for (ij) ∈ {(11), (12), (22)}.

The three Feynman diagrams to be calculated in the (22)
case are obtained from the left parts of the cut diagrams
in Fig. 1 by forming all the possible interference terms.
The cases (11) and (12) differ from (22) by color factors
(analogously to Eq. (7)), namely

K
(2)β0

22 = −6K
(2)β0

12 = 36K
(2)β0

11 . (11)

As before, only the diagrams with both the photon and
the gluon coupled to the charm loop are included in the
BLM approximation for the b → sg∗γ → sqq̄γ channel.

Using precisely the same methods as in Sec. II, we
obtain the following numerical fit:

h
(2)
22 (δ) = 0.01370 + 0.3357 δ − 0.08668 δ2

+ (0.3575 + 1.825 δ − 0.3743 δ2) z
1

2

+ (−2.306 − 5.800 δ − 6.226 δ2) z

+ (3.449 − 0.5480 δ + 17.27 δ2) z
3

2 . (12)

Similarly, for the photonic dipole (Q7) and the current-
current operator interferences, we find

h
(2)
27 (δ) = −0.1755 − 1.455 δ + 1.119 δ2

+ (0.7260 − 7.230 δ + 5.977 δ2) z
1

2

+ (13.79 + 113.7 δ − 100.4 δ2) z

+ (−145.1 − 307.1 δ + 388.5 δ2) z
3

2

+ (475.2 + 313.0 δ − 775.8 δ2) z2

+ (−509.7 − 126.1 δ + 646.2 δ2) z
5

2 , (13)

together with K
(2)β0

17 = − 1
6K

(2)β0

27 . However, the two-
body contribution T is non-vanishing in this case, so in-
stead of Eq. (9) one has

K
(2)β0

27 = T + 2φ
(2)β0

27 ≡ T + 2β0

[

φ
(1)
27 Lb + h

(2)
27

]

. (14)

Explicit formulae for T can be found in Ref. [2].
To compare our expressions in Eqs. (12) and (13) to

Ref. [15], we made use of their results provided to us in
the form of a numerical grid [24]. The grid described
contributions to the differential photon energy spectrum
in the ranges 0.2 mb ≤ Eγ ≤ mb/2 and 0 ≤ z ≤ 0.13.
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The originally published fits in Eq. (12) of Ref. [15] were
valid in more narrow ranges, especially in the case of z.
After performing an accurate fit to the grid, we integrated
the spectrum over Eγ from E0 to mb/2, and then com-

pared the outcome to our results for h
(2)
22 (δ) and h

(2)
27 (δ)

in the ranges 0.2 ≤ δ ≤ 0.6 and 0 ≤ z ≤ 0.13. A perfect
agreement was found immediately at the first attempt to
perform such a comparison, indicating undoubtedly that
we can confirm the results of Ref. [15].

It is interesting to observe that h
(2)
22 affects the branch-

ing ratio by +1.9%, which remains within the assumed
±3% uncertainty for all such effects in Eq. (1). Neither

this contribution nor the smaller ones from h
(2)
27 and h

(2)
78

were included in the analysis of Refs. [1, 2].

IV. GLUONIC DIPOLE OPERATOR

SELF-INTERFERENCE

The three Feynman diagrams that matter for K
(2)β0

88

are obtained from the right parts of the cut diagrams
in Fig. 1 by forming all the possible interference terms.
Contrary to the previously discussed cases, a collinear
divergence arises here, and a non-vanishing mass of the s-
quark must be retained in the line from which the photon

is emitted. In analogy to the NLO calculation of K
(1)
88 , we

shall keep this mass whenever it can produce ln(mb/ms),
but neglect all the power corrections (ms/mb)

n.

Note that only b → sg∗γ → sqq̄γ matters for K
(2)β0

88 ,
which means that no photon emission from the qq̄ pair
needs to be considered. Amplitudes with such an emis-
sion would not be proportional to nl but rather weighted
with the quark electric charges. Consequently, the quarks
into which the gluon fragments can be kept massless from
the outset, even if they are the s quarks.

As the interfering amplitudes are tree-level here, all
the phase-space integrals and the ficticious gluon mass
integral can be performed analytically. We obtain

h
(2)
88 (δ) = 4

27

{[(

1 + 1
2δ

)

δ ln δ − 6 ln(1−δ) − 2Li2(1−δ)

+ 1
3π2 − 16

3 δ − 5
3δ2 + 1

9δ3
]

ln
mb

ms

− 2Li3(δ)

+ (5−2 ln δ)
[

Li2(1−δ) − 1
6π2

]

− 1
12π2δ (2+δ)

+
[

1
2δ + 1

4δ2 − ln(1−δ)
]

ln2 δ +
(

151
18 − 1

3π2
)

×

× ln(1−δ) +
(

− 53
12 − 19

12δ + 2
9δ2

)

δ ln δ

+ 787
72 δ + 227

72 δ2 − 41
72δ3

}

. (15)

The corresponding contribution to the photon energy

spectrum is found by differentiating K
(2)β0

88 with respect
to δ. Doing so, we find perfect agreement with the
very recent article of Ferroglia and Haisch [17]. An ex-
tended discussion of collinear divergences can be found
there, which adds new elements to the previous analy-
ses in Refs. [7, 25]. Replacing the perturbative collinear
regulator ms by a physical hadronic one can hardly
be performed in a quantitatively precise manner given
our poor knowledge of the QCD bound state properties.
Fortunately, the gluonic dipole operator self-interference
undergoes significant suppression in B̄ → Xsγ due to
(QdC8/C7)2 ≃ 1/36, as well as the relatively high photon

energy cut E0 ∼ mb/3. Evaluation of K
(2)β0

88 provides
just a check that no unexpected large numerical factors
overcome this suppression at the perturbative level. The

overall effect of K
(2)β0

88 on the b → Xp
s γ decay width does

not exceed 0.2%.

V. CONCLUSIONS

The NNLO QCD corrections to b → Xp
s γ in the

BLM approximation receive contributions from b → sγ,
b → sgγ and b → sg∗γ → sqq̄γ. The former results are
well established by now, while the b → sgγ BLM ampli-
tudes vanish in dimensional regularization. In this arti-
cle, we have calculated the last missing b → sg∗γ → sqq̄γ

contributions, namely K
(2)β0

18 and K
(2)β0

28 . In addition,
we have confirmed all the previously known results for
BLM corrections to the photon energy spectrum that in-
volve the current-current operators, as well as the re-

cently found K
(2)β0

88 . Numerical effects of all these quan-
tities on the branching ratio remain within the ±3% per-
turbative uncertainty estimated in Refs. [1, 2].
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