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1. Introduction

The potential between two heavy quarks has been among the first application after the formu-
lation of QCD. At leading order it is given by the exchange of aCoulomb gluon and can — after
obvious modifications — be obtained from the potential of thehydrogen atom. One- and two-loop
corrections have been considered in Refs. [1, 2, 3, 4, 5, 6] and have introduced numerically sizable
effects in quarkonium physics (see, e.g., the review Ref. [7]). Since 1998 there has been a raising
interest in the three-loop corrections. The fermionic corrections have been completed in 2008 [8]
and in 2009 two independent groups [9, 10] have completed thepurely abelian three-loop part. In
Refs. [8, 9] the calculation has been performed in a covariant gauge and the independence of the
final expression on the gauge parameter has been a crucial check for the correctness of the result.

2. Outline of the calculation

The calculation of the static potential requires the evaluation of the four-point amplitude of
a heavy quark and anti-quark. Some sample Feynman diagrams are shown in Fig. 1. It is suffi-
cient to consider as a starting point the so-called non-relativistic QCD (NRQCD), i.e. QCD with
hard degrees of freedom integrated out. In this limit the heavy quark propagators represent static
colour sources with propagators 1/p0 whereas the gluons and light quarks are still relativistic.The
only dimensionful scale in the problem is the momentum transfer between the heavy quark and
anti-quark and thus momentum integrals can be represented by two-point functions. In Fig. 2 the
different cases of the scalar two-point integrals up to three loops are shown.

In case the static lines are absent the problem of computing the corresponding integrals up to
three loops has been solved many years ago [11] and a public code exists,MINCER [12] which
can easily be included in all computational frameworks. Thepresence of the static lines, however,
makes the practical evaluation quite difficult and an explicit solution of the recurrence problem (as
implemented in Ref. [12]) is not available. Furthermore, the master integrals are significantly more
complicated due to the occurrence of the static lines.

In Refs. [8, 9] the reduction of all occurring integrals to a small set of master integrals has
been achieved with the help of the programFIRE [13] which can be linked to a database and
thus handle non-trivial problems in a quite efficient way. Inour case up to 16 indices have to be

Figure 1: Sample diagrams contributing to the static potential at tree-level, one-, two- and three-loop order.
Solid and curly lines represent quarks and gluons, respectively. In the case of closed loops the quarks are
massless; the external quarks are heavy and treated in the static limit.
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Figure 2: Scalar one-, two- and three-loop diagrams. The solid line stands for massless relativistic propaga-
tors and the zigzag line represents static propagators.

considered: 8+6 = 14 indices from relativistiv and non-relativistic propagators, respectively, and
in addition one index from an irreducible numerator (see Fig. 2). The problem can be simplified by
considering a partial fractioning in those cases where three static lines meet in one vertex and by
linear relations between four static propagators which leads to at most three static propagators at
three loops thus reducing the total number of indices to twelve. We have performed the calculation
in both ways. In the first option with up to 15 indices only little manual work is involved, however,
significantly more computer resources are needed than in thetwelve-index approach. In the latter
case one has to provide several relations implemeting the partial fractioning (mentioned above) and
symmetry relations to end up with a small set of different case to be considered for the reduction.
The fact that the final results in both approaches agree constitutes a strong check on our result.

After the reduction one ends up with 41 master integrals for which an explicit result is needed.
Nine integrals are quite simple and can essentially be obtained from the one- and two-loop results.
14 integrals contain a massless one-loop diagram which can be integrated out leading to a two-loop
integral with an exponent depending on the space-time dimension d. These integrals are already
quite involved and have been presented in Ref. [14]. The remaining 18 integrals are genuinely
of three-loop order and involve a nontrivial calculation toobtain their result. All but threeε =

(4− d)/2 coefficients could be computed analytically; the corresponding analytical results have
been presented in Ref. [15]. The three missing coefficients are known with a numerically precision
sufficient for all foreseeable applications.

3. Static potential to three loops

Let us finally present the result for the static potential. Werefrain from analytical results which
can be found in Refs. [8, 9] but immediately showV(|~q|) in numerical from:

V(|~q|) = −
4πCFαs(|~q|)

~q2

[

1+
αs

π
(2.5833−0.2778nl )+

(αs

π

)2
(

28.5468−4.1471nl +0.0772n2
l

)

+
(αs

π

)3
(

209.884(1)−51.4048nl +2.9061n2
l −0.0214n3

l

)

+ · · ·

]

, (3.1)

whereµ2 =~q2 has been adopted in order to suppress the infrared logarithmand the ellipses denote
higher order terms inαs. It is interesting to note that the term “209” in the three-loop coefficient
receives a large contribution (“211”) from the term with colour factorC3

A whereas the new colour
structuredabcd

F dabcd
A only contributes with a coefficient “−2”. From Eq. (3.1) we observe at one-,

two- and three-loop order a large screening of the non-fermionic contributions by thenl terms
which is most prominent in the three-loop coefficient fornl = 5.

In Tab. 1 we show the numerical evaluation of the square bracket of Eq. (3.1) for the charm,
bottom and top quark case, i.e. fornl = 3,4 and 5, adopting the appropriate values ofαs. For
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nl α(nl )
s 1 loop 2 loop 3 loop

3 0.40 0.2228 0.2723 0.1677
4 0.25 0.1172 0.08354 0.02489
5 0.15 0.05703 0.02220 0.002485

Table 1: Radiative corrections to the potentialV(|~q|) where the tree-level result is normalized to 1. In the
second column we also provide the numerical value ofαs corresponding to the soft scale whereµ ≈ mqαs

(mq being the heavy quark mass).

charm the three-loop corrections are almost as big as the one- and two-loop contributions whereas
for bottom the three-loop contribution is already a factor of four smaller than the two-loop one. In
the case of the top quark one observes a good convergence: thethree-loop term is already a factor
ten smaller than the two-loop counterpart.

To summarize, the three-loop corrections to the static heavy quark potential are available and
can now be used for the prediction of the top quark threshold production at a future linear collider
with third-order accuracy, for the precise extraction of the bottom quark mass fromϒ sum rules,
and for the comparison of the potential with results obtained on the lattice in order to gain insight
to the validity of perturbation theory.
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