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Matching QCD and HQET at three loops
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QCD/HQET matching for the heavy-quark field [1] and heavy–light quark currents [2] with three-loop accuracy
is discussed.

1. Heavy-quark field

QCD problems with a single heavy quark Q can
be treated in a simpler effective theory — HQET,
if there exists a 4-velocity v such that the heavy-
quark momentum is p = mv+k (m is the on-shell
mass) and the characteristic residual momentum
is small: k ≪ m. QCD operators can be written
as series in 1/m via HQET operators; the coeffi-
cients in these series are determined by matching
on-shell matrix elements in both theories.

At the tree level, the heavy-quark field Q is re-
lated to the corresponding HQET field Qv (satis-
fying /vQv = Qv) by [3,4]

Q(x) = e−imv·x
(

1 +
i /D⊥

2m
+ · · ·

)

Qv(x) ,

Dµ
⊥

= Dµ − vµv · D . (1)

The matrix elements of the bare fields between
the on-shell quark with momentum p = mv + k
and the vacuum in both theories are given by the
on-shell wave-function renormalization constants:

<0|Q0|Q(p)> =
(

Zos
Q

)1/2
u(p) ,

<0|Qv0|Q(p)> =
(

Z̃os
Q

)1/2

uv(k) (2)

(HQET renormalization constants are denoted by
Z̃). The Dirac spinors are related by the Foldy–
Wouthuysen transformation

u(mv + k) =

[

1 +
/k

2m
+ O

(

k2

m2

)]

uv(k) .

Therefore, the bare fields are related by

Q0(x) = e−imv·x
[

z
1/2
0

(

1 +
i /D⊥

2m

)

Qv0(x)

+ O

(

1

m2

)]

, (3)

where the bare matching coefficient is

z0 =
Zos
Q (g

(nl+1)
0 , a

(nl+1)
0 )

Z̃os
Q (g

(nl)
0 , a

(nl)
0 )

(4)

(we use the covariant gauge: the gauge-fixing
term in the Lagrangian is −(∂µA

aµ
0 )/(2a0), and

the free gluon propagator is (−i/p2)(gµν − (1 −
a0)pµpν/p2); the number of flavours in QCD is
nf = nl + 1). The O(1/m) matching coefficient
in (3) is equal to the leading one, z0; this re-
flexes the reparametrization invariance [5]. The
MS renormalized fields are related by the formula
similar to (3), with the renormalized decoupling
coefficient

z(µ) =
Z̃Q(α

(nl)
s (µ), a(nl)(µ))

ZQ(α
(nl+1)
s (µ), a(nl+1)(µ))

z0 . (5)

If there are no massive flavours except Q,
then Z̃os

Q = 1 because all loop corrections
are scale-free. The QCD on-shell renormal-
ization constant Zos

Q contains the single scale
m in this case; it has been calculated [6] up
to three loops. The three-loop MS anoma-
lous dimensions of Qv [6,7] and Q [8] are also
known. We have to express all three quantities

Zos
Q (g

(nl+1)
0 , a

(nl+1)
0 ), ZQ(α

(nl+1)
s (µ), a(nl+1)(µ)),

Z̃Q(α
(nl)
s (µ), a(nl)(µ)) via the same variables, say,
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α
(nl)
s (µ), a(nl)(µ), see [9]. The explicit result for

the renormalized matching coefficient z(µ) can
be found in [1]. Gauge dependence first appears
at three loops, as in Zos

Q [6]. The requirement
of finiteness of the renormalized matching coeffi-
cient (5) at ε → 0 has allowed the authors of [6]
to extract Z̃Q from their result for Zos

Q .
In the large-β0 limit (see Chapter 8 in [10] for

a pedagogical introduction):

z(µ) = 1 +

∫ β

0

dβ

β

(

γ(β)

2β
−

γ0

2β0

)

+
1

β0

∫ ∞

0

du e−u/βS(u) + O

(

1

β2
0

)

, (6)

where β = β0αs/(4π), γ = γ0αs/(4π) + · · · (dif-
ferences of nl-flavour and (nl + 1)-flavour quan-
tities can be neglected at the 1/β0 order). The
difference of the QCD and HQET anomalous di-
mensions γ = γQ−γ̃Q (it is gauge invariant at this
order) and the Borel image S(u) are [11,12,10]

γ(β) = −2
β

β0
F (−β, 0) =

2CF
β

β0

(1 + β)(1 + 2
3β)

B(2 + β, 2 + β)Γ(3 + β)Γ(1 − β)
,

S(u) =
F (0, u) − F (0, 0)

u
= (7)

− 6CF

[

e(L+5/3)uΓ(u)Γ(1 − 2u)

Γ(3 − u)
(1 − u2) −

1

2u

]

.

This Borel image has infrared renormalon poles at
each positive half-integer u and at u = 2. There-
fore, the integral in (6) is not well defined. Com-
paring its residue at the leading pole u = 1/2
with the residue of the static-quark self-energy at
its ultraviolet pole u = 1/2 [13], we can express
the renormalon ambiguity of z(µ) as

∆z(µ) =
3

2

∆Λ̄

m
(8)

(Λ̄ is the ground-state meson residual energy).
The matching coefficient is gauge invariant at the
order 1/β0. Expanding γ(β) and S(u) and inte-
grating, we obtain confirm the contributions with
the highest power of nl in each term in our three-
loop result, and predict such a contribution at
α4
s.

Numerically, in the Landau gauge at nl = 4

z(m) = 1 −
4

3

α
(4)
s (m)

π

− (16.6629− 4.5421)

(

α
(4)
s (m)

π

)2

− (153.4076 + 42.6271− 61.5397)

(

α
(4)
s (m)

π

)3

− (1953.4013 + · · · )

(

α
(4)
s (m)

π

)4

+ · · ·

= 1 −
4

3

α
(4)
s (m)

π
− 12.1208

(

α
(4)
s (m)

π

)2

− 134.4950

(

α
(4)
s (m)

π

)3

− (1953.4013 + · · · )

(

α
(4)
s (m)

π

)4

+ · · · (9)

(β0 is for nl = 4 flavours). Naive nonabelian-
ization [11] works rather well at two and three
loops. Numerical convergence of the series is very
poor; this is related to the infrared renormalon at
u = 1/2.

Now let us consider the relation between the
MS renormalized electron field in QED and the
Bloch–Nordsieck electron field. The bare match-
ing coefficient z0 = Zos

ψ is gauge invariant
to all orders, see [6]. In the Bloch-Nordsieck
model, due to exponentiation, log Z̃ψ = (3 −
a(0))α(0)/(4πε) (where the 0-flavour α(0) is equal
to the on-shell α ≈ 1/137). In the full QED,
it is supposed that log Zψ = a(1)α(1)/(4πε) +
(gauge-invariant higher terms) (this is equivalent
to the similar statement for the anomalous dimen-
sion γψ, because d log(a(1)α(1))/d log µ = −2ε ex-
actly). This has been demonstrated up to four
loops by the direct calculation [14], but there is no
general proof. The gauge dependence cancels in
log(Z̃ψ/Zψ) because of the QED decoupling rela-
tion a(1)α(1) = a(0)α(0). Therefore, the renormal-
ized matching coefficient z(µ) in QED is gauge
invariant at least up to four loops. The three-
loop result is presented in [1].
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2. Heavy–light currents

Now we shall consider [2] MS renormalized
heavy–light QCD quark currents

j(µ) = Z−1
j (µ)j0 , j0 = q̄0ΓQ0 , (10)

where Γ is a Dirac matrix. They can be expressed
via operators in HQET

j(µ) = CΓ(µ)̃(µ) +
1

2m

∑

i

Bi(µ)Oi(µ)

+ O

(

1

m2

)

, (11)

where

̃(µ) = Z̃−1
j (µ)̃0 , ̃0 = q̄0ΓQv0 , (12)

and Oi are dimension-4 HQET operators with ap-
propriate quantum numbers.

There are 8 Dirac structures giving non-
vanishing quark currents in 4 dimensions:

Γ = 1 , /v , γα⊥ , γα⊥/v , (13)

γ
[α
⊥

γ
β]
⊥

, γ
[α
⊥

γ
β]
⊥

/v , γ
[α
⊥

γβ
⊥

γ
γ]
⊥

, γ
[α
⊥

γβ
⊥

γ
γ]
⊥

/v ,

where γα
⊥

= γα − /vvα. The last four of them
can be obtained from the first four by multiplying
by the ’t Hooft–Veltman γHV

5 . We are concerned
with flavour non-singlet currents only, therefore,
we may also use the anticommuting γAC

5 (there
is no anomaly). The currents renormalized at a
scale µ with different prescriptions for γ5 are re-
lated by [15]
(

q̄γAC
5 Q

)

µ
= ZP (µ)

(

q̄γHV
5 Q

)

µ
, (14)

(

q̄γAC
5 γαQ

)

µ
= ZA(µ)

(

q̄γHV
5 γαQ

)

µ
,

(

q̄γAC
5 γ[αγβ]Q

)

µ
= ZT (µ)

(

q̄γHV
5 γ[αγβ]Q

)

µ
,

where the finite renormalization constants ZP,A,T
can be reconstructed from the differences of the
anomalous dimensions of the currents. Multiply-
ing Γ by γAC

5 does not change the anomalous di-
mension. In the case of Γ = γ[αγβ], multiplying
it by γHV

5 just permutes its components, and also
does not change the anomalous dimension, there-
fore,

ZT (µ) = 1 ; (15)

ZP,A(µ) are known up to three loops [15].
The anomalous dimension of the HQET cur-

rent (12) does not depend on the Dirac structure
Γ. Therefore, there are no factors similar to ZP,A
in HQET. Multiplying Γ by γAC

5 does not change
the matching coefficient. Therefore, the match-
ing coefficients for the currents in the second row
of (13) can be obtained from those for the first
row. In the v rest frame

ZP (µ) =
CγAC

5
(µ)

CγHV
5

(µ)
=

C1(µ)

Cγ0γ1γ2γ3(µ)
,

ZA(µ) =
CγAC

5 γ0(µ)

CγHV
5 γ0(µ)

=
Cγ0(µ)

Cγ1γ2γ3(µ)

=
CγAC

5 γ3(µ)

CγHV
5 γ3(µ)

=
Cγ3(µ)

Cγ0γ1γ2(µ)
,

ZT (µ) =
CγAC

5 γ0γ1(µ)

CγHV
5 γ0γ1(µ)

=
Cγ0γ1(µ)

Cγ2γ3(µ)

=
CγAC

5 γ2γ3(µ)

CγHV
5 γ2γ3(µ)

=
Cγ2γ3(µ)

Cγ0γ1(µ)
= 1 . (16)

In particular, Cγ⊥/v(µ) = C
γ
[α
⊥
γ

β]
⊥

(µ). In the fol-

lowing we shall consider only the matching coef-
ficients for the first 4 Dirac structures in (13).

In order to find the coefficients CΓ(µ), we
equate matrix elements of the left- and right-hand
side of (11) from the heavy quark with momen-
tum p = mv + k to the light quark with momen-
tum kq:

<q(kq)|j(µ)|Q(mv + k)> =

CΓ(µ)<q(kq)|̃(µ)|Qv(k)> + O

(

k, kq
m

)

. (17)

The on-shell matrix elements are

<q(kq)|j(µ)|Q(p)> = ūq(kq)Γ(p, kq)u(p)

× Z−1
j (µ)Z

1/2
Q Z1/2

q ,

<q(kq)|̃(µ)|Qv(k)> = ūq(kq)Γ̃(k, kq)uv(k)

× Z̃−1
j (µ)Z̃

1/2
Q Z̃1/2

q , (18)

where Γ(p, kq) and Γ̃(k, kq) are the bare vertex

functions, and Z̃q differs from Zq because there
are no Q loops in HQET. The difference between
u(mv + k) and uv(k) is of order k/m, and can be
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neglected. It is most convenient to use k = kq =
0, then the O(1/m) term is absent. The QCD
vertex has two Dirac structures:

Γ(mv, 0) = Γ · (A + B/v) .

This leads to

ū(0)Γ(mv, 0)u(mv) = Γ̄(mv, 0) ū(0)Γu(mv) ,

Γ̄(mv, 0) = A + B .

The HQET vertex has just one Dirac structure.
Therefore,

CΓ(µ) =
Γ̄(mv, 0)Z−1

j (µ)Z
1/2
Q Z

1/2
q

Γ̃(0, 0)Z̃−1
j (µ)Z̃

1/2
Q Z̃

1/2
q

. (19)

If all flavours except Q are massless, all loop
corrections to Γ̃(0, 0), Z̃Q, and Z̃q contain no

scale and hence vanish: Γ̃(0, 0) = 1, Z̃Q = 1,

Z̃q = 1. The quantities Γ(mv, 0), ZQ, and Zq
contain a single scale m; ZQ has been calculated
up to 3 loops in [6], Zq in [9], and Γ(mv, 0) in
the present work [2]. The MS renormalization
constants Z̃j [7] and Zj [16] (for all Γ) are also
known to 3 loops.

If there is another massive flavour (c in b-quark
HQET), then Γ̃(0, 0), Z̃Q, and Z̃q contain a sin-
gle scale mc. The first two quantities have been
calculated up to 3 loops in [17]; the last one is
known from [9]. The quantities Γ(mv, 0), ZQ,
and Zq now contain 2 scales, and are non-trivial
functions of x = mc/m. The renormalization con-
stant ZQ has been calculated in this case, up to
3 loops, in [18] (the master integrals appearing in
this case are discussed in Ref. [19]). The other
two quantities are found in this work [2].

The bare on-shell QCD quantities Γ̄(mv, 0),

ZQ, and Zq are expressed via g
(nf )
0 (and m

(nf )
c0

if it is non-zero; we re-express it via the on-
shell mass mc). They don’t contain µ. The MS
QCD renormalization constant Zj is expressed

via α
(nf )
s (µ). The bare on-shell HQET quanti-

ties Γ̃(0, 0), Z̃Q, and Z̃q are expressed via g
(nf−1)
0

and m
(nf−1)
c0 (they are trivial at mc = 0); we re-

express m
(nf−1)
c0 via the on-shell mass mc (which

is the same in both theories). These bare quan-
tities also don’t contain µ. Finally, the MS

HQET renormalization constant Z̃j is expressed

via α
(nf−1)
s (µ). We re-express all the quantities

in (19) via α
(nf−1)
s (µ), see [9].

From equation of motion we have

i∂αjα = i∂αjα0 = m0j0 = m(µ)j(µ) , (20)

where m(µ) is the MS mass of the heavy quark
Q. Taking the on-shell matrix element between
the heavy quark with p = mv and the light quark
with kq = 0 and re-expressing both QCD matrix
elements via the matrix element of the HQET
current with Γ = 1, we obtain [11]

mC/v(µ) = m(µ)C1(µ) . (21)

The ratio m(µ)/m has been calculated at three
loops in [20] (for mc 6= 0 in [18]).

The matching coefficients have been calculated
up to 2 loops in [11], and to 3 loops in the present
work [2]. Analytical expressions are long; numer-
ically, at mc = 0 and µ = m we have

C
(2)
1 = 7.55 + 1.09 = 8.64 ,

C
(2)
/v = −5.47 + 3.06 = −2.41 ,

C(2)
γ⊥ = −9.87 + 1.53 = −8.34 ,

C
(2)
γ⊥/v = −14.13 + 2.42 = −11.70 ,

C
(3)
1 = 64.74 + 75.34 − 38.16 = 101.92 ,

C
(3)
/v = −37.25 − 10.72 + 29.74 = −18.23 ,

C(3)
γ⊥

= −88.92 − 46.34 + 45.34 = −89.92 ,

C
(3)
γ⊥/v = −123.61− 63.57 + 63.22 = −123.96

(in the middle part of each formula, terms with

descending powers of β
(nf−1)
0 are shown sepa-

rately). Naive nonabelianization [11] works rea-
sonably well.

At mc 6= 0, results are expressed via the mas-
ter integrals depending on x = mc/m [19]. Their
status is summarized in the Tables 1–4 in this
paper. In the present work [2], we were able to
obtain exact analytical expressions (via harmonic
polylogarithms of x) for O(1) terms in the mas-
ter integrals 5.2, 5.2a, from the requirement of
finiteness of the matching coefficients. Therefore,
the Table 3 in [19] should be now replaced with
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the following Table 1 (DE means the method of
differential equations, and MB the Mellin–Barnes
representation). Unfortunately, O(ε) terms in 4
master integrals are still known only as truncated
series in x (the entries x in the table). Therefore,
the mc corrections to the 3-loop matching coeffi-
cients are also known only as truncated series in
x (or numerical approximations).

We let’s apply our results to the matrix ele-
ments between a B or B∗ meson with momentum
p and the vacuum:

<0|
(

q̄γAC
5 Q

)

µ
|B> = −imBfPB (µ) , (22)

<0|q̄γαγAC
5 Q|B> = ifBpα ,

<0|q̄γαQ|B∗> = imB∗fB∗eα ,

<0|
(

q̄σαβQ
)

µ
|B∗> = fTB∗(µ)(pαeβ − pβeα) .

The corresponding HQET matrix elements in the
v rest frame are

<0|
(

q̄γAC
5 Qv

)

µ
|B(~k )>

nr
= −iF (µ) ,

<0| (q̄~γQv)µ |B
∗(~k )>

nr
= iF (µ)~e , (23)

where the single-meson states are normalized by
the non-relativistic condition

nr
<B(~k ′)|B(~k )>

nr
= (2π)3δ(~k ′ − ~k ) .

These two matrix elements are characterized by a
single hadronic parameter F (µ) due to the heavy-
quark spin symmetry. From (20) we have [11]

fPB (µ)

fB
=

mB

m(µ)
, (24)

where we may replace mB by the on-shell b-quark
mass m, neglecting power corrections.

Our main result is the ratio fB∗/fB. At mc = 0

fB∗

fB
= 1 −

1

2
CF

α
(4)
s (m)

π
+

(CF rF + CArA + TFnlrl + TF rh)CF

(

α
(4)
s (m)

π

)2

+
(

C2
F rFF + CFCArFA + C2

ArAA + CFTFnlrFl

+ CFTF rFh + CATFnlrAl + CATF rAh

+ T 2
Fn2

l rll + T 2
Fnlrlh + T 2

F rhh
)

CF

(

α
(4)
s (m)

π

)3

+ O

(

α4
s,

Λ

m

)

, (25)

where

rF =
1

3
π2 log 2 −

1

2
ζ3 −

4

9
π2 +

31

48
,

rA = −
1

6
π2 log 2 +

1

4
ζ3 +

1

6
π2 −

263

144
,

rl =
19

36
, rh =

1

9
π2 −

41

36
,

rFF = −
8

3
a4 −

1

9
log4 2 −

2

9
π2 log2 2

+
19

6
π2 log 2 +

25

12
ζ5 −

1

9
π2ζ3 +

11

8
ζ3

−
43

1080
π4 −

43

24
π2 −

289

192
,

rFA = −
20

9
a4 −

5

24
log4 2 −

5

27
π2 log2 2

+
305

108
π2 log 2 −

115

48
ζ5 +

1

12
π2ζ3 −

899

144
ζ3

+
817

12960
π4 −

2233

648
π2 +

4681

864
,

rAA =
16

9
a4 +

2

27
log4 2 +

4

27
π2 log2 2

−
119

54
π2 log 2 +

5

6
ζ5 −

11

144
π2ζ3 +

343

144
ζ3

−
17

3240
π4 +

2839

1728
π2 −

48125

5184
,

rFl =
16

9
a4 +

2

27
log4 2 +

4

27
π2 log2 2

−
28

27
π2 log 2 +

25

9
ζ3 −

11

324
π4 +

179

162
π2 −

815

864
,

rFh = −
32

9
a4 −

4

27
log4 2 +

4

27
π2 log2 2

+
46

27
π2 log 2 + 5ζ3 −

1

162
π4 −

1439

1080
π2 −

119

36
,

rAl =
8

9
a4 −

1

27
log4 2 −

2

27
π2 log2 2

+
14

27
π2 log 2 −

13

18
ζ3 +

13

3240
π4 −

17

72
+

422

81
,

rAh =
16

9
a4 +

2

27
log4 2 −

2

27
π2 log2 2

−
86

27
π2 log 2 +

55

48
ζ5 −

31

144
π2ζ3 +

43

36
ζ3

+
8

405
π4 +

577

270
π2 −

1121

648
,

rll = −
1

27
π2 −

203

324
, rlh =

5

81
π2 −

101

162
,
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Table 1
Master integrals with 5 lines

5.1, 5.1a 5.2, 5.2a 5.3, 5.3a 5.4, 5.4a
ε−3 DE DE DE DE
ε−2 DE DE DE DE
ε−1 DE DE DE DE
1 DE NEW MB DE
ε DE x x DE
ε2 DE

rhh = −
8

9
ζ3 +

8

405
π2 +

277

324

(a4 = Li4(1/2)). The result for fTB∗(m)/fB∗ is
similar.

Numerically,

(

fB∗

fB

)(2)

= −4.40− 1.97 = −6.37 ,

(

fTB∗(mb)

fB∗

)(2)

= −4.26 + 0.89 = −3.37 ,

(

fB∗

fB

)(3)

= −51.67− 42.21 + 16.33 = −77.55 ,

(

fTB∗(mb)

fB∗

)(3)

= −34.69− 22.91 + 19.07

= −38.53 .

Naive nonabelianization [11] works reasonably
well.

Asymptotics of the perturbative coefficients for
the matching coefficients at a large number of
loops l ≫ 1 have been investigated in Ref. [21]
in a model-independent way. The results contain
three unknown normalization constants N0,1,2 ∼
1. The asymptotics of the perturbative coeffi-
cients for fB∗/fB contain N0 and N2; in the case
of m/m̂ it contains only N0:

(

fB∗

fB

)(n+1)

L=−5/3

= −
14

27

{

1 + O

(

1

n

)

+
2

7

(

50

3
n

)−9/25 [

1 + O

(

1

n

)]

N2

N0

}

×
(m

m̂

)(n+1)

L=−5/3
. (26)

The coefficient of N2/N0 is about 0.08 at n = 2,
and it seems reasonable to neglect this contri-
bution. Neglecting also 1/n corrections, we ob-
tain [21]

(

fB∗

fB

)(3)

L=−5/3

= −
14

27
· 56.37 = −29.23 .

Our exact result −37.787 agrees with this predic-
tion reasonably well. However, 1/n corrections
are large and tend to break this agreement. It is
natural to expect that 1/n2 (and higher) correc-
tions are also substantial at n = 2.
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